首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Axons of olfactory sensory neurons expressing a given odorant receptor converge to a few glomeruli in the olfactory bulb. We have generated mice with unresponsive olfactory sensory neurons by targeted mutagenesis of a cyclic nucleotide-gated channel subunit gene, OCNC1. When these anosmic mice were crossed with mice in which neurons expressing a given odorant receptor can be visualized by coexpression of an axonal marker, the pattern of convergence was affected for one but not another receptor. In a novel paradigm, termed monoallelic deprivation, axons from channel positive or negative neurons that express the same odorant receptor segregate into distinct glomeruli within the same bulb. Thus, the peripheral olfactory projections are in part influenced by mechanisms that depend on neuronal activity.  相似文献   

2.
Olfactory sensory neurons expressing a given odorant receptor converge axons onto a few topographically fixed glomeruli in the olfactory bulb, leading to establishment of the odor map. Here, we report that BIG-2/contactin-4, an axonal glycoprotein belonging to the immunoglobulin superfamily, is expressed in a subpopulation of mouse olfactory sensory neurons. A mosaic pattern of glomerular arrangement is observed with strongly BIG-2-positive, weakly positive, and negative axon terminals in the olfactory bulb, which is overlapping but not identical with those of Kirrel2 and ephrin-A5. There is a close correlation between the BIG-2 expression level and the odorant receptor choice in individual sensory neurons. In BIG-2-deficient mice, olfactory sensory neurons expressing a given odorant receptor frequently innervate multiple glomeruli at ectopic locations. These results suggest that BIG-2 is one of the axon guidance molecules crucial for the formation and maintenance of functional odor map in the olfactory bulb.  相似文献   

3.
Adenylyl cyclase-dependent axonal targeting in the olfactory system   总被引:3,自引:0,他引:3  
The vertebrate olfactory bulb is a remarkably organized neuronal structure, in which hundreds of functionally different sensory inputs are organized into a highly stereotyped topographical map. How this wiring is achieved is not yet understood. Here, we show that the olfactory bulb topographical map is modified in adenylyl cyclase 3 (adenylate cyclase 3)-deficient mice. In these mutants, axonal projection targets corresponding to specific odorant receptors are disorganized, are no longer exclusively innervated by functionally identical axonal projections and shift dramatically along the anteroposterior axis of the olfactory bulb. Moreover, the cyclase depletion leads to the prevention of neuropilin 1 (Nrp1) expression in olfactory sensory neuron axonal projections. Taken together, our data point to a major role played by a crucial element of the odorant-induced transduction cascade, adenylyl cyclase 3, in the targeting of olfactory sensory neuron axons towards the brain. This mechanism probably involves the regulation of receptor genes known to be crucial in axonal guidance processes.  相似文献   

4.
The mammalian vomeronasal system is specialized in pheromone detection. The neural circuitry of the accessory olfactory bulb (AOB) provides an anatomical substrate for the coding of pheromone information. Here, we describe the axonal projection pattern of vomeronasal sensory neurons to the AOB and the dendritic connectivity pattern of second-order neurons. Genetically traced sensory neurons expressing a given gene of the V2R class of vomeronasal receptors project their axons to six to ten glomeruli distributed in globally conserved areas of the AOB, a theme similar to V1R-expressing neurons. Surprisingly, second-order neurons tend to project their dendrites to glomeruli innervated by axons of sensory neurons expressing the same V1R or the same V2R gene. Convergence of receptor type information in the olfactory bulb may represent a common design in olfactory systems.  相似文献   

5.
Lin DM  Wang F  Lowe G  Gold GH  Axel R  Ngai J  Brunet L 《Neuron》2000,26(1):69-80
Olfactory neurons expressing the same odorant receptor converge to a small number of glomeruli in the olfactory bulb. In turn, mitral and tufted cells receive and relay this information to higher cortical regions. In other sensory systems, correlated neuronal activity is thought to refine synaptic connections during development. We asked whether the pattern of connections between olfactory sensory axons and mitral cell dendrites is affected when odor-evoked signaling is eliminated in mice lacking functional olfactory cyclic nucleotide-gated (CNG) channels. We demonstrate that olfactory sensory axons converge normally in the CNG channel mutant background. We further show that the pruning of mitral cell dendrites, although slowed during development, is ultimately unperturbed in mutant animals. Thus, the olfactory CNG channel-and by inference correlated neural activity--is not required for generating synaptic specificity in the olfactory bulb.  相似文献   

6.
Cutforth T  Moring L  Mendelsohn M  Nemes A  Shah NM  Kim MM  Frisén J  Axel R 《Cell》2003,114(3):311-322
Olfactory sensory neurons expressing a given odorant receptor (OR) project with precision to specific glomeruli in the olfactory bulb, generating a topographic map. In this study, we demonstrate that neurons expressing different ORs express different levels of ephrin-A protein on their axons. Moreover, alterations in the level of ephrin-A alter the glomerular map. Deletion of the ephrin-A5 and ephrin-A3 genes posteriorizes the glomerular locations for neurons expressing either the P2 or SR1 receptor, whereas overexpression of ephrin-A5 in P2 neurons results in an anterior shift in their glomeruli. Thus the ephrin-As are differentially expressed in distinct subpopulations of neurons and are likely to participate, along with the ORs, as one of a complement of guidance receptors governing the targeting of like axons to precise locations in the olfactory bulb.  相似文献   

7.
Genetic ablation and restoration of the olfactory topographic map   总被引:7,自引:0,他引:7  
Gogos JA  Osborne J  Nemes A  Mendelsohn M  Axel R 《Cell》2000,103(4):609-620
In the olfactory sensory system, neurons expressing a given odorant receptor project with precision to two of 1800 spatially invariant glomeruli creating a topographic map within the olfactory bulb. Olfactory sensory neurons have a half-life of about 90 days and are continually renewing. This poses the problem of how this precise spatial map is maintained throughout the life of the organism. We have developed a genetic approach to effect the synchronous ablation of subpopulations of neurons expressing a given receptor. The axons of newly generated neurons can then be followed as they enter the brain and converge on glomerular targets during adult life. The observation that following neuronal cell killing, the spatial map is faithfully restored, demonstrates that the information necessary for the establishment of the sensory map persists throughout the life of the organism.  相似文献   

8.
Each primary olfactory neuron stochastically expresses one of approximately 1000 odorant receptors. The total population of these neurons therefore consists of approximately 1,000 distinct subpopulations, each of which are mosaically dispersed throughout one of four semi-annular zones in the nasal cavity. The axons of these different subpopulations are initially intermingled within the olfactory nerve. However, upon reaching the olfactory bulb, they sort out and converge so that axons expressing the same odorant receptor typically target one or two glomeruli. The spatial location of each of these approximately 1800 glomeruli are topographically-fixed in the olfactory bulb and are invariant from animal to animal. Thus, while odorant receptors are expressed mosaically by neurons throughout the olfactory neuroepithelium their axons sort out, converge and target the same glomerulus within the olfactory bulb. How is such precise and reproducible topographic targeting generated? While some of the mechanisms governing the growth cone guidance of olfactory sensory neurons are understood, the cues responsible for homing axons to their target site remain elusive.  相似文献   

9.
Olfactory bulb (OB) projection neurons receive sensory input from olfactory receptor neurons and precisely relay it through their axons to the olfactory cortex. Thus, olfactory bulb axonal tracts play an important role in relaying information to the higher order of olfactory structures in the brain. Several classes of axon guidance molecules influence the pathfinding of the olfactory bulb axons. Draxin, a recently identified novel class of repulsive axon guidance protein, is essential for the formation of forebrain commissures and can mediate repulsion of diverse classes of neurons from chickens and mice. In this study, we have investigated the draxin expression pattern in the mouse telencephalon and its guidance functions for OB axonal projection to the telencephalon. We have found that draxin is expressed in the neocortex and septum at E13 and E17.5 when OB projection neurons form the lateral olfactory tract (LOT) rostrocaudally along the ventrolateral side of the telencephalon. Draxin inhibits axonal outgrowth from olfactory bulb explants in vitro and draxin-binding activity in the LOT axons in vivo is detected. The LOT develops normally in draxin−/− mice despite subtle defasciculation in the tract of these mutants. These results suggest that draxin functions as an inhibitory guidance cue for OB axons and indicate its contribution to the formation of the LOT.  相似文献   

10.
11.
Through the sense of smell mammals can detect and discriminate between a large variety of odorants present in the surrounding environment. Odorants bind to a large repertoire of odorant receptors located in the cilia of olfactory sensory neurons of the nose. Each olfactory neuron expresses one single type of odorant receptor, and neurons expressing the same type of receptor project their axons to one or a few glomeruli in the olfactory bulb, creating a map of odorant receptor inputs. The information is then passed on to other regions of the brain, leading to odorant perception. To understand how the olfactory system discriminates between odorants, it is necessary to determine the odorant specificities of individual odorant receptors. These studies are complicated by the extremely large size of the odorant receptor family and by the poor functional expression of these receptors in heterologous cells. This article provides an overview of the methods that are currently being used to investigate odorant receptor–ligand interactions.  相似文献   

12.
Little is known about the identities and functions of extracellular signaling molecules that work in concert with neuronal activity to regulate refinement and maintenance of the mouse olfactory sensory map. We show that expression of a dominant negative retinoic acid receptor (RAR) in olfactory sensory neurons (OSNs) increased the number of glomeruli that incorrectly contained OSN axons expressing different odorant receptors. This phenotype became apparent postnatally, coincided with increased cell death, and was preceded by increased Neuropilin-1 and reduced Kirrel-2 expressions. Kirrel-2-mediated cell adhesion influences odorant receptor-specific axonal convergence and is regulated by odorant receptor signaling via the olfactory cyclic nucleotide-gated (CNG) ion channel. Accordingly, we found that inhibited RAR function correlated with reduced CNG channel expression. Naris occlusion experiments and analysis of CNG channel-deficient mice further indicated that RAR-regulated CNG channel levels influenced the intrinsic neuronal activity required for cell survival in the absence of odor stimulation. Finally, we showed that CNG channel activity regulated expression of the retinoic acid-degrading enzyme Cyp26B1. Combined, these results identify a novel homeostatic feedback mechanism involving retinoic acid metabolism and CNG channel activity, which influences glomerular homogeneity and maintenance of precisely connected OSNs.  相似文献   

13.
嗅球对嗅觉信息的处理   总被引:2,自引:0,他引:2  
哺乳动物的嗅觉系统拥有惊人的能力,它可以识别和分辨成千上万种分子结构各异的气味分子。这种识别能力是由基因决定的。近年来,分子生物学和神经生理学的研究使得我们对嗅觉识别的分子基础和嗅觉系统神经连接的认识有了质的飞跃。气味分子的识别是由一千多种气味受体完成的,鼻腔中的嗅觉感觉神经元表达这些气味受体基因。每个感觉神经元只表达一种气味受体基因。表达同种气味受体的感觉神经元投射到嗅球表面的一个或几个嗅小球中,从而在嗅球中形成一个精确的二维连接图谱。了解嗅球对气味信息的加工和处理方式是我们研究嗅觉系统信号编码的一个重要环节。文章概述并总结了有关嗅球信号处理的最新研究成果。  相似文献   

14.
Ranganathan R  Buck LB 《Neuron》2002,35(4):599-600
Mammalian olfactory sensory neurons that express a particular odorant receptor (OR) project axons to the same few glomeruli in the olfactory bulb. In this issue of Neuron, Vassalli et al. use OR minigenes that coexpress histochemical markers and show that the determinants in the sensory neurons required to generate the stereotyped olfactory bulb map are the same as those needed for appropriate expression of the OR.  相似文献   

15.
Odorant sampling behaviors such as sniffing bring odorant molecules into contact with olfactory receptor neurons (ORNs) to initiate the sensory mechanisms of olfaction. In rodents, inspiratory airflow through the nose is structured and laminar; consequently, the spatial distribution of adsorbed odorant molecules during inspiration is predictable. Physicochemical properties such as water solubility and volatility, collectively called sorptiveness, interact with behaviorally regulable variables such as inspiratory flow rate to determine the pattern of odorant deposition along the inspiratory path. Populations of ORNs expressing the same odorant receptor are distributed in strictly delimited regions along this inspiratory path, enabling different deposition patterns of the same odorant to evoke different patterns of neuronal activation across the olfactory epithelium and in the olfactory bulb. We propose that both odorant sorptive properties and the regulation of sniffing behavior may contribute to rodents' olfactory capacities by this mechanism. In particular, we suggest that the motor regulation of sniffing behavior is substantially utilized for purposes of "zonation" or the direction of odorant molecules to defined intranasal regions and hence toward distinct populations of receptor neurons, pursuant to animals' sensory goals.  相似文献   

16.
In the mouse, olfactory sensory neurons (OSNs) expressing the same odorant receptor (OR) converge their axons to a specific set of glomeruli in the olfactory bulb. To study how OR-instructed axonal fasciculation is controlled, we searched for genes whose expression profiles are correlated with the expressed ORs. Using the transgenic mouse in which the majority of OSNs express a particular OR, we identified such genes coding for the homophilic adhesive molecules Kirrel2/Kirrel3 and repulsive molecules ephrin-A5/EphA5. In the CNGA2 knockout mouse, where the odor-evoked cation influx is disrupted, Kirrel2 and EphA5 were downregulated, while Kirrel3 and ephrin-A5 were upregulated, indicating that these genes are transcribed in an activity-dependent manner. Mosaic analysis demonstrated that gain of function of these genes generates duplicated glomeruli. We propose that a specific set of adhesive/repulsive molecules, whose expression levels are determined by OR molecules, regulate the axonal fasciculation of OSNs during the process of glomerular map formation.  相似文献   

17.
Olfactory sensory neurons (OSNs) expressing a given odorant receptor project their axons to specific glomeruli, creating a topographic odor map in the olfactory bulb (OB). The mechanisms underlying axonal pathfinding of OSNs to their precise targets are not fully understood. Here, we demonstrate that Robo2/Slit signaling functions to guide nascent olfactory axons to the OB primordium in zebrafish. robo2 is transiently expressed in the olfactory placode during the initial phase of olfactory axon pathfinding. In the robo2 mutant, astray (ast), early growing olfactory axons misroute ventromedially or posteriorly, and often penetrate into the diencephalon without reaching the OB primordium. Four zebrafish Slit homologs are expressed in regions adjacent to the olfactory axon trajectory, consistent with their role as repulsive ligands for Robo2. Masking of endogenous Slit gradients by ubiquitous misexpression of Slit2 in transgenic fish causes posterior pathfinding errors that resemble the ast phenotype. We also found that the spatial arrangement of glomeruli in OB is perturbed in ast adults, suggesting an essential role for the initial olfactory axon scaffold in determining a topographic glomerular map. These data provide functional evidence for Robo2/Slit signaling in the establishment of olfactory neural circuitry in zebrafish.  相似文献   

18.
Fan J  Ngai J 《Developmental biology》2001,229(1):119-127
Individual olfactory sensory neurons are thought to express only one odorant receptor gene from a repertoire of hundreds to thousands of genes. How do these sensory neurons choose just one specific odorant receptor to express during their differentiation? As an initial attempt toward understanding the process of odorant receptor gene regulation, we studied when odorant receptor expression is activated during sensory neuron regeneration. We find that receptor gene expression is activated in postmitotic neurons and can occur in the absence of the olfactory bulb. These results suggest that receptor expression is restricted to the terminal stages of olfactory neuron differentiation, and sensory neurons do not simply inherit the odorant receptor that is already expressed in mitotic precursor cells. Our results also support a model in which odorant receptor gene expression occurs independent of the olfactory bulb.  相似文献   

19.
The glial cell line-derived (GDNF) family of trophic factors, GDNF, neurturin, persephin and artemin, are known to support the survival and regulate differentiation of many neuronal populations, including peripheral autonomic, enteric and sensory neurons. Members of this family of related ligands bind to specific GDNF family receptor (GFR) proteins, which complex and signal through the Ret receptor tyrosine kinase. We showed previously that GDNF protein was detectable in olfactory sensory neurons (OSNs) in the olfactory neuroepithelium (ON). In this immunohistochemical study, we localized GDNF, neurturin, GFRα1, GFRα2 and Ret in the adult rat ON and olfactory bulb. We found that GDNF and Ret were widely expressed by immature and mature OSNs, while neurturin was selectively expressed in a subpopulation of OSNs zonally restricted in the ON. The GFRs had differential expression, with mature OSNs and their axons preferentially expressing GFRα1, whereas progenitors and immature neurons more avidly expressed GFRα2. In the bulb, GDNF was highly expressed by the mitral and tufted cells, and by periglomerular cells, and its distribution generally resembled that of Ret, with the exception that Ret was far more predominant on fibers than cell bodies. Neurturin, in contrast, was present at lower levels and was more restricted in its expression to the axonal compartment. GFRα2 appeared to be the dominant accessory protein in the bulb. These data are supportive of two members of this neurotrophic family, GDNF and neurturin, playing different physiological roles in the olfactory neuronal system.  相似文献   

20.
The olfactory system provides an excellent model in which to study cell proliferation, migration, differentiation, axon guidance, dendritic morphogenesis, and synapse formation. We report here crucial roles of the Arx homeobox gene in the developing olfactory system by analyzing its mutant phenotypes. Arx protein was expressed strongly in the interneurons and weakly in the radial glia of the olfactory bulb, but in neither the olfactory sensory neurons nor bulbar projection neurons. Arx-deficient mice showed severe anatomical abnormalities in the developing olfactory system: (1) size reduction of the olfactory bulb, (2) reduced proliferation and impaired entry into the olfactory bulb of interneuron progenitors, (3) loss of tyrosine hydroxylase-positive periglomerular cells, (4) disorganization of the layer structure of the olfactory bulb, and (5) abnormal axonal termination of olfactory sensory neurons in an unusual axon-tangled structure, the fibrocellular mass. Thus, Arx is required for not only the proper developmental processes of Arx-expressing interneurons, but also the establishment of functional olfactory neural circuitry by affecting Arx-non-expressing sensory neurons and projection neurons. These findings suggest a likely role of Arx in regulating the expression of putative instructive signals produced in the olfactory bulb for the proper innervation of olfactory sensory axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号