首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The preparation and molecular structure of [(diethylenetriamine) (7,9-dimethylhypoxanthine) platinum(II)] (PF6)2·1.5H2O and [(ethylenediamine) (7,9-dimethylhypoxanthine)2platinum(II)] (PF6)2, are reported. These complexes represent the first structurally characterized N(1)-bound Pt(II) 6-oxopurine complexes. In each case, the Pt(II)N(1) bond length [2.051(6)A in the diethylenetriamine complex and 2.021(8)A in the ethylenediamine complex] indicates a strong metal-to-base binding. Both complexes contain interligand hydrogen bonds, with the ammine ligand acting as the donor and the O(6) atom of the base acting as the acceptor. These N(1)-bound complexes are compared with N(7)-bound 6-oxopurine and N(3)-bound cytosine complexes of Pt(II) anti-tumor agents.  相似文献   

2.
The crystal structure of chloro-(1-methyltyminato- N3)-cis-diammineplatinum(II) monohydrate, cis- (NH3)2Pt(C6H7N2O2)Cl·H2O, is reported. The compound crystallizes in space group P1 with a = 6.911(2) Å, b = 8.598(3) Å, c = 11.464(4) Å, α = 100.13(3)°, β = 120.03(3)°, γ = 93.16(3)°, Z = 2. The structure was refined to R = 0.048 and Rw = 0.057. The compound contains the deprotonated 1-methylthymine ligand coordinated to Pt through N3 (1.973(10) Å). This distance represents the shortest Pt-N3(pyrimidine-2.4-dione) bond reported so far. The two PtNH3 bond lengths differ significantly: PtNH3 (trans to Cl) is longer (2.052(10) Å) than PtNH3 (trans to N3 of 1-MeT) (2.002(11) Å). The PtCl distance (2.326(3) Å) is normal, as is the large dihedral angle between the Pt coordination plane and the nucleobase (76.5°).  相似文献   

3.
The preparation is reported of [(NH3)3Pt(9- MeA)] X2 (9-MeA = 9-methyladenine) with XCl (1a) and XClO4 (1b) and of trans-[(OH)2Pt(NH3)3- (9-MeA)]X2 with XCl (2a) and XClO4 (2b), and the crystal structure of 1b. [(NH3)3Pt(C6H7N5)](ClO4)2 crystallizes in space group P21/n with a = 20.810(7) Å, b = 7.697(3) Å, c = 10.567(4) Å, β = 91.57(6)°, Z = 4. The structure was refined to R = 0.054, Rw = 0.063. In all four compounds Pt coordination is through N7 of 9-MeA, as is evident from 3J coupling between H8 of the adenine ring and 195Pt. Pt(II) and Pt(IV) complexes can be differentiated on the basis of different 3J values, larger for Pt(II) than for Pt(IV) by a factor of 1.57 (av). In Me2SO-d6, hydrogen bonding occurs between Cl? and C(8)H of 9-MeA as weil as between Cl? and the NH3 groups in the case of the Pt(II) complex 1a. Protonation of the 9-MeA ligands was followed using 1H NMR spectroscopy and pKa values for the N1 protonated 9-MeA ligands were determined in D2O. They are 1.9 for 1a and 1.8 for 2a, which compares with 4.5 for the non-platinated 9-MeA. Possible consequences for hydrogen bonding with the complementary bases thymine or uracil are discussed briefly. Protonation of the OH groups in the Pt(IV) complexes has been shown not to occur above pH 1.  相似文献   

4.
The structure of the complex [Pt(trans-1,2-di- aminocyclohexane) (acetate)2]·H2O has been determined by X-ray diffraction. This racemic compound is orthorhombic, space group Aba2, a = 20.813(9), b = 7.926(5), c = 17.296(8) Å, Z = 8. The structure was refined on 1214 nonzero Cu Kα reflections to R = 0.028. The square planar environment of Pt includes the amino groups of the diamine in cis positions and oxygens from two monodentate acetates. The PtN and PtO distances average 2.00(3) and 2.02(3) Å, respectively. The bite of the diamine ligand imposes a NPtN angle of 85(1)°, whereas the small OPtO angle of 85(1)° probably results from packing effects. The average plane through the puckered cyclohexyl ring makes an angle of 19° with the PtN2O2 plane. The molecules are stacked by pairs along the b axis. The two molecules of each pair are 180° apart about the stacking axis, and form altogether four NH···O hydrogen bonds.  相似文献   

5.
The synthesis and characterisation of a series of dinuclear and polynuclear coordination compounds with 4-allyl-1,2,4-triazole are described. Dinuclear compounds were obtained for Mn(II) and Fe(II) with composition [M2(Altrz)5(NCS)4], and for Co(II) and Ni(II) with composition [M2(Altrz)4(H2O)(NCS)4](H2O)2. The crystal structure of [Co2(Altrz)4(H2O)(NCS)4](H2O)2 was solved at room temperature. It crystallizes in the monoclinic space group P21/n. The lattice constants are a = 18.033(3) Å, b = 13.611(2) Å, c = 15.619(3) Å, β = 92.04(2)° Z = 4. One cobalt ion has an octahedrally arranged donor set of ligands consisting of three vicinal nitrogens of 1,2-bridging triazoles (CoN = 2.14–2.15 Å), one terminal triazole nitrogen (CoN = 2.12 Å) and two N-bonded NCS anions (CON = 2.08 Å). The other Co(II) ion has the same geometry, but the terminal triazole ligand is replaced by H2O (CoO = 2.15 Å). The crystal structure is stabilised by hydrogen bonding through H2O molecules, S-atoms of the NCS anions and the lone-pair electron of the monodentate triazole. The magnetic exchange in the Mn, Co and Ni compounds is antiferromagnetic with J-values of ?0.4 cm?1, ?10.9 cm?1 and ?8.7 cm?1 respectively. The Co compound was interpreted in terms of an Ising model. For [Zn2(Altrz)5(NCS)2]∞[Zn(NCS)4], [Cu2(Altrz)3(NCS)4]∞ and [Cd2(Altrz)3(NCS)4]∞ chain structures are proposed. In the Cu compound thiocyanates appear to be present, bridging via the nitrogen atom, as deduced from the IR spectrum.  相似文献   

6.
The synthesis and crystal structure of the adenine N(1)-oxide complex with mercury(II) chloride, (C5H5N5O)HgCl2 are reported. Crystals of the coordination compound belong to the monoclinic system, space group P21/n with the following primary crystallographic data: a = 6.685(1) Å, b = 11.798(2) Å, c = 10.155(1) Å, β = 100.22(1)°, V = 906.04 Å3, Z = 4. The structure was elucidated by conventional Patterson and Fourier methods and refined by the full matrix least-squares technique on the basis of 1977 observed reflections to an R value of 0.074. The basic unit of the structure is a dimer, with a centre of symmetry, consisting of two HgCl2 moieties and two adenine N(1)-oxide ligands. A polymeric structure results from the bridging interactions of chloride ions. Adenine N(1)-oxide acts as a bidentate bridging ligand, coordinating through N(7) and O(1). The coordination geometry around the mercury ion is a distorted square pyramid with N(7) and three chlorines (two of which are centro-symmetrically related) forming the square plane and O(1) occupying the axial position. Hg also interacts indirectly with N(6) through a Cl
HN hydrogen bond. Principal intracomplex geometrical parameters are as follows: HgN(7) = 2.61(1) Å, HgO(1) = 2.55(1) Å, HgCl(1) = 2.330(3) Å, HgCl(2) = 2.318(3) Å, HgCl(2′) = 3.347(3) Å. The cis angles range from 77.5° to 107.9° and the two trans angles are 155.5° and 163.1°. The centro-symmetrically related bases overlap partially and pack at a distance of 3.2 Å. The glide-related bases are linked by a hydrogen bond, N(9)H
O(1) and are inclined to one another by 109.7°. The results are compared with those derived from spectroscopic and other physicochemical studies on metal interaction with adenine N(1)-oxide. Based on the present structural observations and earlier experimental results a possible mechanism is proposed for mercury interaction with DNA.  相似文献   

7.
The crystal structures of two copper(II) complexes of 4-fluorophenoxyacetic acid (4-FPAH) have been determined by X-ray diffraction. [Cu(4-FPA)2(H2O)2]·2(4-FPAH)·2H2O (1) is triclinic, space group P1 with Z = 1 in a cell of dimensions a = 14.808(2), b = 9.832(2), c = 6.847(2) Å, α = 87.77(2), β = 98.41(2), γ = 112.33(2)° and was refined to a residual of 0.038 for 1697 ‘observed’ reflections. The coordination sphere in this complex is tetragonally distorted octahedral comprising two waters [CuO, 1.940(3) Å], two unidentate carboxylate oxygens [CuO, 1.942(2) Å] and two ether oxygens [CuO, 2.471(2) Å]. Two adducted [4-FPAH] acid molecules are linked to the un-coordinated oxygens of the acid ligands by hydrogen bonds [2.547(4) Å]. [Cu2(4-FPA)4(2-aminopyrimidine)2] (2) is triclinic, space group P1 with Z = 1 in a cell of dimensions a = 12.688(2), b = 11.422(2), c = 7.951(1) Å, α = 78.74(1), β = 107.51(1), γ = 75.78(1)°, and was refined to a residual of 0.042 for 2683 ‘observed’ reflections. (2) is a centrosymmetric tetracarboxylate bridged dimer with four similar CuO (equatorial) distances [1.967–1.987 Å; 1.977(3) Å mean] and the axial position occupied by the hetero nitrogen of the 2-aminopyrimidine ligand [CuN, 2.176(3) Å]. The Cu---Cu separation is 2.710(1) Å. Crystal data are also presented which confirm the isostructurality of complex (2) with [Cu2(phenoxyacetate)4(2-aminopyrimidine)2], the CoII, MgII and MnII4-fluorophenoxyacetate complexes with their phenoxyacetic and 4-chlorophenoxyacetic acid analogues, and of CdII4-fluorophenoxyacetate with CdII and ZnII phenoxyacetates.  相似文献   

8.
The crystal structures of the cadmium(II) and lead(II) complexes of phenoxyacetic acid (PAH) have been determined by single crystal X-ray diffraction techniques. The cadmium complex, [Cd(PA)2(H2O)2] (1), space group C2, with Z = 2 in a cell of dimensions, a = 11.801(2), b = 5.484(1), c = 13.431(3) Å, β = 100.87(2)°, possesses a distorted trapezoidal bipyramidal coordination around the metal atom, involving two water oxygens [2.210(5) Å] and four carboxyl oxygens from two symmetrical bidentate phenoxyacetate ligands [2.363(4), 2.365(4) Å] with Cd lying on the crystallographic two- fold axis. The lead complex, [Pb2(PA)4(H2O)]n(2) is triclinic, space group P1, Z = 2, with a cell of dimensions, a = 10.135(4), b = 10.675(3), c = 19.285(9) Å, α = 114.66(3), β = 91.94(3) and γ = 114.99(3)°. (2) is a two-dimensional polymer with a repeating dimer sub-unit. The first lead [Pb(1)] has an irregular MO8 coordination [2.34?2.96(2) Å: mean, 2.63(2) Å] involving the water molecule, two oxygens from an asymmetric bidentate carboxylate group, two from a bidentate chelate [O(ether), O(carboxylate)] group and three from bridging oxygens, one of which also provides a polymer link to another symmetry generated lead. The second lead [Pb(2)] is irregular seven-coordinate [PbO, 2.48?2.73(2) Å: mean, 2.61(2) Å] with three bonds from the bridging groups, two from an unsymmetrical bidentate carboxylate (O, O′) group and one from a second carboxyl group which also bridges two Pb(2) centres in the polymer.  相似文献   

9.
Di-μ-azido-bis[azido(2-aminopyridine)aquo]dicopper(II), [Cu(2-ampy)(N3)2(H2O)]2, was synthesized and characterized by X-ray crystallography. The crystals are triclinic, space group P1, with a = 7.142(1), b = 7.812(1), c = 9.727(1) Å, a = 96.52(1), β = 95.52(1), γ = 113.47(1)°, and Z = 1. The structure was refined to RF = 0.030 for 1960 observed MoKα diffractometer data. The dimeric molecule, which possesses a crystallographic inversion center, contains both terminal and μ(1)-bridging azido groups. Each copper(II) atom is further coordinated by a 2-aminopyridine ligand (via its ring N atom) and a water molecule to give a distorted square pyramid, with the metal atom raised by 0.17 Å above the N4 basal plane [CuN (ring) = 2.001(2), CuN (azide) = 1.962(3)–2.018(2) Å] towards the apical aquo ligand [CuO = 2.371(2) Å]. Each water molecule forms an intramolecular O?HN (amine) acceptor hydrogen bond, and is linked by two OH?N (terminal azide) intermolecular donor hydrogen bonds to adjacent dimeric complexes to yield a layer structure parallel to (001). Infrared and electronic spectral data are presented and discussed.  相似文献   

10.
The title compound belongs to space group P21/c, a = 10.884 Å, b = 9.187 Å, c = 14.458 Å, β = 131.02°, Z = 4. The structure was refined on 1355 nonzero reflections to an R factor of 0.059. The crystal contains discrete [CH3Hg(theophyllinate)] molecules in which the proton initially bound to N7 is replaced by the CH3Hg+ ion. The water molecule forms hydrogen bonds with both carbonyl oxygens, whereas an intermolecular contact of 2.98 Å is established between mercury and N9. The intramolecular Hg?O6 distance of 3.18 Å is consistent with the absence of significant Hg?carbonyl bonding interactions in the present structure.  相似文献   

11.
The title compound, [C18H45N6O3Pt3]2(SO4)3·14H2O, belongs to space group C2/c, with a = 25.90(2) Å, b = 14.33(2) Å, c = 23.74(3) Å, β = 122.88(7)°, and Z = 4. The structure was refined on 2899 independent nonzero reflections to an R factor of 0.042. The crystal contains hydroxobridged cyclic [Pt3(OH)3(C6H14N2)3]3+ ions, in which the Pt3O3, ring has a chair conformation. The coordination around each Pt atom is square planar and the cyclohexyl ring lies roughly in the same plane. A large cavity between two trimeric ions related by a twofold axis is filled with one SO42- ion and five water molecules, which participate in an intricate network of hydrogen bonds among themselves and with the hydroxo and amino groups of the complex cation. These units are held together in the crystal by stacking interactions between Pt(OH)2(C6H14N2) “planes” belonging to adjacent molecules, as well as by hydrogen bonds involving the remaining SO42- ions and water molecules. The presence of the cyclohexane ring precludes λ-δ interconversion in the chelate ring and imparts rigidity to the Pt(trans-dach)2+ unit.  相似文献   

12.
The tripod ligands tris(2-alkylthioethyl)amine, with alkyl = ethyl, iso-propyl, and tert-butyl, give with cobalt(II) and nickel(II) halides high-spin complexes with formulae [MLX2], [MLX]Y, and [MLX]2[MX4] (where X = Cl, Br, I; Y = BPh4, PF6). The nickel complexes are either six- or five-coordinate: the coordination number decreases as the bulkiness of the alkyl group bound to the sulfur is increased. All the cobalt complexes contain the five-coordinate cation [CoLX]+. The crystal and molecular structure of the [Co(NS3-t-Bu)Br]PF6 complex has been determined by standard X-ray methods, and refined to R = 0.061. The crystals are monoclinic, space group P21/n. The unit cell dimensions are: a = 27.420 (2), b = 11.923 (4), c = 17.082 (1) Å, β = 102.40 (1)°, Z = 8. The complex cation has a trigonal bipyramidal geometry with the nitrogen and bromine atoms at the apexes, and the three sulfur atoms in the equatorial plane. The tetrahedral distortion is relatively small (mean BrCoS angle = 98.5°), and similar to that found for the [Co (Me6tren)Br]Br complex [Me6tren = tris(2-dimethylaminoethyl)amine).  相似文献   

13.
The interactions between N-tosylamino acids and cobalt(II), nickel(II) and zinc(II) ions in aqueous solution and in the solid state have been investigated. From concentrated aqueous solutions, compounds of general formula [M(II)(N-tosylaminoacidato)2(H2O)4](M = Co(II), Ni(II) and N-tosylaminoacidato = N-tosylglycinate (Tsgly?), N-tosyl-α- and -β-alaninate (Ts-α- and Ts-β-ala?); M = Zn(II) and N-tosylaminoacidate = Tsgly?, Ts-β-ala?) and [Zn(II)(N- tosylaminoacidato)2(H2O)2] were isolated and characterized by means of thermogravimetric, electronic and infrared spectra. For two of them: [Co(Tsgly)2(H2O)4](I) and [Zn(Ts-β-ala)2(H2O)4](II) the crystal and molecular structures were also determined. Both compounds crystallize in the monoclinic space group P21/c, with two formula units in a cell of dimensions: a = 13.007(6), b = 5.036(2), c = 18.925(7) Å, β = 102.33(3)° for (I) and a = 14.173(6), b = 5.469(2), c = 17.701(7) Å, β = 106.63(3)° for (II). The structures were solved by the heavy-atom method and refined by least-squares calculations to R = 0.031 and 0.064 for (I) and (II) respectively. The cobalt and zinc atoms lie in the centers of symmetry, each bonded to two amino- acid molecules through a carboxylic oxygen atom and four water molecules in a slightly tetragonally distorted octahedral geometry. The second carboxylic oxygen atom is not involved in metal coordination. Electronic and X ray-powder spectra suggest that the tetrahydrate complexes of Co2+, Ni2+ and Zn2+ ions of the same amino acids are isomorphous and isostructural. No coordinative interactions between ligand and metal ions were found in aqueous solution on varying the pH values before hydroxide precipitation.  相似文献   

14.
2,2′-Diaminobiphenyl-R,R-trans-1,2-diaminocyclohexaneplatinum(II) Chloride Trihydrate, (R,R-chxn)(dabp)Pt]Cl2·3H2O, crystallizes in the space group p212121 (D24, No. 19) with a = 6.219(4) Å, b = 17.633(2) Å, c = 21.523(3) Å, V = 2,360.4(8) Å3, ?calcd = 1.739 g cm?3, ?measd = 1.74 g cm?3, and Z = 4. Diffraction data were collected with a Picker FACS-1 four-circle diffractometer. The structure was solved by the heavy atom method and refined by least-square calculations to residuals R = 0.0586 and weighted R = 0.0668. The 2,2′-diaminobiphenyl ligand exhibits complete stereospecificity in its coordination to platinum(II) ion with λ chiral conformation.  相似文献   

15.
Reaction of cis-(NH3)2Pt(1-MeU)2 (1-MeU = 1- methyluracil anion, C5H5N2O2) with ZnSO4·7H2O leads to the formation of a dinuclear complex of composition [(NH3)2Pt(C5H5N2O2)2Zn(H2O)3]SO4· 2H2O. The compound crystallizes in space group P21/c with a = 10.534(1), b = 17.933(2), c = 11.490(1) Å, β=94.61(1)°, Z=4. The structure was refined to R=0.043 and Rw=0.061. In this compound, Pt is coordinated through N3 to the 1-MeU ligand, while Zn is bound through the two O4 oxygens and completes its distorted square-pyramidal coordination sphere by three aqua ligands. The positions of the two metals relative to their basal donor atoms and the shortness of the PtZn separation (2.760(1) Å) suggest a bonding interaction between the two metals. Using 1H NMR spectroscopy, a formation constant of ca. 114 1 mol?1 for the Pt, Zn complex has been estimated.  相似文献   

16.
Two zinc complexes—trichloroadeninium zinc(II)(Form 11), C5H6N5Cl3Zn [structure(I)] and a similar complex of Arprinocid, (6-amino-9-(2-chloro-6-fluorobenzyl)purine], C12H10N5FCl4Zn [structure(II)]—have been prepared Structure(I) crystallizes in the space group P21/c with a = 8.223(1)Å, b = 6.755(1) Å, c = 18.698(3) Å, β = 96.10(2)°,and Z = 4. Structure(II) crystallizes in the space group P21/c with a = 8.209(2) Å, b = 6.421(8) Å, c = 31.794(8) Å, β = 90.76(2)°, and Z = 4. Both of these structures were solved by the heavy atom method using diffractometric data and refined to R = 0.028 [structure(I)] and 0.038 [structure(II)]. Zinc with a distorted tetrahedral coordination having three chlorines and N(7) as ligators, protonation of the adenine moiety at N(1), dissymmetry of exocyclic angles at N(7), and an interligand hydrogen bond (“indirect chelation”) involving one of the three chlorines, coordinated to zinc and a proton of the exocylic amino group are the striking features common to both structures. Similar types of indirect chelation as observed in the different complexes of purines have been discussed. The zinc ion deviates from the imidazole plane by 0.412 Å in structure(I) and 0.524 Å in Structure(II). The imidazol and pyrimidine planes fold about the C(4)-C(5) bond by 2.4° in strctur(I) and 3.8° in structure(II). In structure(I), inversion related molecules are paired through N(9)-H…N(3) hydrogen bonds. N-H…Cl hydrogen bonds and C(8)-H…Cl interactions have been observed in both structures.  相似文献   

17.
Iron(III) complexes of three aroyl hydrazones, pyridoxal isonicotinoyl hydrazone (H2pih), pyridoxal benzoyl hydrazone (H2pbh), and salicylaldehyde benzoyl hydrazone (H2sbh), were synthesized and characterized. In aqueous medium at pH 7, [Fe(pih)(Hpih)]·3H2O is formed. In acidic methanol, a 1:1 ligand-to-metal complex is formed, [FeCl2(H2pih)]Cl (1), whereas in aqueous medium at low pH cis-[FeCl2(H2pih)(H2O)]Cl·H2O (2) is formed. Compounds 1 and 2 are high-spin d5 with μeff = 5.88 μB and 5.93 μB (298 K). The crystal structures of 1 and 2 show that H2pih acts as a tridentate neutral ligand in which the phenolic and hydrazidic protons have shifted to the pyridine nitrogen atoms. The co- ordination polyhedron of 1 is ‘square’ pyramidal, whereas that of 2 is pseudo-octahedral. Compound 1 is triclinic, space group Pl, with a = 12.704(2) Å, b = 8.655(2) Å, c = 8.820(2) Å, α = 105.42(1)°, β = 89.87(1)°, γ = 107.60(1)°, V = 888 Å3, and Z = 2; 2 is monoclinic, space group P21/c, with a = 15.358(4) Å, b = 7.304(3) Å, c = 17.442(4) Å, β = 101.00(2)°, V = 1921 Å3, and Z = 4.  相似文献   

18.
The crystal and molecular structures of the complexes MoO2((SCH2CH2)2NCH2CH2SCH3), I and MoO2((SCH2CH2)2NCH2CH2N(CH3)2), II, have been determined from X-ray intensity data collected by counter methods. Compound I crystallizes in two forms, Ia and Ib. In form Ia the space group is P21/n with cell parameters a = 7.235(2), b = 7.717(2), c = 24.527(6) Å, β = 119.86(2)°, V = 1188(1) Å3, Z = 4. In form Ib the space group is P21/c with cell parameters a = 14.945(5), b = 11.925(5), c = 14.878(4) Å, β = 114.51(2)°, V = 2413(3) Å3, Z = 8. The molecules of I in Ia and Ib are very similar having an octahedral structure with cis oxo groups, trans thiolates (cis to both oxo groups) and N and thioether sulfur atoms trans to oxo groups. Average ditances are MoO = 1.70, MoS (thiolate) = 2.40, MoN = 2.40 and MoS (thioether) = 2.79 Å. Molecule II crystallizes in space group P212121 with a = 7.188(1), b = 22.708(8), c = 7.746(2) Å, V = 1246(1) Å3 and Z = 4. The coordination about Mo is octahedral with cis oxo groups, trans thiolates and N atoms trans to oxo. Distances in the first coordination sphere are MoO = 1.705(2), 1.699(2), MoS = 2.420(1), 2.409(1) and MoN = 2.372(2), 2.510(2) Å. The conformational features of the complexes are discussed. Complex I displays MoO and MoS distances which are very similar to those found by EXAFS in sulfite oxidase. This similarity is discussed.  相似文献   

19.
The preparations are reported of cis[Pt(caffeine)2Cl2]·0.4H2O, Pd(caffeine)2Cl2, the methanol adduct of the previously known compound K[Pt(caffeine)Cl3], and Pt(caffeine)(cytidine)Cl2. Crystals of [Pt(caffeine)2Cl2]·0.4H2O are tetragonal P42/n with a = 13.156(2) 0?, c = 12.734(2) 0?, Z = 4. The structure was refined on 945 reflections to R = 0.025. The molecule is cis with a crystallographic two-fold axis bisecting the ClPtCl and NPtN angles. The Pt is square planar with PtN and PtCl bonds of 2.029(5) Å and 2.271(2) Å respectively. There is a 5.4° dihedral angle between the imidazole and pyrimidine rings, and the imidazole ring is rotated away from the coordination plane by 86.4°. Symmetry related caffeine units pack parallel to each other with an inter-ring separation of 3.45 Å.  相似文献   

20.
The crystal and molecular structure of Δ- cis-α- ethylenebis-S-prolinato(1,2-diaminoethane)cobalt(III) perchlorate dihydrate, Δ-cis-α-[Co(SS-EBP)(en)] ClO4· 2H2O, was determined from three-dimensional X-ray diffractometer data. The complex crystallizes in the orthorhombic system, space group P212121 with a = 7.879(4) Å, b = 13.738(9) Å, c = 19.445(2) Å, V = 2104(2) Å3. With Z = 4, the observed and calculated densities are 1.60(2) and 1.605 g cm?3, respectively. The structure was refined by the block- diagonal least-squares technique to a final R = 0.0560 for 1604 observed reflections. The geometry about the cobalt atom is roughly octahedral with the tetradentate SS-EBP (= ethylenebis-S-prolinate ion), assuming cis-α configuration in which the complex possesses two out-of-plane amino acidate (R) rings and the backbone ethylenediamine (E) ring. The E ring conformation is δ. On the other hand, the R rings have λ conformation as well as the en ring. Δ-RNRN?E  λR1  λR2)(λen)-cis-α-[Co(SS-EBP)(en)]+ is one of two possible isomers of this compound which have been isolated and whose absolute configurations have been tentatively assigned by spectroscopy. The crystal and molecular structure determination confirms these assignments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号