首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
《Free radical research》2013,47(1-3):99-107
α-Tocopherol, a superior chain-breaking, peroxyl radical-trapping antioxidant and the most active component of vitamin E, is elevated in liver tumor cells, contributing to their greater resistance towards lipid peroxidation compared to cells from normal tissues. Also, in regenerating rat liver the level of vitamin E has been found to fluctuate in phase with the rate of cell division. In order to study the biokinetcis and mechanisms of the distribution of vitamin E in organs and within tissues of animals, deuterated forms of α-tocopherol have been synthesized and their uptake into blood and tissues has been measured by gas chromatography-mass spectrometry. Measurement of the competitive uptake from a mixture of the RRR-and SRR-α-tocopherol stereoisomers labelled with different amounts of deuterium shows that the liver exerts a strong preference for secretion of the natural (RRR) stereoisomer into the plasma. It is suggested that a tocopherol-binding protein plays a key role in this process.  相似文献   

2.
Paradoxically, meta-analysis of human randomized controlled trials revealed that natural but not synthetic α-tocopherol supplementation significantly increases all-cause mortality at 95% confidence interval. The root cause was that natural α-tocopherol supplementation significantly depressed bioavailability of other forms of vitamin E that have better chemo-prevention capability. Meta-analysis outcome demonstrated flaws in the understanding of vitamin E. Reinterpretation of reported data provides plausible explanations to several important observations. While α-tocopherol is almost exclusively secreted in chylomicrons, enterocytes secrete tocotrienols in both chylomicrons and small high-density lipoproteins. Vitamin E secreted in chylomicrons is discriminately repacked by α-tocopherol transfer protein into nascent very low-density lipoproteins in the liver. Circulating very low-density lipoproteins undergo delipidation to form intermediate-density lipoproteins and low-density lipoproteins. Uptake of vitamin E in intermediate-density lipoproteins and low-density lipoproteins takes place at various tissues via low-density lipoproteins receptor-mediated endocytosis. Small high-density lipoproteins can deliver tocotrienols upon maturation to peripheral tissues independent of α-tocopherol transfer protein action, and uptake of vitamin E takes place at selective tissues by scavenger receptor-mediated direct vitamin E uptake. Dual absorption pathways for tocotrienols are consistent with human and animal studies. α-Tocopherol depresses the bioavailability of α-tocotrienol and has antagonistic effect on tocotrienols in chemo-prevention against degenerative diseases. Therefore, it is an undesirable component for chemo-prevention. Future research directions should be focused on tocotrienols, preferably free from α-tocopherol, for optimum chemo-prevention and benefits to mankind.  相似文献   

3.
Vitamin E was estimated in plasma and tissues of rats kept for three months on a low vitamin E diet or a high vitamin E diet. Some of the animals from each group were switched to the opposite diet, and the kinetics of uptake and depletion of vitamin E were followed 3, 8, and 15 days after the diet change. Some rats were also submitted to cold exposure (6 degrees C) for three days. During repletion plasma, red blood cells, liver, spleen, and adrenal gland were the only tissues that responded rapidly to the diet change; after three days, their vitamin E levels corresponded to that of the new diet. Heart, brain, lung, muscle, and thymus were slow in reacting to diet change. Fifteen days after the change in diet, white adipose tissue did not respond. The rate of repletion for all tissues was more rapid than the rate of depletion, but liver was the only tissue that after three days had vitamin E levels corresponding to the low-vitamin diet. Cold exposure for three days did not produce any significant change in the vitamin E content of any tissue, indicating that despite high oxygen consumption by the animal, vitamin E was not consumed or mobilized.  相似文献   

4.
The α-tocopherol transfer protein (α-TTP) is a ~ 32 kDa cytosolic protein that plays an important role in the efficient circulation of plasma α-tocopherol in the body, a factor with great relevance in reproduction. The α-TTP gene has been studied in a number of tissues; however, its expression and function in some ovine tissues remain unclear. A previous study from our laboratory has demonstrated α-TTP expression in sheep liver. In the present study we determined whether α-TTP is expressed in non-liver tissues and investigated the effects of dietary vitamin E on the α-TTP mRNA levels. Thirty-five male Tan sheep with similar body weight were randomly allocated into five groups and supplemented 0, 20, 100, 200 and 2000 IU sheep− 1 day− 1 vitamin E, for four months, respectively. At the end of the study, the animals were slaughtered and tissue samples from the heart, spleen, lung, kidney, longissimus dorsi muscle and gluteus muscle were immediately collected. We found that the α-TTP gene is expressed in sheep tissues other than the liver. Moreover, dietary vitamin E levels had influenced the expression levels of α-TTP gene in these tissues in a tissue-specific way. The technique of immunohistochemistry was used to detect α-TTP in tissues of the heart, spleen, lung, and kidney and we found that α-TTP was mainly located in the cytoplasm while no α-TTP immunoreactivity was detected in the cytoplasm of longissimus dorsi and gluteus muscle samples. Importantly, our findings lay the foundation for additional experiments focusing on the absorption and metabolism of vitamin E in tissues other than the liver.  相似文献   

5.
Natural vitamin E includes four tocopherols and four tocotrienols. RRR-alpha-tocopherol is the most abundant form in nature and has the highest biological activity. Although vitamin E is the main lipid-soluble antioxidant in the body, not all its properties can be assigned to this action. As antioxidant, vitamin E acts in cell membranes where prevents the propagation of free radical reactions, although it has been also shown to have pro-oxidant activity. Non-radical oxidation products are formed by the reaction between alpha-tocopheryl radical and other free radicals, which are conjugated to glucuronic acid and excreted through the bile or urine. Vitamin E is transported in plasma lipoproteins. After its intestinal absorption vitamin E is packaged into chylomicrons, which along the lymphatic pathway are secreted into the systemic circulation. By the action of lipoprotein lipase (LPL), part of the tocopherols transported in chylomicrons are taken up by extrahepatic tissues, and the remnant chylomicrons transport the remaining tocopherols to the liver. Here, by the action of the "alpha-tocopherol transfer protein", a major proportion of alpha-tocopherol is incorporated into nascent very low density lipoproteins (VLDL), whereas the excess of alpha-tocopherol plus the other forms of vitamin E are excreted in bile. Once secreted into the circulation, VLDL are converted into IDL and LDL by the action of LPL, and the excess of surface components, including alpha-tocopherol, are transferred to HDL. Besides the LPL action, the delivery of alpha-tocopherol to tissues takes place by the uptake of lipoproteins by different tissues throughout their corresponding receptors. Although we have already a substantial information on the action, effects and metabolism of vitamin E, there are still several questions open. The most intriguing is its interaction with other antioxidants that may explain how foods containing small amounts of vitamin E provide greater benefits than larger doses of vitamin E alone.  相似文献   

6.
Natural vitamin E includes four tocopherols and four tocotrienols. RRR-α-tocopherol is the most abundant form in nature and has the highest biological activity. Although vitamin E is the main lipid-soluble antioxidant in the body, not all its properties can be assigned to this action. As antioxidant, vitamin E acts in cell membranes where prevents the propagation of free radical reactions, although it has been also shown to have pro-oxidant activity. Non-radical oxidation products are formed by the reaction between α-tocopheryl radical and other free radicals, which are conjugated to glucuronic acid and excreted through the bile or urine. Vitamin E is transported in plasma lipoproteins. After its intestinal absorption vitamin E is packaged into chylomicrons, which along the lymphatic pathway are secreted into the systemic circulation. By the action of lipoprotein lipase (LPL), part of the tocopherols transported in chylomicrons are taken up by extrahepatic tissues, and the remnant chylomicrons transport the remaining tocopherols to the liver. Here, by the action of the “α-tocopherol transfer protein”, a major proportion of α-tocopherol is incorporated into nascent very low density lipoproteins (VLDL), whereas the excess of α-tocopherol plus the other forms of vitamin E are excreted in bile. Once secreted into the circulation, VLDL are converted into IDL and LDL by the action of LPL, and the excess of surface components, including α-tocopherol, are transferred to HDL. Besides the LPL action, the delivery of α-tocopherol to tissues takes place by the uptake of lipoproteins by different tissues throughout their corresponding receptors. Although we have already a substantial information on the action, effects and metabolism of vitamin E, there are still several questions open. The most intriguing is its interaction with other antioxidants that may explain how foods containing small amounts of vitamin E provide greater benefits than larger doses of vitamin E alone.  相似文献   

7.
Effects of photodynamic treatments on inherent antioxidant metabolites and cellular defence enzymes have been investigated in rats. Wistar rats were grouped into untreated controls, light controls, hematoporphyrin derivative (Hpd) (treated with 5 and 10 mg Hpd/kg body weight and kept in dark) and sets treated with both Hpd and red light (dose 172 and 344 j/m2 ). After 2, 24, 48 and 72 hr of Hpd injection the rats sacrificed, livers quickly excised to analyze Hpd uptake, activities of enzymes like catalase, GSH-Px and antioxidants like GSH, vitamin A, vitamin E and vitamin C. The results showed that the loss of Hpd from liver as a function of post- injection time was non- linear. An increased generation of lipid radicals was observed in the groups treated with 5 mg Hpd and higher dose of light and in groups treated with 10 mg Hpd at both the doses of light. Combination of light and Hpd reduced hepatic GSH content with a concomitant reduction in GSH-Px. At higher doses of Hpd and light, there was a significant reduction in hepatic vitamin A levels. Combination of Hpd and light in all doses reduced vitamin E content in liver. The decreased biological antioxidant contents and GSH-Px may be attributed to their utilization for the scavenging of free radicals generated by Hpd and light in tissues. However, no change in catalase activity and vitamin C content in liver was noted in experimental rats. The results suggest that exposure to higher doses of Hpd with light alters oxidant stress system and TBARS content in rat.  相似文献   

8.
The liver is at the nexus of the regulation of lipoprotein uptake, synthesis, and secretion, and it is the site of xenobiotic detoxification by cytochrome P450 oxidation systems (phase I), conjugation systems (phase II), and transporters (phase III). These two major liver systems control vitamin E status. The mechanisms for the preference for α-tocopherol relative to the eight naturally occurring vitamin E forms largely depend upon the liver and include both a preferential secretion of α-tocopherol from the liver into the plasma for its transport in circulating lipoproteins for subsequent uptake by tissues, as well as the preferential hepatic metabolism of non-α-tocopherol forms. These mechanisms are the focus of this review.  相似文献   

9.
Novel modes of administering antioxidants to improve delivery to targeted tissues or cells may be advantageous in preventing oxidant-induced pathologies. Vitamin E (alpha-tocopherol) has been shown to be protective in several models of liver injury. The objectives of this study were: (1) to determine if subcutaneously (s.q.) administered emulsified vitamin E enriched liver and hepatic subcellular fractions with the antioxidant and (2) to carry out a time-dependent analysis of serum and tissue vitamin E in rats receiving daily s.q. vitamin E. In the first experiment rats injected daily s.q. with emulsified vitamin E for 9 d increased serum, total liver, liver mitochondria, and liver microsomes by 8-, 16-, 30-, and 29-fold, respectively, compared with placebo injections. Similar enrichment was observed after intramuscular injections. In the second experiment, daily doses of s.q. vitamin E increased liver concentrations 40-fold by 9 d, which decreased to 22-fold by 18 d, whereas serum adjusted vitamin E levels maximized with a 24-fold increase by day 3 and plateaued thereafter. In conclusion, s.q. administration of emulsified vitamin E to rats resulted in substantially elevated serum and liver concentrations of alpha-tocopherol compared with levels achievable by dietary supplementation. The s.q. route of administration is a potentially effective parenteral mode of delivery of vitamin E for conditions in which hepatic oxidative stress is present.  相似文献   

10.
The effect of dietary selenium (Se) and vitamin E supplementation on tissue reduced glutathione (GSH) and glutathione peroxidase activity has been studied in the rat. Increasing Se intake by 0.4 ppm gave significantly higher enzyme levels in all tissues studied, an effect not influenced by vitamin E intake. Further increasing Se to 4 ppm gave higher enzyme levels in red blood cells only, while in liver was there was a significant decrease in enzyme activity probably reflecting Se hepatotoxicity. In the absence of Se supplements increasing dietary vitamin E to 100 mg/kg diet significantly increased enzyme activity but this effect was modified by simultaneous Se supplementation.Se intake had no effect on GSH levels. Rats on high vitamin E intake 500 mg/kg had a significantly higher tissue GSH level. Dietary Se had a sparing effect on vitamin E, rats supplemented with Se having significantly raised plasma vitamin E levels.These results confirm the role of selenium in glutathione peroxidase and also show that vitamin E influences the activity of the enzyme.  相似文献   

11.
The hepatic uptake of the hormone 1,25-dihydroxyvitamin D3 has been studied, in vivo, using the multiple indicator dilution technique. The fractional uptake of 1,25-dihydroxyvitamin D3 during a single circulatory passage across the dog liver has been estimated at 34.4 +/- 3.3% while its hepatic clearance was estimated at 364.3 +/- 94.1 mL/min. The hepatic uptake of 1,25-dihydroxyvitamin D3 is discussed in relation to its systemic bioavailability following intravenous or oral administration as well as in relation to the hepatic uptake of other vitamin D sterols; it is postulated that the hepatic uptake of vitamin D sterols does not seem to be mediated by specific receptors on the liver plasma membrane; it seems, however, that the hepatic uptake of vitamin D sterols may be inversely related to their relative affinity for the circulating carrier, the vitamin D binding protein.  相似文献   

12.
Vitamin A (all-trans-retinol) must be adequately distributed within the mammalian body to produce visual chromophore in the eyes and all-trans-retinoic acid in other tissues. Vitamin A is transported in the blood bound to retinol-binding protein (holo-RBP), and its target cells express an RBP receptor encoded by the Stra6 (stimulated by retinoic acid 6) gene. Here we show in mice that cellular uptake of vitamin A from holo-RBP depends on functional coupling of STRA6 with intracellular lecithin:retinol acyltransferase (LRAT). Thus, vitamin A uptake from recombinant holo-RBP exhibited by wild type mice was impaired in Lrat(-/-) mice. We further provide evidence that vitamin A uptake is regulated by all-trans-retinoic acid in non-ocular tissues of mice. When in excess, vitamin A was rapidly taken up and converted to its inert ester form in peripheral tissues, such as lung, whereas in vitamin A deficiency, ocular retinoid uptake was favored. Finally, we show that the drug fenretinide, used clinically to presumably lower blood RBP levels and thus decrease circulating retinol, targets the functional coupling of STRA6 and LRAT to increase cellular vitamin A uptake in peripheral tissues. These studies provide mechanistic insights into how vitamin A is distributed to peripheral tissues in a regulated manner and identify LRAT as a critical component of this process.  相似文献   

13.
Our understanding of the molecular mechanisms responsible for fat-soluble vitamin uptake and transport at the intestinal level has advanced considerably over the past decade. On one hand, it has long been considered that vitamin D and E as well as β-carotene (the main provitamin A carotenoid in human diet) were absorbed by a passive diffusion process, although this could not explain the broad inter-individual variability in the absorption efficiency of these molecules. On the other hand, it was assumed that preformed vitamin A (retinol) and vitamin K1 (phylloquinone) absorption occurred via energy-dependent processes, but the transporters involved have not yet been identified. The recent discovery of intestinal proteins able to facilitate vitamin E and carotenoid uptake and secretion by the enterocyte has spurred renewed interest in studying the fundamental mechanisms involved in the absorption of these micronutrients. The proteins identified so far are cholesterol transporters such as SR-BI (scavenger receptor class B type I), CD36 (cluster determinant 36), NPC1L1 (Niemann–Pick C1-like 1) or ABCA1 (ATP-Binding Cassette A1) displaying a broad substrate specificity, but it is likely that other membrane proteins are also involved. After overviewing the metabolism of fat-soluble vitamins and carotenoids in the human upper gastrointestinal lumen, we will focus on the putative or identified proteins participating in the intestinal uptake, intracellular transport and basolateral secretion of these fat-soluble vitamins and carotenoids, and outline the uncertainties that need to be explored in the future. Identifying the proteins involved in intestinal uptake and transport of fat-soluble vitamins and carotenoids across the enterocyte is of great importance, especially as some of them are already targets for the development of drugs able to slow cholesterol absorption. Indeed, these drugs may also interfere with lipid vitamin uptake. A better understanding of the molecular mechanisms involved in fat-soluble vitamin and carotenoid absorption is a priority to better optimize their bioavailability.  相似文献   

14.
The term vitamin E denotes a family of tocopherols and tocotrienols, plant lipids that are essential for vertebrate fertility and health. The principal form of vitamin E found in humans, RRR-alpha-tocopherol (TOH), is thought to protect cells by virtue of its ability to quench free radicals, and functions as the main lipid-soluble antioxidant. Regulation of vitamin E homeostasis occurs in the liver, where TOH is selectively retained while other forms of vitamin E are degraded. Through the action of tocopherol transfer protein (TTP), TOH is then secreted from the liver into circulating lipoproteins that deliver the vitamin to target tissues. Presently, very little is known regarding the intracellular transport of vitamin E. We utilized biochemical, pharmacological, and microscopic approaches to study this process in cultured hepatocytes. We observe that tocopherol-HDL complexes are efficiently internalized through scavenger receptor class B type I. Once internalized, tocopherol arrives within approximately 30 min at intracellular vesicular organelles, where it co-localizes with TTP, and with a marker of the lysosomal compartment (LAMP1), before being transported to the plasma membrane in a TTP-dependent manner. We further show that intracellular processing of tocopherol involves a functional interaction between TTP and an ABC-type transporter.  相似文献   

15.
Grey seals among other phacoids represent a good model to study the mobilisation, transfer and deposition of fat-soluble components such as vitamins in lactating females and suckling pups because during the lactation period mothers may fast completely while secreting large quantities of high fat milks, and pups deposit large amounts of fat as blubber. The level of vitamins A and E in different tissues (liver, adipose tissue, kidney, heart, skeletal muscle, testis) and blood plasma of adult grey seal females and males changed as a result of fasting and lactation; changes were also observed in pups. The most obvious effects were a significant increase of retinol and a decrease of vitamin E levels in plasma of females with the onset of lactation as well as a substantial decrease in liver vitamin E. In suckling pups both retinol and vitamin E levels in plasma increased with the onset of suckling; after weaning no changes in retinol but a significant decrease in plasma vitamin E was observed. While liver vitamin A levels tended to be unaffected by suckling or post-weaning fast, liver vitamin E levels increased with the uptake of milk substantially (P<0.01) and returned at weaning to low levels similar to that in fetuses. Adipose tissue levels of vitamin A and E in both females and pups were only marginally affected by lactation, suckling or post-weaning fast. Results indicate that both plasma and liver levels of vitamin A and E are affected by the mobilisation, absorption and deposition of these components during lactation in seals to a much greater extent than adipose tissue, from which fat-soluble vitamins are mobilized at rates similar to that of lipids.  相似文献   

16.
The aim of the study was to contribute to the discussion of overdosing vitamin E in laying hens. A total of 45 laying hens, divided into 5 groups were fed diets supplemented with either 0; 100; 1000; 10 000 or 20 000 mg dl‐α‐tocopheryl acetate/kg diet over a period of 10 weeks. Concentrations of vitamins A and E were measured in plasma, various tissues and egg yolk. Furthermore egg yolk colour and some carotinoids were measured in egg yolks. None of the vitamin E doses significantly influenced performance of the hens. As expected, vitamin E concentration in plasma, all tissue samples and egg yolk was significantly increased with increasing tocopherol content in the diet. The egg yolk showed the highest vitamin E concentration, followed by liver and muscles. Feeding 1000 mg α‐tocopheryl acetate per kg diet resulted in an increase of vitamin A concentration in the liver. Very high doses (10 000 and 20 000 mg/kg diet) significantly decreased retinol concentration in the liver and egg yolk, as well as carotinoid concentration in the egg yolk. The lower carotinoid concentration in egg yolk resulted in a decreased intensity of egg yolk colour. A prooxidative and/or competitive effect of very high doses of vitamin E with other fat soluble substances has been discussed.  相似文献   

17.
Ganyc D  Self WT 《FEBS letters》2008,582(2):299-304
The distribution of selenium in mammals has been recently shown to be mediated primarily by selenoprotein P. Even in the absence of selenoprotein P, selenium is distributed from the liver into all organs and tissues when supplemented in the diet. The form of selenium that is actively taken up by mammalian cells at trace concentrations has yet to be determined. We used a human keratinocyte model to determine whether reduction of the oxyanion selenite (SeO(3)(2-)) to the more reduced form of selenide (HSe(-)) would affect uptake. Indeed a reduced form of selenium, presumably selenide, was actively transported into keratinocytes and displayed saturation kinetics with an apparent K(m) of 279 nM. ATPase inhibitors blocked the uptake of selenide, as did the competing anions molybdate and chromate, but not sulfate. These results suggest that the small molecule form of selenium that is distributed in tissues is hydrogen selenide, despite its sensitivity to oxygen and reactivity to thiols.  相似文献   

18.
The role of dietary Cu and Mn in maintaining tissue integrity, through the effects of these metals on activity of the superoxide dismutase (SOD) enzyme, and their interactions in peroxidative pathways involving Se and vitamin E was investigated. Weanling rats were fed diets deficient in Mn, Cu, Se, and/or vitamin E for 35 days, in a factorial experimental design. Dietary effects on peroxidation, measured in mitochondrial fractions prepared from liver and heart tissue, were compared with changes in the activities of glutathione peroxidase and the Cu and MnSOD enzymes. Decreased heart MnSOD and CuSOD activities, resulting from dietary Mn and Cu deficiencies, were both associated with increased peroxidation. Adequate Se (and glutathione peroxidase activity) prevented the peroxidation associated with either of these deficiencies, but was ineffective with a combined Cu−Mn deficiency. These effects of Se were only observed in tissue lacking glutathione transferase activity. Effects of Cu, Mn, and Se on peroxidation appeared to be present at both levels of vitamin E, although in both tissues, vitamin E deficiency greatly increased the overall peroxidation. Comparison of these in vitro peroxidation results with the deficiency associated lesions observed in vivo indicates that changes in SOD activities and peroxidation pathways may be the dominant cause of these lesions in only some cases. In others, the roles of Cu and Mn in different metabolic pathways appear to be of greater importance.  相似文献   

19.
Qian J  Atkinson J  Manor D 《Biochemistry》2006,45(27):8236-8242
Tocopherol transfer protein (TTP) regulates vitamin E status by facilitating the secretion of tocopherol from liver to circulating lipoproteins. Heritable mutations in the ttpA gene, encoding for TTP, result in ataxia with vitamin E deficiency (AVED) syndrome, typified by low vitamin E levels and a plethora of neurological disorders. The molecular mechanisms by which TTP facilitates tocopherol secretion are presently unknown. We recently showed that vitamin E is taken up by hepatocytes through an endocytic process and that, shortly following uptake, the vitamin is found primarily in lysosomes. We showed further that TTP is localized to late endocytic vesicles and that it facilitates the intracellular trafficking of tocopherol from lysosomes to the plasma membrane. To gain insight into the molecular mechanisms that underlie TTP actions, we studied the physiological impact of three naturally occurring heritable mutations in the ttpA gene (the R59W, R221W, and A120T substitutions). We found that these mutations impair the ability of TTP to facilitate the secretion of vitamin E from cells. Furthermore, the degree of impairment corresponded to the severity of the AVED pathology associated with each mutation. In cells that express mutated TTP proteins, vitamin E did not traffic to the plasma membrane and remained "trapped" in lysosomes. In addition, we observed that substitution mutations that cause the AVED syndrome impart a marked instability on the TTP protein. These observations suggest that the physiological role of TTP is anchored in its ability to direct vitamin E trafficking from the endocytic compartment to transport vesicles that deliver the vitamin to the site of secretion at the plasma membrane.  相似文献   

20.
《Free radical research》2013,47(5-6):315-322
Effects of dietary vitamin E deficiency on the fatty acid compositions of total lipids and phospholipids were studied in several tissues of rats fed a vitamin E-deficient diet for 4, 6, and 9 months. No significant differences were observed between the vitamin E deficiency and controls except in the fatty acid profiles of liver total lipids. Triacylglycerol (TAG) accumulation was found in the liver of rats fed a vitamin E-deficient diet. The levels of TAG-palmitate and -oleate increased particularly in the liver from such animals. The fatty acid compositions of hepatic phospholipids were not affected by the diet. Increased TAG observed in the liver of rats fed a vitamin E-deficient diet was restored to normal when the diet was supplemented with 20 mg α-tocopheryl acetate/kg diet. These findings indicate that dietary vitamin E deficiency causes TAG accumulation in the liver and that the antioxidant, vitamin E, is capable of preventing free radical-induced liver injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号