首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Angiogenic cytokines secreted by the adipose-derived stem cells (ADSCs) might promote the angiogenesis of endothelial cells. In the present study, we hypothesize that miR-20a targets TGFB1 to modulate the transforming growth factor β1 (TGFβ1) secretion by ADSCs, therefore affecting the angiogenesis. We found that hypoxia-inducible factor 1A (HIF1A) and TGFβ1 expressions were increased by hypoxia, accompanied with promoted ADSC cell viability. Incubation with conditioned medium from ADSCs treated with hypoxia significantly enhanced the angiogenesis capacity of human dermal microvascular endothelial cells (HDMECs), while TGFB1-silenced ADSCs medium significantly reverses HDMECs angiogenesis. miR-20a suppresses the expression of TGFB1 and secretion of TGFβ1 by ADSCs via binding to its 3′untranslated region, therefore modulating the HDMEC angiogenesis via affecting the paracrine from ADSCs; the effects of miR-20a-overexpressed conditioned medium on HDMEC angiogenesis were significantly reversed by TGFB1-overexpressed conditioned medium. Finally, HIF1A suppressed the expression of miR-20a via targeting its promoter region, subsequently promoting the paracrine from ADSCs and HDMEC angiogenesis.  相似文献   

2.
Hypoxia is known to play critical roles in cell survival, angiogenesis, tumor invasion, and metastasis. Hypoxia mediated over-expression of hypoxia-inducible factor (HIF) has been shown to be associated with therapeutic resistance, and contributes to poor prognosis of cancer patients. Emerging evidence suggest that hypoxia and HIF pathways contributes to the acquisition of epithelial-to-mesenchymal transition (EMT), maintenance of cancer stem cell (CSC) functions, and also maintains the vicious cycle of inflammation-all which lead to therapeutic resistance. However, the precise molecular mechanism(s) by which hypoxia/HIF drives these events are not fully understood. Here, we show, for the first time, that hypoxia leads to increased expression of VEGF, IL-6, and CSC signature genes Nanog, Oct4 and EZH2 consistent with increased cell migration/invasion and angiogenesis, and the formation of pancreatospheres, concomitant with increased expression of miR-21 and miR-210 in human pancreatic cancer (PC) cells. The treatment of PC cells with CDF, a novel synthetic compound inhibited the production of VEGF and IL-6, and down-regulated the expression of Nanog, Oct4, EZH2 mRNAs, as well as miR-21 and miR-210 under hypoxia. CDF also led to decreased cell migration/invasion, angiogenesis, and formation of pancreatospheres under hypoxia. Moreover, CDF decreased gene expression of miR-21, miR-210, IL-6, HIF-1α, VEGF, and CSC signatures in vivo in a mouse orthotopic model of human PC. Collectively, these results suggest that the anti-tumor activity of CDF is in part mediated through deregulation of tumor hypoxic pathways, and thus CDF could become a novel, and effective anti-tumor agent for PC therapy.  相似文献   

3.
4.
5.
The macrolide compound MFTZ‐1 has been identified as a novel topoisomerase II (Top2) inhibitor with potent in vitro and in vivo anti‐tumour activities. In this study, we further examined the effects of MFTZ‐1 on hypoxia‐inducible factor‐1α (HIF‐1α) accumulation, vascular endothelial growth factor (VEGF) secretion and angiogenesis. MFTZ‐1 reduced HIF‐1α accumulation driven by hypoxia or growth factors in human cancer cells. Mechanistic studies revealed that MFTZ‐1 did not affect the degradation of HIF‐1α protein or the level of HIF‐1α mRNA. By contrast, MFTZ‐1 apparently inhibited constitutive and inducible activation of both phosphatidylinositol‐3‐kinase (PI3K)‐Akt and p42/p44 mitogen‐activated protein kinase (MAPK) pathways. Further studies revealed that MFTZ‐1 abrogated the HIF‐1α‐driven increase in VEGF mRNA and protein secretion. MFTZ‐1 also lowered the basal level of VEGF secretion. The results reveal an important feature that MFTZ‐1 can reduce constitutive, HIF‐1α‐independent VEGF secretion and concurrently antagonize inducible, HIF‐1α‐dependent VEGF secretion. Moreover, MFTZ‐1 disrupted tube formation of human umbilical vein endothelial cells (HUVECs) stimulated by hypoxia with low‐concentration serum or by serum at normoxia, and inhibited HUVECs migration at normoxia. MFTZ‐1 also prevented microvessel outgrowth from rat aortic ring. These data reflect the potent anti‐angiogenesis of MFTZ‐1 under different conditions. Furthermore, using specific small interfering RNA targeting Top2α or Top2‐defective HL60/MX2 cells, we showed that MFTZ‐1 affected HIF‐1α accumulation and HUVECs tube formation irrelevant to its Top2 inhibition. Taken together, our data collectively reveal that MFTZ‐1 reduces constitutive and inducible HIF‐1α accumulation and VEGF secretion possibly via PI3K‐Akt and MAPK pathways, eliciting anti‐angiogenesis independently of its Top2 inhibition.  相似文献   

6.
Vascular endothelial growth factor (VEGF) signaling plays an important role in angiogenesis. In the VEGF signaling pathway, the key components are VEGF and its receptors, Flt-1 and KDR. In this study, we show that transfection of synthetic miR-200b reduced protein levels of VEGF, Flt-1, and KDR. In A549 cells, miR-200b targeted the predicted binding sites in the 3′-untranslated region (3′-UTR) of VEGF, Flt-1, and KDR as revealed by a luciferase reporter assay. When transfected with miR-200b, the ability of HUVECs to form a capillary tube on Matrigel and VEGF-induced phosphorylation of ERK1/2 were significantly reduced. Taken together, these results suggest that miR-200b negatively regulates VEGF signaling by targeting VEGF and its receptors and that miR-200b may have therapeutic potential as an angiogenesis inhibitor.  相似文献   

7.
Corneal neovascularization (CRNV) is a prevalence eye disorder that affects the transparency and refraction properties of eyes. To explore the correlation between the level of Angiotensin II (Ang II) and corneal angiogenesis, the rat model of CRNV was established using alkali-burn, while the human umbilical vein endothelial cells (HUVECs) were stimulated using VEGF to induce the CRNV cells in vitro. RNA immunoprecipitation (RIP) and RNA pull-down were performed to validate the relationship between MIAT and miR-1246. The expression of MIAT and Ang II was increased, while miR-1246 was decreased in CRNV rat model. VEGF stimulation significantly promoted cell proliferation and migration of HUVECs, knockdown of MIAT dramatically reversed the effects of VEGF, while cells co-transfected with miR-1246 inhibitor obviously abolished the effect of VEGF+si-MIAT, however, enalaprilat abolished the effects of VEGF+si-MIAT+miR-1246 inhibitor. MIAT directly regulated the expression of miR-1246. In conclusion, VEGF stimulation promoted cell proliferation and migration of HUVECs mainly through regulating MIAT/miR-1246/ACE.  相似文献   

8.
BackgroundGlioma is the most common cancer in the central nervous system. Previous studies have revealed that the miR-376 family is crucial in tumour development; however, its detailed mechanism in glioma is not clear.MethodsCellular mRNA or protein levels of miR-376a, SIRT1, VEGF and YAP1 were detected via qRT–PCR or Western blotting. We analysed the proliferation, angiogenesis and migration abilities of glioma cell lines using colony formation, tube formation and Transwell assays. A luciferase assay was performed to determine whether miR-376a could recognize SIRT1 mRNA. Xenograft experiments were performed to analyse the tumorigenesis capacity of glioma cell lines in nude mice. The angiogenesis marker CD31 in xenograft tumours was detected via immunohistochemistry (IHC).ResultsmiR-376a expression was lower in glioma cells than in normal astrocytes. miR-376a mimic inhibited SIRT1, YAP1, and VEGF expression and suppressed the proliferation, migration and angiogenesis abilities of the glioma cell lines LN229 and A172, whereas miR-376a inhibitor exerted the opposite functions. In a luciferase assay, miR-376a inhibited the luciferase activity of WT-SIRT1. SIRT1 overexpression upregulated YAP1 and VEGF in glioma cells and promoted proliferation, migration and angiogenesis. Xenografts with ectopic miR-376a expression exhibited lower volumes and weights and a slower growth curve. Overexpression of miR-376a inhibited YAP1/VEGF signalling and angiogenesis by inhibiting SIRT1 in xenograft tissues.ConclusionmiR-376a directly targets and inhibits SIRT1 in glioma cells. Downregulation of SIRT1 resulted in decreased YAP1 and VEGF signalling, which led to suppression of glioma cell proliferation, migration and angiogenesis.  相似文献   

9.
10.
11.
12.
13.
Preeclampsia is a pregnancy specific hypertensive disease that confers significant maternal and fetal risks. While the exact pathophysiology of preeclampsia is unknown, it is widely accepted that placental dysfunction is mechanistically involved. Recent studies reported aberrant expression of placenta-specific microRNAs (miRNAs) in preeclampsia including miR-517a/b and miR-517c. Using placental biopsies from a preeclampsia case-control study, we found increased expression of miR-517a/b in term and preterm preeclampsia vs controls, while, miR-517c was increased only in preterm preeclampsia vs controls. To determine if miR-517a/b and miR-517c are regulated by hypoxia, we treated first trimester primary extravillous trophoblast cells (EVTs) with a hypoxia mimetic and found both were induced. To test for a mechanistic role in placental function, we overexpressed miR-517a/b or miR-517c in EVTs which resulted in decreased trophoblast invasion. Additionally, we found that miR-517a/b and miR-517c overexpression increased expression of the anti-angiogenic protein, sFLT1. The regulation of sFLT1 is mostly unknown, however, TNFSF15, a cytokine involved in FLT1 splicing, was also increased by miR-517a/b and miR-517c in EVTs. In summary, we demonstrate that miR-517a/b and miR-517c contribute to the development of preeclampsia and suggest that these miRNAs play a critical role in regulating trophoblast and placental function.  相似文献   

14.
microRNA-210 (miR-210) is upregulated in hypoxia, but its function in cardiomyocytes and its regulation in response to hypoxia are not well characterized. The purpose of this study was to identify upstream regulators of miR-210, as well as to characterize miR-210's function in cardiomyocytes. We first showed miR-210 is upregulated through both hypoxia-inducible factor (HIF)-dependent and -independent pathways, since aryl hydrocarbon nuclear translocator (ARNT) knockout mouse embryonic fibroblasts (MEF), lacking intact HIF signaling, still displayed increased miR-210 levels in hypoxia. To determine the mechanism for HIF-independent regulation of miR-210, we focused on p53 and protein kinase B (Akt). Overexpression of p53 in wild-type MEFs induced miR-210, whereas p53 overexpression in ARNT knockout MEFs did not, suggesting p53 regulates miR-210 in a HIF-dependent mechanism. Akt inhibition reduced miR-210 induction by hypoxia, whereas Akt overexpression increased miR-210 levels in both wild-type and ARNT knockout MEFs, indicating Akt regulation of miR-210 is HIF-independent. We then studied the effects of miR-210 in cardiomyocytes. Overexpression of miR-210 reduced cell death in response to oxidative stress and reduced reactive oxygen species (ROS) production both at baseline and after treatment with antimycin A. Furthermore, downregulation of miR-210 increased ROS after hypoxia-reoxygenation. To determine a mechanism for the cytoprotective effects of miR-210, we focused on the predicted target, apoptosis-inducing factor, mitochondrion-associated 3 (AIFM3), known to induce cell death. Although miR-210 reduced AIFM3 levels, overexpression of AIFM3 in the presence of miR-210 overexpression did not reduce cellular viability either at baseline or after hydrogen peroxide treatment, suggesting AIFM3 does not mediate miR-210's cytoprotective effects. Furthermore, HIF-3α, a negative regulator of HIF signaling, is targeted by miR-210, but miR-210 does not modulate HIF activity. In conclusion, we demonstrate a novel role for p53 and Akt in regulating miR-210 and demonstrate that, in cardiomyocytes, miR-210 exerts cytoprotective effects, potentially by reducing mitochondrial ROS production.  相似文献   

15.
High mobility group 1 protein (HMGB1), a highly conserved nuclear DNA‐binding protein and inflammatory mediator, has been recently found to be involved in angiogenesis. Our previous study has demonstrated the elevation of HMGB1 in the tissue of perforated disc of temporomandibular joint (TMJ). Here, we investigated a novel mediator of HMGB1 in regulating hypoxia‐inducible factor‐1α (HIF‐1α) and vascular endothelial growth factor (VEGF) to mediate angiogenesis in perforated disc cells of TMJ. HMGB1 increased the expression of HIF‐1α and VEGF in a dose‐ and time‐dependent manner in these cells. Moreover, immunofluorescence assay exhibits that the HIF‐1α were activated by HMGB1. In addition, HMGB1 activated extracellular signal‐related kinase 1/2 (Erk1/2), Jun N‐terminal kinase (JNK), but not P38 in these cells. Furthermore, both U0126 (ErK inhibitor) and SP600125 (JNK inhibitor) significantly suppressed the enhanced production of HIF‐1α and VEGF induced by HMGB1. Tube formation of human umbilical vein endothelial cells (HUVECs) was significantly increased by exposure to conditioned medium derived from HMGB1‐stimulated perforated disc cells, while attenuated with pre‐treatment of inhibitors for VEGF, HIF‐1α, Erk and JNK, individually. Therefore, abundance of HMGB1 mediates activation of HIF‐1α in disc cells via Erk and JNK pathway and then, initiates VEGF secretion, thereby leading to disc angiogenesis and accelerating degenerative change of the perforated disc.  相似文献   

16.
Purpose: Our previous data indicated that miR-24-3p is involved in the regulation of vascular endothelial cell (EC) proliferation and migration/invasion. However, whether IL-1β affects hypoxic HUVECs by miR-24-3p is still unclear. Therefore, the present study aimed to investigate the role and underlying mechanism of interleukin 1β (IL-1β) in hypoxic HUVECs.Methods: We assessed the mRNA expression levels of miR-24-3p, hypoxia-inducible factor-1α (HIF1A) and NF-κB-activating protein (NKAP) by quantitative real-time polymerase chain reaction (RT-qPCR). ELISA measured the expression level of IL-1β. Cell counting kit-8 (CCK-8) assays evaluated the effect of miR-24-3p or si-NKAP+miR-24 on cell proliferation (with or without IL-1β). Transwell migration and invasion assays were used to examine the effects of miR-24-3p or si-NKAP+miR-24-3p on cell migration and invasion (with or without IL-1β). Luciferase reporter assays were used to identify the target of miR-24-3p.Results: We demonstrated that in acute myocardial infarction (AMI) patient blood samples, the expression of miR-24-3p is down-regulated, the expression of IL-1β or NKAP is up-regulated, and IL-1β or NKAP is negatively correlated with miR-24-3p. Furthermore, IL-1β promotes hypoxic HUVECs proliferation by down-regulating miR-24-3p. In addition, IL-1β also significantly promotes the migration and invasion of hypoxic HUVECs; overexpression of miR-24-3p can partially rescue hypoxic HUVECs migration and invasion. Furthermore, we discovered that NKAP is a novel target of miR-24-3p in hypoxic HUVECs. Moreover, both the overexpression of miR-24-3p and the suppression of NKAP can inhibit the NF-κB/pro-IL-1β signaling pathway. However, IL-1β mediates suppression of miR-24-3p activity, leading to activation of the NKAP/NF-κB pathway. In conclusion, our results reveal a new function of IL-1β in suppressing miR-24-3p up-regulation of the NKAP/NF-κB pathway.  相似文献   

17.
18.
19.
Infantile hemangioma (IH) is a common benign tumor. Human umbilical vein endothelial cells (HUVECs) have the potential of stem cells, which has been widely used in vascular endothelial cell experiments. Oral propranolol was first reported to treat hemangioma in 2008. However, the role of propranolol in IH remains unclear. Therefore, in this study, we investigated the effects of propranolol on HUVECs in vitro, to explore the underlying mechanism of propranolol in IH. HUVECs were treated with 0.15, 1.5, and 15 μM of propranolol, and transfected with microRNA-4295 (miR-4295) mimic. Cell viability, migration, and apoptosis were examined using Cell Counting Kit-8, transwell assay, and flow cytometry analysis, respectively. In addition, the expressions and concentrations of miR-4295, vascular endothelial growth factor (VEGF), VEGF-A, FLT1, FLT2, and FOXF1 were assessed using real-time polymerase chain reaction, Western blot assay, and enzyme-linked immunosorbent assay. We found that 15 μM of propranolol decreased HUVEC viability the most. Then, cell migration and the concentrations of VEGF and VEGF-A were reduced, and apoptosis was increased when treated with propranolol. Meanwhile, the expressions of VEGF, VEGF-A, FLT1, FLT2, and FOXF1 were downregulated by propranolol exposure. Further study showed that miR-4295 expression was upregulated in IH tissues, and propranolol treatment downregulated miR-4295 expression in HUVECs. MiR-4295 overexpression alleviated the reductions of viability, migration, and factors expression, as well as the increase of apoptosis. Propranolol suppressed HUVEC viability, migration, the expression of VEGF, VEGF-A, FLT1/2, FOXF1, and promoted apoptosis via downregulation of miR-4295. This study lays a foundation for further study of the effect of propranolol on IH.  相似文献   

20.
Endothelial cell migration induced in response to vascular endothelial growth factor (VEGF) is an essential step of angiogenesis. It depends in part on the activation of the p38/MAPKAP kinase-2/LIMK1/annexin-A1 (ANXA1) signaling axis. In the present study, we obtained evidence indicating that miR-196a specifically binds to the 3'-UTR region of ANXA1 mRNA to repress its expression. In accordance with the role of ANXA1 in cell migration and angiogenesis, the ectopic expression of miR-196a is associated with decreased cell migration in wound closure assays, and the inhibitory effect of miR-196a is rescued by overexpressing ANXA1. This finding highlights the fact that ANXA1 is a required mediator of VEGF-induced cell migration. miR-196a also reduces the formation of lamellipodia in response to VEGF suggesting that ANXA1 regulates cell migration by securing the formation of lamellipodia at the leading edge of the cell. Additionally, in line with the fact that cell migration is an essential step of angiogenesis, the ectopic expression of miR-196a impairs the formation of capillary-like structures in a tissue-engineered model of angiogenesis. Here again, the effect of miR-196a is rescued by overexpressing ANXA1. Moreover, the presence of miR-196a impairs the VEGF-induced in vivo neo-vascularization in the Matrigel Plug assay. Interestingly, VEGF reduces the expression of miR-196a, which is associated with an increased level of ANXA1. Similarly, the inhibition of miR-196a with an antagomir results in an increased level of ANXA1. We conclude that the VEGF-induced decrease of miR-196a expression may participate to the angiogenic switch by maintaining the expression of ANXA1 to levels required to enable p38-ANXA1-dependent endothelial cell migration and angiogenesis in response to VEGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号