首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Photosystem Ⅱ reaction center D1/D2/Cytochrome b559 complex loses its bound secondary electron acceptor QA and QB during isolation and purification. The artificial plastoquinone can reconstitute with the complex. The reconstitution of decyl-plastoquinone (DPQ) with D1/D2/Cytochrome b559 complex results in a decrease of the fraction of the two long lived fluorescence decay components (24 ns and 73 ns) coupled with photochemical activities to the total fluorescence yields, as well as a decrease of the total fluorescence intensity and a blue-shift of maximum emission wavelength. These results suggest that as the electron acceptor of reduced Pheo, DPQ restricts the charge recombination of P680+ Pheo-, and the two long lived fluorescence decay components (24 ns and 73 ns) come from the recombination. Although DPQ reconstitution has little effect on the susceptibility of Chi a to photodamage, β-carotene can easily be photodamaged after DPQ reconstitution. This is probably related to the physiological function of β-carotene.  相似文献   

2.
Lee RE  Li W  Chatterjee D  Lee RE 《Glycobiology》2005,15(2):139-151
Mycobacteria possess a unique, highly evolved, carbohydrate- and lipid-rich cell wall that is believed to be important for their survival in hostile environments. Until now, our understanding of mycobacterial cell wall structure has been based upon destructive isolation and fragmentation of individual cell wall components. This study describes the observation of the major cell wall structures in live, intact mycobacteria using 2D and 3D high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR). As little as 20 mg (wet weight) of [13C]-enriched cells were required to produce a whole-cell spectra in which discrete cross-peaks corresponding to specific cell wall components could be identified. The most abundant signals of the arabinogalactan (AG) and lipoarabinomannan (LAM) were assigned in the HR-MAS NMR spectra by comparing the 2D and 3D NMR whole-cell spectra with the spectra of purified cellular components. This study confirmed that the structures of the AG and LAM moieties in the cell wall of live mycobacteria are consistent with structural reports in the literature, which were obtained via degradative analysis. Most important, by using intact cells it was possible to directly demonstrate the effects of ethambutol on the mycobacterial cell wall polysaccharides, characterize the effects of embB gene knockout in the M. smegmatis DeltaembB mutant, and observe differences in the cell wall structures of two mycobacterial species (M. bovis BCG and M. smegmatis.) Herein, we show that HR-MAS NMR is a powerful, rapid, nondestructive technique to monitor changes in the complex, carbohydrate-rich cell wall of live mycobacterial cells.  相似文献   

3.
Muscle contraction is tightly regulated by Ca2+ binding to the thin filament protein troponin. The mechanism of this regulation was investigated by detailed mapping of the dynamic properties of cardiac troponin using amide hydrogen exchange-mass spectrometry. Results were obtained in the presence of either saturation or non-saturation of the regulatory Ca2+ binding site in the NH2 domain of subunit TnC. Troponin was found to be highly dynamic, with 60% of amides exchanging H for D within seconds of exposure to D2O. In contrast, portions of the TnT-TnI coiled-coil exhibited high protection from exchange, despite 6 h in D2O. The data indicate that the most stable portion of the trimeric troponin complex is the coiled-coil. Regulatory site Ca2+ binding altered dynamic properties (i.e. H/D exchange protection) locally, near the binding site and in the TnI switch helix that attaches to the Ca2+-saturated TnC NH2 domain. More notably, Ca2+ also altered the dynamic properties of other parts of troponin: the TnI inhibitory peptide region that binds to actin, the TnT-TnI coiled-coil, and the TnC COOH domain that contains the regulatory Ca2+ sites in many invertebrate as opposed to vertebrate troponins. Mapping of these affected regions onto the troponin highly extended structure suggests that cardiac troponin switches between alternative sets of intramolecular interactions, similar to previous intermediate resolution x-ray data of skeletal muscle troponin.  相似文献   

4.
Most studies have shown that interleukin-1 (IL-1) acts as a helper or co-stimulator in T-lymphocyte activation and proliferation by mitogens or antigens. We describe here a stable subclone (D10S) of the murine D10.G4.1 helper T-cell which proliferates to subfemtomolar (attomolar) concentrations of IL-1 beta or alpha in the absence of mitogens. D10S cells have been maintained in culture for over two years without splenic cell feeder layers nor antigen stimulation. Detection of proliferation can be made by either uptake of tritiated thymidine at 72 h or in 48 h by a colorimetric assay which measures mitochondrial dehydrogenases; the latter assay is rapid and inexpensive. D10S cells are distinct from the parent clone D10.G4., which requires mitogens for IL-1 activity. IL-1-induced proliferation is independent of the elaboration of IL-2, IL-4, or IL-6, although these cells proliferate to these lymphokines at considerably higher concentrations when compared to IL-1. The D10S cells proliferate in direct correlation to the duration of IL-1 presence in the culture. We found no evidence that IL-1 induced more IL-1 in these cells. The subclone is highly specific for IL-1: proliferation was not observed to endotoxin, human or murine interferon-gamma (IFN gamma), tumor necrosis factor (TNF), lymphotoxin, or granulocyte-macrophage colony stimulating factor (GM-CSF). There was no suppressive effect of transforming growth factor (TGF beta). Only at high concentrations (100 ng/ml) did IL-6 induce proliferation. We conclude that this stable, feeder layer-free cell line is highly sensitive to IL-1 which acts as a direct stimulant for these cells; they are also useful for bioassays as well as the study of IL-1 receptors as described in the accompanying paper.  相似文献   

5.
6.
光系统Ⅱ反应中心D1/D2/Cytb559 在分离纯化过程中失去了电子受体QA 和QB,人工合成的质体醌可以与D1/D2/Cytb559 复合物发生重组。癸基质体醌(DPQ)与D1/D2/Cytb599 复合物的重组导致该复合物的荧光强度下降及发射光谱蓝移,同时两个与光化学活性相关的长寿命(24 ns和73 ns)荧光衰减组分占整个荧光的百分数下降,这些结果表明DPQ作为Pheo- 的电子受体,限制了P680+ ·Pheo- 的电荷重组。DPQ 的加入对D1/D2/Cytb559复合物中Chla 分子的光破坏敏感性影响不大,但β-胡萝卜素在加入DPQ 之后可以被光照破坏,这个过程可能与β-胡萝卜素的生理功能相关。  相似文献   

7.
Mutations in the voltage-gated K+ channel Kv1.1 have been linked with a mixed phenotype of episodic ataxia and/or myokymia. Recently, we presented autosomal dominant hypomagnesemia as a new phenotypic characteristic associated with a mutation in Kv1.1 (N255D) (Glaudemans, B., van der Wijst, J., Scola, R. H., Lorenzoni, P. J., Heister, A., van der Kemp, A. W., Knoers, N. V., Hoenderop, J. G., and Bindels, R. J. (2009) J. Clin. Invest. 119, 936–942). A conserved asparagine at position 255 in the third transmembrane segment was converted into an aspartic acid, resulting in a non-functional channel. In this study, we explored the functional consequence of this conserved residue by substitution with other hydrophobic, polar, or charged amino acids (N255E, N255Q, N255A, N255V, N255T, and N255H). Upon overexpression in human embryonic kidney (HEK293) cells, cell surface biotinylation revealed plasma membrane expression of all mutant channels. Next, we used the whole-cell patch clamp technique to demonstrate that the N255E and N255Q mutants were non-functional. Substitution of Asn-255 with other amino acids (N255A, N255V, N255T, and N255H) did not prevent ion conduction, and these mutant channels activated at more negative potentials when compared with wild-type channels, −41.5 ± 1.6, −45.5 ± 2.0, −50.5 ± 1.9, and −33.8 ± 1.3 mV to −29.4 ± 1.1 mV, respectively. The time constant of activation was significantly faster for the two most hydrophobic mutations, N255A (6.2 ± 0.2 ms) and N255V (5.2 ± 0.3 ms), and the hydrophilic mutant N255T (9.8 ± 0.4 ms) in comparison with wild type (13.0 ± 0.9 ms). Furthermore, the voltage dependence of inactivation was shifted ∼13 mV to more negative potentials in all mutant channels except for N255H. Taken together, our data showed that an asparagine at position 255 in Kv1.1 is required for normal voltage dependence and kinetics of channel gating.  相似文献   

8.
Histidine residue content of photosystem Ⅱ reaction center D1/D2/cytochrome b559 complex decreased by about 26% after illumination. The result suggests that some histidine residues are damaged by illumination. The damage of histidine residues may be related to the changes of the spectra properties during the incubation in the dark following preillumination of the reaction center complex.  相似文献   

9.
Surfactant protein D (SP-D), one of the members of the collectin family of C-type lectins, is an important component of pulmonary innate immunity. SP-D binds carbohydrates in a calcium-dependent manner, but the mechanisms governing its ligand recognition specificity are not well understood. SP-D binds glucose (Glc) stronger than N-acetylglucosamine (GlcNAc). Structural superimposition of hSP-D with mannose- binding protein C (MBP-C) complexed with GlcNAc reveals steric clashes between the ligand and the side chain of Arg343 in hSP-D. To test whether Arg343 contributes to Glc > GlcNAc recognition specificity, we constructed a computational model of Arg343-->Val (R343V) mutant hSP-D based on homology with MBP-C. Automated docking of alpha-Me-Glc and alpha-Me-GlcNAc into wild-type hSP-D and the R343V mutant of hSP-D suggests that Arg343 is critical in determining ligand-binding specificity by sterically prohibiting one binding orientation. To empirically test the docking predictions, an R343V mutant recombinant hSP-D was constructed. Inhibition analysis shows that the R343V mutant binds both Glc and GlcNAc with higher affinity than the wild-type protein and that the R343V mutant binds Glc and GlcNAc equally well. These data demonstrate that Arg343 is critical for hSP-D recognition specificity and plays a key role in defining ligand specificity differences between MBP and SP-D. Additionally, our results suggest that the number of binding orientations contributes to monosaccharide binding affinity.  相似文献   

10.
The presence of 1.0 mol/L glycinebetaine during isolation of D1/D2/Cytb559 reaction centre (RC) complexes from photosystem II (PSII) membrane fragments preserved the photochemical activity, monitored as the light-induced reduction of pheophytin and electron transport from diphenylcarbazide to 2.6-dichlorophenol-indophenol.-Glycinebetaine also protected the D1/D2/Cytb559 complexes against strong light-induced damage to the photochemical reactions and the irreversible bleaching of beta-carotene and chlorophyll. The presence of glycinebetaine also enhanced thermotolerance of the D1/D2/Cytb559 complexes isolated in the presence of 1.0 mol/L betaine with an increase in the temperature for 50% inactivation from 29 degrees C to 35 degrees C. The results indicate an increased supramolecular structural stability in the presence of glycinebetaine.  相似文献   

11.
On the basis of affinity differences for spiperone, two binding sites for [3H](+/-)-2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene ([3H]ADTN) in the rat brain could be distinguished: "D3" with a low and "D4" with a high affinity for spiperone. Evidence is provided that D3 and D4 sites are related to high agonist affinity states of the D1 and D2 dopamine receptors, respectively. Various well-known selective D1 and D2 agonists and antagonists showed potencies at these sites in agreement with this hypothesis. A comparison of the Bmax values for [3H]ADTN binding to D3 and D4 sites with the numbers of D1 receptors (labelled by [3H]SCH 23390) and of D2 receptors (labelled by [3H]spiperone), both in the striatum and in the mesolimbic system, indicated that under the conditions used for 3H-agonist binding experiments, both populations of D1 and D2 receptors were converted to their high agonist affinity states to a considerable, although different extent. In fact, when competition experiments with [3H]spiperone were performed under the conditions otherwise used for [3H]ADTN binding experiments (instead of the conditions usually used for antagonist binding), substantial shifts of the displacement curves of 3,4-dihydroxyphenylethylamine (dopamine) and ADTN toward higher affinities were observed. A comparison of the effects of various agonists and antagonists in the [3H]ADTN binding experiments and in functional tests revealed a significant correlation between their potencies at D4 binding sites and at D2 receptors modulating the release of [3H]acetylcholine from striatal slices. However, in the situation of the D1/D3 pair, when the measurement of adenylate cyclase activity was taken as a functional test for D1 receptors, agonists were more active in the binding than in the functional test, whereas for many antagonists the opposite was found. The results are discussed with regard to the classification and functional aspects of brain dopamine receptors.  相似文献   

12.
Many bacterial pathogens, including Pseudomonas aeruginosa, have a nonhomologous end joining (NHEJ) system of DNA double strand break (DSB) repair driven by Ku and DNA ligase D (LigD). LigD is a multifunctional enzyme composed of a ligase domain fused to an autonomous polymerase module (POL) that adds ribonucleotides or deoxyribonucleotides to DSB ends and primer-templates. LigD POL and the eukaryal NHEJ polymerase λ are thought to bridge broken DNA ends via contacts with a duplex DNA segment downstream of the primer terminus, a scenario analogous to gap repair. Here, we characterized the gap repair activity of Pseudomonas LigD POL, which is more efficient than simple templated primer extension and relies on a 5′-phosphate group on the distal gap strand end to confer apparent processivity in filling gaps of 3 or 4 nucleotides. Mutations of the His-553, Arg-556, and Lys-566 side chains implicated in DNA 5′-phosphate binding eliminate the preferential filling of 5′-phosphate gaps. Mutating Phe-603, which is imputed to stack on the nucleobase of the template strand that includes the 1st bp of the downstream gap duplex segment, selectively affects incorporation of the final gap-closing nucleotide. We find that Pseudomonas Ku stimulates POL-catalyzed ribonucleotide addition to a plasmid DSB end and promotes plasmid end joining by full-length Pseudomonas LigD. A series of incremental truncations from the C terminus of the 293-amino acid Ku polypeptide identifies Ku-(1–229) as sufficient for homodimerization and LigD stimulation. The slightly longer Ku-(1–253) homodimer forms stable complexes at both ends of linear plasmid DNA that protect the DSBs from digestion by 5′- and 3′-exonucleases.  相似文献   

13.
Comparative modeling of the vitamin D receptor three-dimensional structure and computational docking of 1alpha,25-dihydroxyvitamin D(3) into the putative binding pocket of the two deletion mutant receptors: (207-423) and (120-422, Delta [164-207]) are reported and evaluated in the context of extensive mutagenic analysis and crystal structure of holo hVDR deletion protein published recently. The obtained molecular model agrees well with the experimentally determined structure. Six different conformers of 1alpha,25-dihydroxyvitamin D(3) were used to study flexible docking to the receptor. On the basis of values of conformational energy of various complexes and their consistency with functional activity, it appears that 1alpha,25-dihydroxyvitamin D(3) binds the receptor in its 6-s-trans form. The two lowest energy complexes obtained from docking the hormone into the deletion protein (207-423) differ in conformation of ring A and orientation of the ligand molecule in the VDR pocket. 1alpha,25-Dihydroxyvitamin D(3) possessing the A-ring conformation with axially oriented 1alpha-hydroxy group binds receptor with its 25-hydroxy substituent oriented toward the center of the receptor cavity, whereas ligand possessing equatorial conformation of 1alpha-hydroxy enters the pocket with A ring directed inward. The latter conformation and orientation of the ligand is consistent with the crystal structure of hVDR deletion mutant (118-425, Delta [165-215]). The lattice model of rVDR (120-422, Delta [164-207]) shows excellent agreement with the crystal structure of the hVDR mutant. The complex obtained from docking the hormone into the receptor has lower energy than complexes for which homology modeling was used. Thus, a simple model of vitamin D receptor with the first two helices deleted can be potentially useful for designing a general structure of ligand, whereas the advanced lattice model is suitable for examining binding sites in the pocket.  相似文献   

14.
15.
Platelet-derived growth factor BB induced cyclin D1 expression in a time- and nuclear factor of activated T cells (NFAT)-dependent manner in human aortic smooth muscle cells (HASMCs), and blockade of NFATs prevented HASMC DNA synthesis and their cell cycle progression from G1 to S phase. Selective inhibition of NFATc1 by its small interfering RNA also blocked HASMC proliferation and migration. Characterization of the cyclin D1 promoter revealed the presence of several NFAT binding sites, and the site at nucleotide −1333 was found to be sufficient in mediating platelet-derived growth factor BB-induced cyclin D1 promoter-luciferase reporter gene activity. In addition to its role in cell cycle progression, cyclin D1 mediated HASMC migration in an NFATc1-dependent manner. Balloon injury-induced cyclin D1-CDK4 activity requires NFAT activation, and adenovirus-mediated transduction of cyclin D1 was found to be sufficient to overcome the blockade effect of NFATs by VIVIT on balloon injury-induced vascular wall remodeling events, including smooth muscle cell migration from the medial to luminal region, their proliferation in the intimal region, and neointima formation. Together, these results provide more mechanistic evidence for the role of NFATs, particularly NFATc1, in the regulation of HASMC proliferation and migration as well as vascular wall remodeling. NFATc1 could be a potential therapeutic target against the renarrowing of artery after angioplasty.  相似文献   

16.
D-type cyclins are involved in the regulation of the G1/S transition of the cell cycle in various cell types cultured in vitro. Little is, however, known about the expression pattern and functional role of D-type cyclins in physiological processes in vivo. In this report, we studied whether the expression of murine D-type cyclins correlates with the states of mouse uterine cell proliferation in vivo. Time-course changes in cyclin D1 and D3 mRNA levels in the uterine tissues of immature mice primed with 17β-estradiol (E2) were examined by Northern blot hybridization. c-fos and thymidine kinase (TK) mRNA levels were also examined as markers for the transition from G0 to G1 and the onset of S phase, respectively. Cyclin D1 and D3 mRNAs were induced 2.5-fold between c-fos and TK mRNA peaks. The E2-induced cyclin D1 and D3 gene expressions were blocked by antiestrogens tamoxifen and ICI 182,780. We also investigated the effects of cycloheximide (CHX), a protein synthesis inhibitor, on cyclin D1 and D3 gene expressions. When CHX was treated alone, cyclin D3, but not cyclin D1, mRNA was immediately superinduced. The E2-induced cyclin D3 gene expression was shifted by approximately 6 h when CHX was pretreated 1 hr before E2 administration. Interestingly, the 3H-thymidine incorporation experiment showed that the mouse uterine cell cycle progression also shifted by 6 hr with pretreatment of CHX. The overall results suggest that both cyclin D1 and D3 mRNAs are constitutively expressed in uterine tissues and induced by E2 at G1 phase of the mouse uterine cell cycle. However, the superinducibility and temporal shift of cyclin D3 by CHX suggest that there is a different regulatory mechanism underlying cyclin D1 and D3 gene expressions in the mouse uterine cell cycle progression. Mol. Reprod. Dev. 46:450–458, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Abstract: Although members of the multiple vertebrate/mammalian dopamine D1 receptor gene family can be selectively classified on the basis of their molecular/phylogenetic, structural, and tissue distribution profiles, no subtype-specific discriminating agents have yet been identified that can functionally differentiate these receptors. To define distinct pharmacological/functional attributes of multiple D1-like receptors, we analyzed the ligand binding profiles, affinity, and functional activity of 12 novel NNC compounds at mammalian/vertebrate D1/D1A and D5/D1B, as well as vertebrate D1C/D1D, dopamine receptors transiently expressed in COS-7 cells. Of all the compounds tested, only NNC 01-0012 displayed preferential selectivity for vertebrate D1C receptors, inhibiting [3H]SCH-23390 binding with an estimated affinity (∼0.6 n M ) 20-fold higher than either mammalian/vertebrate D1/D1A or D5/D1B receptors or the D1D receptor. Functionally, NNC 01-0012 is a potent antagonist at D1C receptors, inhibiting to basal levels dopamine (10 µ M )-stimulated adenylyl cyclase activity. In contrast, NNC 01-0012 (10 µ M ) exhibits weak antagonist activity at D1A receptors, inhibiting only 60% of maximal cyclic AMP production by dopamine, while acting as a partial agonist at vertebrate D1B and D1D receptors, stimulating adenylyl cyclase activity by ∼33% relative to the full agonist dopamine (10 µ M ), an effect that was blocked by the selective D1 receptor antagonist NNC 22-0010. These data clearly suggest that the benzazepine NNC 01-0012, despite lacking the N -methyl residue in the R3 position, is a selective and potent D1C receptor antagonist. Moreover, the differential signal transduction properties exhibited by NNC 01-0012 at these receptor subtypes provide further evidence, at least in vertebrates, for the classification of the D1C receptor as a distinct D1 receptor subtype.  相似文献   

18.
Implication of D1 degradation in phosphorylation-induced state transitions   总被引:1,自引:0,他引:1  
State transitions and lateral migration of phosphorylated mobile-LHC II upon thylakoid unstacking have been reported as being interdependent. However, now the thyakoid unstacking event can be separated from the thyakoid phosphorylation and the associated F730/F685 enhancement by using the serine-type-protease inhibitor benzamidine. Thus, lateral migration appears not be necessary, and it can be shown that LHC II-rich fragments, originating in peripheral granal membranes, can be released by digitonin although in reduced amounts. On the other hand, phosphorylation of thylakoid proteins greatly stimulates the light-induced D1 degradation, which is observed in chloroplasts phosphorylated even at very low light (15 µmol m–2s–1). Thylakoid pretreatment with FSBA (the PS II protein-kinase inhibitor) blocks the light-induced and ATP-stimulated D1 degradation, and the F730/F685 ratio increase; this suggests that the dissociation of the PS II unit, resulting from the introduction of repulsive negative charges ( ATP groups) into LHC II and PS II core proteins, leads to D1 degradation. In chloroplast samples transferred to darkness following short-time phosphorylation, the D1 level is recovered. The results suggest that disassembly of PS II and D1 degradation occur parallel to State transitions. The removal of outer phospho-LHC II from PS II and its association with PS I at the periphery of grana may allow D1 degradation and increased light utilization by PS I, while net de novo synthesis of D1, stimulated by ATP, may lead to the assembly of new PS II units which could bind dephosphorylated LHC II in the dark, resulting in increased light utilization by PS II.  相似文献   

19.
Zong XM  Zeng YM  Xu T  Lü JN 《生理学报》2003,55(5):565-570
实验应用开阔法、组织病理学方法、原位末端标记(in situ terminal deoxynucleotidyl transferase-metliated de-oxy-UTP mick end labeling,TUNEL)法及免疫组织化学等方法,探讨多巴胺D1、D2受体激动剂和拮抗剂对沙土鼠前脑缺血/再灌注损伤海马CA1区神经元凋亡及凋亡相关基因bcl-2、bax表达的影响。结果显示:前脑缺血5min可引起沙土鼠探索活动增加;再灌注3d,海马CA1区约95%的锥体细胞凋亡;再灌注7d,海马CA1区仅残存约2%—7%的存活锥体细胞;前脑缺血5min可抑制bcl-2的表达并诱导bax表达增高;预先应用D2受体激动剂培高利特可减轻缺血后沙土鼠行为学异常、抑制海马CA1区锥体细胞凋亡、提高锥体细胞存活数、显著诱导bcl-2的表达并抑制bax的表达。预先应用SKF38393、SCH23390及螺哌隆对以上结果无明显影响。实验结果提示,培高利特具有确切的脑保护作用,诱导bcl-2并抑制bax的表达可能是其脑保护作用机制之一。  相似文献   

20.
The striatum can be divided into the DLS (dorsolateral striatum) and the VMS (ventromedial striatum), which includes NAcC (nucleus accumbens core) and NAcS (nucleus accumbens shell). Here, we examined differences in electrophysiological properties of MSSNs (medium-sized spiny neurons) based on their location, expression of DA (dopamine) D1/D2 receptors and responses to the μ-opioid receptor agonist, DAMGO {[D-Ala2-MePhe4-Gly(ol)5]enkephalin}. The main differences in morphological and biophysical membrane properties occurred among striatal sub-regions. MSSNs in the DLS were larger, had higher membrane capacitances and lower Rin (input resistances) compared with cells in the VMS. RMPs (resting membrane potentials) were similar among regions except for D2 cells in the NAcC, which displayed a significantly more depolarized RMP. In contrast, differences in frequency of spontaneous excitatory synaptic inputs were more prominent between cell types, with D2 cells receiving significantly more excitatory inputs than D1 cells, particularly in the VMS. Inhibitory inputs were not different between D1 and D2 cells. However, MSSNs in the VMS received more inhibitory inputs than those in the DLS. Acute application of DAMGO reduced the frequency of spontaneous excitatory and inhibitory postsynaptic currents, but the effect was greater in the VMS, in particular in the NAcS, where excitatory currents from D2 cells and inhibitory currents from D1 cells were inhibited by the largest amount. DAMGO also increased cellular excitability in the VMS, as shown by reduced threshold for evoking APs (action potentials). Together the present findings help elucidate the regional and cell-type-specific substrate of opioid actions in the striatum and point to the VMS as a critical mediator of DAMGO effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号