首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
Repeated cocaine administration induces behavioral sensitization and modifications in the phosphorylation pattern of dopamine and cAMP-regulated phosphoprotein of Mr 32,000 (DARPP-32), characterized by a tonic increase in the Thr75 phosphorylated form, and a decrease in the Thr34 phosphorylated form. This study further investigated the correlations between cocaine sensitization and modifications in the DARPP-32 phosphorylation pattern, cAMP-dependent protein kinase (PKA) activity, and mGluR5 tone in the medial prefrontal cortex and nucleus accumbens. Behavioral sensitization and modifications in these neurochemical markers followed a similar temporal pattern. Moreover, in sensitized rats acute cocaine administration modified phosphorylation levels of Thr75- and Thr34-DARPP-32, GluR1, and NR1 subunits in the nucleus accumbens only at a dose double the efficacious dose in control rats. These results suggest that the high levels of phospho-Thr75 DARPP-32 maintain PKA in a prevalent inhibited state. Furthermore, in sensitized rats the acute administration of 6-methyl-2-(phenylethynyl)-pyridine, a mGluR5 antagonist, reinstated the phosphorylation levels of Thr75- and Thr34-DARPP-32, GluR1, and NR1 to control values, and a subsequent cocaine challenge did not elicit a sensitized response. These data suggest that a tonic increase in mGluR5 transmission in cocaine-sensitized rats sustains both the increase in phospho-Thr75 DARPP-32 levels and the expression of behavioral sensitization.  相似文献   

2.
This study reports some of the modifications in dopaminergic signalling that accompany cocaine and morphine behavioural sensitization. Cocaine-sensitized rats showed increased phosphorylation of dopamine- and cyclic AMP-regulated phosphoprotein Mr 32 kDa (DARPP-32) at threonine-75 (Thr75) and decreased DARPP-32 phosphorylation at Thr34, in the caudate-putamen (CPu) and nucleus accumbens (NAc) 7 days after sensitization assessment. Conversely, in morphine-sensitized rats, no apparent modifications in DARPP-32 phosphorylation pattern were observed. Morphine-sensitized rats have increased binding and coupling of micro -opioid receptors and increased dopaminergic transmission in striatal areas and, upon morphine challenge, exhibit dopamine D1 receptor-dependent stereotypies. Thus, the DARPP-32 phosphorylation pattern was studied in morphine-sensitized rats at different times after morphine challenge. Morphine challenge increased levels of phospho-Thr75 DARPP-32 and decreased levels of phospho-Thr34 DARPP-32 in a time-dependent manner in the CPu and NAc. In order to assess whether these modifications were related to modified cyclic AMP-dependent protein kinase (PKA) activity, the phosphorylation levels of two other PKA substrates were examined, the GluR1 and NR1 subunits of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and NMDA receptors respectively. The phosphorylation levels of GluR1 and NR1 subunits decreased in parallel with those of phospho-Thr-34 DARPP-32, supporting the hypothesis that morphine challenge elicited a decrease in PKA activity in morphine-sensitized rats.  相似文献   

3.
Acute cocaine administration increases extraneuronal dopamine and Thr34 phosphorylation of dopamine- and cAMP-regulated phosphoprotein (M(r) 32 kDa; DARPP-32) in striatal and cortical areas. Novel palatable food consumption increases extraneuronal dopamine in the same areas. We examined the DARPP-32 phosphorylation pattern in food non-deprived rats at different times after vanilla sugar consumption. The phosphorylation state of DARPP-32 and two cAMP-dependent protein kinase (PKA) substrates, GluR1 and NR1, were detected by immunoblotting. Thirty to 45 min after vanilla sugar consumption, phospho-Thr34 DARPP-32, GluR1 and NR1 levels increased in the nucleus accumbens, and phospho-Thr75 DARPP-32 levels decreased. At 60 min, all parameters returned to baseline values. However, 2 and 3 h after vanilla sugar consumption, phospho-Thr34 DARPP-32 levels decreased, while phospho-Thr75 DARPP-32 levels increased. In contrast to the pattern observed in the NAcS, no delayed changes in DARPP-32 phosphorylation were observed in the mPFC. Both early and delayed DARPP-32, GluR1 and NR1 phosphorylation changes were prevented by a dopamine D1 receptor antagonist administration. The delayed modifications in nucleus accumbens DARPP-32 phosphorylation were prevented by an mGluR5 antagonist administration. The mesolimbic dopaminergic response to an unfamiliar taste is correlated to a gustatory memory trace development, and the observed changes in DARPP-32 phosphorylation may be part of this process.  相似文献   

4.
Environment-induced relapse is a major concern in drug addiction because of the strong associations formed between drug reward and environment. Cocaine-conditioned place preference is an ideal experimental tool to examine adaptations in the molecular pathways that are activated upon re-exposure to an environment previously paired with drug reward. To better understand the mechanism of cocaine-conditioned place preference we have used western blot analysis to examine changes in phosphorylation of cAMP-response element binding protein (CREB), dopamine- and cyclic AMP-regulated phosphoprotein 32 (DARPP-32), extracellular signal-regulated kinase (ERK) and GluR1, key molecular substrates altered by cocaine, in the nucleus accumbens (NAc) and dorsal hippocampus (DHC) of C57BL/6 mice. Our studies revealed that re-exposing mice to an environment in which they were previously given cocaine resulted in increased levels of Ser133 phospho-CREB and Thr34 phospho-DARPP-32 with a corresponding decrease in Thr75 phospho-DARPP-32 in the NAc. In DHC there were increased levels of phospho-CREB, Thr183/Tyr185 phospho-ERK, and Ser845 phospho-GluR1. These data suggest that the formation of contextual drug reward associations involves recruitment of the DHC-NAc circuit with activation of the DARPP-32/CREB pathway in the NAc and the ERK/CREB pathway in the DHC.  相似文献   

5.
Chen JC  Lee WH  Chen PC  Tseng CP  Huang EY 《Peptides》2006,27(5):1005-1014
Neuropeptide FF (NPFF) participates in many physiological functions associated with opioids in the mammalian CNS. We established a pheochromocytoma PC-12 cell line clone stably expressing rat NPFF1 receptors. Both NPFF and FMRFamide activated NPFF1 receptors to couple with Gi/o protein and inhibited adenylyl cyclase activity in PC-12/rNPFF1 cells, but there were no effects on MAPKs (ERK1/2 and p38 MAPK) or PI3K/Akt pathway. FMRFamide also inhibited DARPP-32/Thr34 phosphorylation in the presence of forskolin. Similarly, PFR(Tic)amide, a 'super-agonist' of NPFF receptors, inhibited the production of cAMP and slightly decreased DARPP-32/Thr34 phosphorylation in PC-12/rNPFF1 cells. Intracerebroventricular injections of PFR(Tic)amide blocked behavioral sensitization of locomotor activity to amphetamine, and intrathecal injection of PFR(Tic)amide caused a dose-dependent antinociception in vivo in rats. Thus, "over-activation" of NPFF receptors by PFR(Tic)amide induced different bio-effects from those induced by NPFF in vivo.  相似文献   

6.
It is well known that dopamine imbalances are associated with many psychiatric disorders and that the dopaminergic receptor D2 is the main target of antipsychotics. Recently it was shown that levels of two proteins implicated in dopaminergic signaling, Neuronal calcium sensor-1 (NCS-1) and DARPP-32, are altered in the prefrontal cortex (PFC) of both schizophrenic and bipolar disorder patients. NCS-1, which inhibits D2 internalization, is upregulated in the PFC of both patients. DARPP-32, which is a downstream effector of dopamine signaling, integrates the pathways of several neurotransmitters and is downregulated in the PFC of both patients. Here, we used PC12 cells stably overexpressing NCS-1 (PC12-NCS-1 cells) to address the function of this protein in DARPP-32 signaling pathway in vitro. PC12-NCS-1 cells displayed downregulation of the cAMP/PKA pathway, with decreased levels of cAMP and phosphorylation of CREB at Ser133. We also observed decreased levels of total and phosphorylated DARPP-32 at Thr34. However, these cells did not show alterations in the levels of D2 and phosphorylation of DARPP-32 at Thr75. These results indicate that NCS-1 modulates PKA/cAMP signaling pathway. Identification of the cellular mechanisms linking NCS-1 and DARPP-32 may help in the understanding the signaling machinery with potential to be turned into targets for the treatment of schizophrenia and other debilitating psychiatric disorders.  相似文献   

7.
Abundant evidence points to a key role of dopamine in motor skill learning, although the underlying cellular and molecular mechanisms are still poorly understood. Here, we used a skilled-reaching paradigm to first examine changes in the expression of the plasticity-related gene Arc to map activity in cortico-striatal circuitry during different phases of motor skill learning in young animals. In the early phase, Arc mRNA was significantly induced in the medial prefrontal cortex (mPFC), cingulate cortex, primary motor cortex, and striatum. In the late phase, expression of Arc did not change in most regions, except in the mPFC and dorsal striatum. In the second series of experiments, we studied the learning-induced changes in the phosphorylation state of dopamine and cAMP-regulated phosphoprotein, 32k Da (DARPP-32). Western blot analysis of the phosphorylation state of DARPP-32 and its downstream target cAMP response element-binding protein (CREB) in the striatum revealed that the early, but not late, phase of motor skill learning was associated with increased levels of phospho-Thr34-DARPP-32 and phospho-Ser133-CREB. Finally, we used the DARPP-32 knock-in mice with a point mutation in the Thr34 regulatory site (i.e., protein kinase A site) to test the significance of this pathway in motor skill learning. In accordance with our hypothesis, inhibition of DARPP-32 activity at the Thr34 regulatory site strongly attenuated the motor learning rate and skilled reaching performance of mice. These findings suggest that the cAMP/PKA/DARPP-32 signaling pathway is critically involved in the acquisition of novel motor skills, and also demonstrate a dynamic shift in the contribution of cortico-striatal circuitry during different phases of motor skill learning.  相似文献   

8.
Environmental enrichment results in differential behavioral and neurochemical responsiveness to nicotine. The present study investigates dopamine clearance (CLDA) in striatum and medial prefrontal cortex (mPFC) using in vivo voltammetry in rats raised in enriched (EC) or impoverished conditions (IC) and administered nicotine (0.4 mg/kg) or saline. Baseline CLDA in striatum or mPFC was not different between EC and IC. Across repeated DA application, striatal CLDA increased in saline-control EC and IC. CLDA increased in mPFC in saline-control IC; CLDA did not change in saline-control EC. Thus, enrichment differentially alters dynamic responses of the dopamine transporter (DAT) to repeated DA application in mPFC, but not in striatum. In EC, nicotine increased mPFC CLDA compared to saline-control, but had no effect on CLDA in IC; nicotine had no effect in striatum in EC or IC. Compared to respective saline-controls, nicotine increased dihydroxyphenylacetic acid content in striatum and mPFC in EC, but not in IC. Nicotine also had no effect on DA content in striatum or mPFC in EC or IC. Results indicate that enrichment eliminated the dynamic response of mPFC DAT to repeated DA application in saline-control and augmented the nicotine-induced increase in DAT function in mPFC, but not in striatum.  相似文献   

9.
It is believed that drug-induced behavioral sensitization is an important process in the development of substance dependence. In order to explore mechanisms of sensitization, a mouse model of nicotine-induced locomotor sensitization was established, and effects of the sensitization process on mesencepahlic gene expression were examined. A schedule, which included 3 weeks of intermittent nicotine exposure (0.5 mg/kg, s.c.) and 3 weeks of withdrawal, resulted in locomotor sensitization. Effects of sensitization on mesencephalic expression of approximately 14,000 genes were assessed using oligonucleotide microarrays. Signal intensity differences in samples obtained from repeated nicotine- and saline-exposed animals were analyzed with z-test after False Discovery Rate (FDR) multiple test correction. Genes related to GABA-A receptors and protein phosphatases were among 68 genes showing significantly different expression levels between the saline and the nicotine groups. We hypothesize that some of the gene expression changes in the mesencephalon are involved in pathways leading to nicotine-induced sensitization. Down-regulation of GABA-A receptors induced by repeated nicotine exposure may facilitate dopaminergic neuronal transmission and may contribute to increased locomotor activity.  相似文献   

10.
We have investigated mechanisms of nicotine-induced phosphorylation of extracellular signal-regulated protein kinase (p42/44 MAP kinase, ERK) and cAMP response element binding protein (CREB) in PC12h cells. Nicotine transiently induced ERK phosphorylation at more than 1 microM. The maximal level of nicotine-induced ERK phosphorylation was lower than that of the membrane depolarization induced and, to a great extent, the nerve growth factor (NGF)-induced ERK phosphorylation. Nicotinic acetylcholine receptor (nAChR) alpha7 subunit-selective inhibitors had no significant effect on nicotine-induced ERK phosphorylation. L-Type voltage-sensitive calcium channel antagonists inhibited nicotine-induced ERK phosphorylation. Calcium imaging experiments showed that alpha7-containing nAChR subtypes were functional at 1 microM of nicotine in the nicotine-induced calcium influx, and non-alpha7 nAChRs were prominent in the Ca(2+) influx at 50 microM of nicotine. An expression of dominant inhibitory Ras inhibited nicotine-induced ERK phosphorylation. A calmodulin antagonist, a CaM kinase inhibitor, a MAP kinase kinase inhibitor inhibited nicotine-induced ERK and CREB phosphorylation. The time course of the phosphorylation of CREB induced by nicotine was similar to that of ERK induced by nicotine. These results suggest that non-alpha7 nAChRs are involved in nicotine-induced ERK phosphorylation through CaM kinase and the Ras-MAP kinase cascade and most of the nicotine-induced CREB phosphorylation is mediated by the ERK phosphorylation in PC12h cells.  相似文献   

11.
Neurotensin modulates dopaminergic transmission in the nigrostriatal system. DARPP-32, a dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa, is phosphorylated on Thr34 by cAMP-dependent protein kinase, resulting in its conversion into a potent inhibitor of protein phosphatase-1 (PP 1). Here, we examined the effect of neurotensin on DARPP-32 Thr34 phosphorylation using mouse neostriatal slices. Neurotensin stimulated DARPP-32 Thr34 phosphorylation by 4-7-fold with a K(0.5) of approximately 50 nM. The effect of neurotensin was antagonized by a combined neurotensin receptor type-1 (NTR1)/type-2 (NTR2) antagonist, SR142948. It was not antagonized by a NTR1 antagonist, SR48692 or by a NTR2 antagonist, levocabastine; neither was it antagonized by the two combined. Pretreatment with TTX or cobalt abolished the effect of neurotensin. The effect of neurotensin was antagonized by a dopamine D1 antagonist, SCH23390, and by ionotropic glutamate receptor antagonists, MK801 and CNQX. These results indicate that neurotensin stimulates the release of dopamine from nigrostriatal presynaptic terminals in an NMDA receptor- and AMPA receptor-dependent manner, leading to the increase in DARPP-32 Thr34 phosphorylation. Neurotensin stimulated the phosphorylation of Ser845 of the AMPA receptor GluR1 subunit in wild-type mice but not in DARPP-32 knockout mice. Thus, neurotensin, by stimulating the release of dopamine, activates the dopamine D1-receptor/cAMP/PKA/DARPP-32/PP 1 cascade.  相似文献   

12.
Bilateral injections of nicotine (30 micrograms/side) into the ventral tegmental area (VTA) and the nucleus accumbens (NACC) increased the ambulatory activity in rats. Moreover, daily injections of nicotine (10, 20 and 30 micrograms/side) into the VTA and the NACC for 6 successive days produced sensitization to the ambulatory stimulant effect of nicotine. Sensitization produced by daily injections of nicotine (20 micrograms/side) into both the sites was maintained for withdrawal periods of 10 days. Mecamylamine (2 mg/kg, i.p.), SCH23390 (0.05 mg/kg, i.p.) and spiperone (0.1 mg/kg, i.p.) antagonized nicotine-induced sensitization to the ambulatory stimulant nicotine-induced sensitization to the ambulatory stimulant effect produced by daily injections into the VTA. These results suggest that nicotine-induced sensitization to the ambulatory stimulant effect involves the stimulation of the mesolimbic dopaminergic pathway through the nicotinic acetylcholine receptor (nAChR) in the VTA and the NACC.  相似文献   

13.
Blockade of the cannabinoid type 1 (CB(1)) receptor could suppress methamphetamine self-administration; however, the cellular mechanism remains unclear. In this study, we intended to investigate the significance of brain CB(1) receptors on the development of behavioral sensitization to methamphetamine. Male Sprague-Dawley rats treated with chronic methamphetamine (4 mg/kg, i.p.) for either 7 or 14 days developed behavioral sensitization to methamphetamine (1 mg/kg) at withdrawal day 7. A progressive decrease in numbers of CB(1) receptor (both Bmax and mRNA) but increase in binding affinity (Kd) was noticed during withdrawal days 3 to 7. Microinjection of CB(1) antagonist [5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4-ethyl-N-(1-piperidinyl)-1H-pyrazole-3-carboxamide] into the nucleus accumbens (NAc) at withdrawal day 7, significantly suppressed the behavioral sensitization to methamphetamine. In NAc brain slices preparation, acute incubation with CB(1) agonist (1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol (CP 55940) dose-dependently enhanced cAMP accumulation in sensitized rats; no change was noticed in control groups. Consequently, treatment of CP 55940 induced a dose-dependent (10 nmol/L-10 micromol/L) phosphorylation on down-stream dopamine and cAMP-regulated phosphoprotein of Mr 32 000 (DARPP-32)/Thr34 in sensitized rats, while only 10 micromol/L CP 55940 was able to enhance the phosphoDARPP-32/T34 in control groups. Alternatively, both basal activity of calcineurin (PP-2B) and CP 55940-induced changes in the amount of PP-2B in the NAc were both decreased in sensitized rats, but not in controls. Overall, we demonstrated that brain CB(1) receptor and its down-stream cAMP/DARPP-32/T34/PP-2B signaling are profoundly altered in methamphetamine-sensitized animals.  相似文献   

14.
DARPP-32 (dopamine- and cAMP-regulated phosphorprotein, Mr = 32,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is an inhibitor of protein phosphatase-1 and is enriched in dopaminoceptive neurons possessing the D1 dopamine receptor. Purified bovine DARPP-32 was phosphorylated in vitro by casein kinase II to a stoichiometry greater than 2 mol of phosphate/mol of protein whereas two structurally and functionally related proteins, protein phosphatase inhibitor-1 and G-substrate, were poor substrates for this enzyme. Sequencing of chymotryptic and thermolytic phosphopeptides from bovine DARPP-32 phosphorylated by casein kinase II suggested that the main phosphorylated residues were Ser45 and Ser102. In the case of rat DARPP-32, the identification of these phosphorylation sites was confirmed by manual Edman degradation. The phosphorylated residues are located NH2-terminal to acidic amino acid residues, a characteristic of casein kinase II phosphorylation sites. Casein kinase II phosphorylated DARPP-32 with an apparent Km value of 3.4 microM and a kcat value of 0.32 s-1. The kcat value for phosphorylation of Ser102 was 5-6 times greater than that for Ser45. Studies employing synthetic peptides encompassing each phosphorylation site confirmed this difference between the kcat values for phosphorylation of the two sites. In slices of rat caudate-putamen prelabeled with [32P]phosphate, DARPP-32 was phosphorylated on seryl residues under basal conditions. Comparison of thermolytic phosphopeptide maps and determination of the phosphorylated residue by manual Edman degradation identified the main phosphorylation site in intact cells as Ser102. In vitro, DARPP-32 phosphorylated by casein kinase II was dephosphorylated by protein phosphatases-1 and -2A. Phosphorylation by casein kinase II did not affect the potency of DARPP-32 as an inhibitor of protein phosphatase-1, which depended only on phosphorylation of Thr34 by cAMP-dependent protein kinase. However, phosphorylation of DARPP-32 by casein kinase II facilitated phosphorylation of Thr34 by cAMP-dependent protein kinase with a 2.2-fold increase in the Vmax and a 1.4-fold increase in the apparent Km. Phosphorylation of DARPP-32 by casein kinase II in intact cells may therefore modulate its phosphorylation in response to increased levels of cAMP.  相似文献   

15.
DARPP—32的结构,功能及其调节机制   总被引:1,自引:0,他引:1  
唐放鸣  张光毅 《生命科学》1999,11(4):165-168
DARPP-32是一种多巴胺(DA)和cAMP调节的磷蛋白,存在于所有接受DA能投射的神经元中,在中枢神经系统的分布与DAD1受体的分布非常一致。DA通过D1受体使DARPP-32第34位苏氨酸磷酸化,磷酸化DARPP-32成为蛋白磷酸酶1(PP-1)的强效抑制剂,在两个不同位点与PP-1相互作用,从而抑制PP-1活性。DARPP-32/PP-1级联反应在调节,如钙通道、电压依赖性钠通道、Na+,K+-ATPase和NMDANR1受体的功能等神经元兴奋性过程中起重要作用。DA对DARPP—32的磷酸化状态有双向调节作用,其他许多神经递质亦可调节其磷酸化状态。  相似文献   

16.
Glutamatergic inputs from corticostriatal and thalamostriatal pathways have been shown to modulate dopaminergic signaling in neostriatal neurons. DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of M (r) 32 kDa) is a signal transduction molecule that regulates the efficacy of dopamine signaling in neostriatal neurons. Dopamine signaling is mediated in part through phosphorylation of DARPP-32 at Thr34 by cAMP-dependent protein kinase, and antagonized by phosphorylation of DARPP-32 at Thr75 by cyclin-dependent protein kinase 5. We have now investigated the effects of the ionotropic glutamate NMDA and AMPA receptors on DARPP-32 phosphorylation in neostriatal slices. Activation of NMDA and AMPA receptors decreased the state of phosphorylation of DARPP-32 at Thr34 and Thr75. The decrease in Thr34 phosphorylation was mediated through Ca(2+) -dependent activation of the Ca(2+) -/calmodulin-dependent phosphatase, calcineurin. In contrast, the decrease in Thr75 phosphorylation was mediated through Ca(2+) -dependent activation of dephosphorylation by protein phosphatase-2A. The results provide support for a complex effect of glutamate on dopaminergic signaling through the regulation of dephosphorylation of different sites of DARPP-32 by different protein phosphatases.  相似文献   

17.
Nicotine, acting on nicotinic acetylcholine receptors (nAChRs) expressed at pre-synaptic dopaminergic terminals, has been shown to stimulate the release of dopamine in the neostriatum. However, the molecular consequences of pre-synaptic nAChR activation in post-synaptic neostriatal neurons are not clearly understood. Here, we investigated the effect of nAChR activation on dopaminergic signaling in medium spiny neurons by measuring phosphorylated DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa) at Thr34 (the PKA-site) in mouse neostriatal slices. Nicotine produced dose-dependent responses, with a low concentration (1 microm) causing a sustained decrease in DARPP-32 Thr34 phosphorylation and a high concentration (100 microm) causing a transient increase in DARPP-32 Thr34 phosphorylation. Depending on the concentration of nicotine, either dopamine D2 or D1 receptor signaling was predominantly activated. Nicotine at a low concentration (1 microm) activated dopamine D2 receptor signaling in striatopallidal/indirect pathway neurons, likely by activating alpha4beta2* nAChRs at dopaminergic terminals. Nicotine at a high concentration (100 microm) activated dopamine D1 receptor signaling in striatonigral/direct pathway neurons, likely by activating (i) alpha4beta2* nAChRs at dopaminergic terminals and (ii) alpha7 nAChRs at glutamatergic terminals, which, by stimulating the release of glutamate, activated NMDA/AMPA receptors at dopaminergic terminals. The differential effects of low and high nicotine concentrations on D2- and D1-dependent signaling pathways in striatal neurons may contribute to dose-dependent actions of this drug of abuse.  相似文献   

18.
Adolescence has been linked to greater risk-taking and novelty-seeking behavior and a higher prevalence of drug abuse and risk of relapse. Decreases in cyclic adenosine monophosphate response element binding protein (CREB) and phosphorylated CREB (pCREB) have been reported after repeated cocaine administration in animal models. We compared the behavioral effects of cocaine and abstinence in adolescent and adult mice and investigated possible age-related differences in CREB and pCREB levels. Adolescent and adult male Swiss mice received one daily injection of saline or cocaine (10 mg/kg, i.p.) for 8 days. On day 9, the mice received a saline injection to evaluate possible environmental conditioning. After 9 days of withdrawal, the mice were tested in the elevated plus maze to evaluate anxiety-like behavior. Twelve days after the last saline/cocaine injection, the mice received a challenge injection of either cocaine or saline, and locomotor activity was assessed. One hour after the last injection, the brains were extracted, and CREB and pCREB levels were evaluated using Western blot in the prefrontal cortex (PFC) and hippocampus. The cocaine-pretreated mice during adolescence exhibited a greater magnitude of the expression of behavioral sensitization and greater cocaine withdrawal-induced anxiety-like behavior compared with the control group. Significant increases in CREB levels in the PFC and hippocampus and pCREB in the hippocampus were observed in cocaine-abstinent animals compared with the animals treated with cocaine in adulthood. Interestingly, significant negative correlations were observed between cocaine sensitization and CREB levels in both regions. These results suggest that the behavioral and neurochemical consequences of psychoactive substances in a still-developing nervous system can be more severe than in an already mature nervous system.  相似文献   

19.
Chronic cocaine administration reduces G protein signaling efficacy. Here, we report that the expression of AGS3, which binds to GialphaGDP and inhibits GDP dissociation, was upregulated in the prefrontal cortex (PFC) during late withdrawal from repeated cocaine administration. Increased AGS3 was mimicked in the PFC of drug-naive rats by microinjecting a peptide containing the Gialpha binding domain (GPR) of AGS3 fused to the cell permeability domain of HIV-Tat. Infusion of Tat-GPR mimicked the phenotype of chronic cocaine-treated rats by manifesting sensitized locomotor behavior and drug seeking and by increasing glutamate transmission in nucleus accumbens. By preventing cocaine withdrawal-induced AGS3 expression with antisense oligonucleotides, signaling through Gialpha was normalized, and both cocaine-induced relapse to drug seeking and locomotor sensitization were prevented. When antisense oligonucleotide infusion was discontinued, drug seeking and sensitization were restored. It is proposed that AGS3 gates the expression of cocaine-induced plasticity by regulating G protein signaling in the PFC.  相似文献   

20.
In the striatum, stimulation of dopamine D2 receptors results in attenuation of glutamate responses. This effect is exerted in large part via negative regulation of AMPA glutamate receptors. Phosphorylation of the GluR1 subunit of the AMPA receptor has been proposed to play a critical role in the modulation of glutamate transmission, in striatal medium spiny neurons. Here, we have examined the effects of blockade of dopamine D2-like receptors on the phosphorylation of GluR1 at the cAMP-dependent protein kinase (PKA) site, Ser845, and at the protein kinase C and calcium/calmodulin-dependent protein kinase II site, Ser831. Administration of haloperidol, an antipsychotic drug with dopamine D2 receptor antagonistic properties, increases the phosphorylation of GluR1 at Ser845, without affecting phosphorylation at Ser831. The same effect is observed using eticlopride, a selective dopamine D2 receptor antagonist. In contrast, administration of the dopamine D2-like agonist, quinpirole, decreases GluR1 phosphorylation at Ser845. The increase in Ser845 phosphorylation produced by haloperidol is abolished in dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) knockout mice, or in mice in which the PKA phosphorylation site on DARPP-32 (i.e. Thr34) has been mutated (Thr34-->Ala mutant mice), and requires tonic activation of adenosine A2A receptors. These results demonstrate that dopamine D2 antagonists increase GluR1 phosphorylation at Ser845 by removing the inhibitory tone exerted by dopamine D2 receptors on the PKA/DARPP-32 cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号