首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Etiemble  C Picat  P Boivin 《Biochimie》1977,59(8-9):673-678
The reaction mechanism of erythrocyte phosphofructokinase (PFK) was investigated by the initial velocity and the product inhibition. Intersecting lines obtained with initial velocity studies are consistent with a sequential mechanism and the formation of ternary complex as an intermediate. The product inhibition studies support an ordered Bi Bi mechanism in which fructose 6 phosphate (F6P) is the first substrate binding and adenosine diphosphate (ADP) is dissociated from the enzyme before fructose-1,6-P2 (FDP).  相似文献   

2.
The chemical and kinetic mechanisms of purified aspartate-beta-semialdehyde dehydrogenase from Escherichia coli have been determined. The kinetic mechanism of the enzyme, determined from initial velocity, product and dead end inhibition studies, is a random preferred order sequential mechanism. For the reaction examined in the phosphorylating direction L-aspartate-beta-semialdehyde binds preferentially to the E-NADP-Pi complex, and there is random release of the products L-beta-aspartyl phosphate and NADPH. Substrate inhibition is displayed by both Pi and NADP. Inhibition patterns versus the other substrates suggest that Pi inhibits by binding to the phosphate subsite in the NADP binding site, and the substrate inhibition by NADP results from the formation of a dead end E-beta-aspartyl phosphate-NADP complex. The chemical mechanism of the enzyme has been examined by pH profile and chemical modification studies. The proposed mechanism involves the attack of an active site cysteine sulfhydryl on the carbonyl carbon of aspartate-beta-semialdehyde, with general acid assistance by an enzyme lysine amino group. The resulting thiohemiacetal is oxidized by NADP to a thioester, with subsequent attack by the dianion of enzyme bound phosphate. The collapse of the resulting tetrahedral intermediate leads to the acyl-phosphate product and liberation of the active site cysteine.  相似文献   

3.
Sanghani PC  Robinson H  Bosron WF  Hurley TD 《Biochemistry》2002,41(35):10778-10786
The human glutathione-dependent formaldehyde dehydrogenase is unique among the structurally studied members of the alcohol dehydrogenase family in that it follows a random bi bi kinetic mechanism. The structures of an apo form of the enzyme, a binary complex with substrate 12-hydroxydodecanoic acid, and a ternary complex with NAD+ and the inhibitor dodecanoic acid were determined at 2.0, 2.3, and 2.3 A resolution by X-ray crystallography using the anomalous diffraction signal of zinc. The structures of the enzyme and its binary complex with the primary alcohol substrate, 12-hydroxydodecanoic acid, and the previously reported binary complex with the coenzyme show that the binding of the first substrate (alcohol or coenzyme) causes only minor changes to the overall structure of the enzyme. This is consistent with the random mechanism of the enzyme where either of the substrates binds to the free enzyme. The catalytic-domain position in these structures is intermediate to the "closed" and "open" conformations observed in class I alcohol dehydrogenases. More importantly, two different tetrahedral coordination environments of the active site zinc are observed in these structures. In the apoenzyme, the active site zinc is coordinated to Cys44, His66 and Cys173, and a water molecule. In the inhibitor complex, the coordination environment involves Glu67 instead of the solvent water molecule. The coordination environment involving Glu67 as the fourth ligand likely represents an intermediate step during ligand exchange at the active site zinc. These observations provide new insight into metal-assisted catalysis and substrate binding in glutathione-dependent formaldehyde dehydrogenase.  相似文献   

4.
AMP nucleosidase: kinetic mechanism and thermodynamics   总被引:1,自引:0,他引:1  
W E DeWolf  F A Emig  V L Schramm 《Biochemistry》1986,25(14):4132-4140
The kinetic mechanism of AMP nucleosidase (EC 3.2.2.4; AMP + H2O----adenine + ribose 5-phosphate) from Azotobacter vinelandii is rapid-equilibrium random by initial rate studies of the forward and reverse reactions in the presence of MgATP, the allosteric activator. Inactivation-protection studies have established the binding of adenine to AMP nucleosidase in the absence of ribose 5-phosphate. Product inhibition by adenine suggests a dead-end complex of enzyme, AMP, and adenine. Methanol does not act as a nucleophile to replace H2O in the reaction, and products do not exchange into substrate during AMP hydrolysis. Thus, the reactive complex has the properties of concerted hydrolysis by an enzyme-directed water molecule rather than by formation of a covalent intermediate with ribose 5-phosphate. The Vmax in the forward reaction (AMP hydrolysis) is 300-fold greater than that in the reverse reaction. The Keq for AMP hydrolysis has been experimentally determined to be 170 M and is in reasonable agreement with Keq values of 77 and 36 M calculated from Haldane relationships. The equilibrium for enzyme-bound substrate and products strongly favors the enzyme-product ternary complex ([enzyme-adenine ribose 5-phosphate]/[enzyme-AMP] = 480). The temperature dependence of the kinetic constants gave Arrhenius plots with a distinct break between 20 and 25 degrees C. Above 25 degrees C, AMP binding demonstrates a strong entropic effect consistent with increased order in the Michaelis complex. Below 20 degrees C, binding is tighter and the entropic component is lost, indicating distinct enzyme conformations above and below 25 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Formaldehyde, a major industrial chemical, is classified as a carcinogen because of its high reactivity with DNA. It is inactivated by oxidative metabolism to formate in humans by glutathione-dependent formaldehyde dehydrogenase. This NAD(+)-dependent enzyme belongs to the family of zinc-dependent alcohol dehydrogenases with 40 kDa subunits and is also called ADH3 or chi-ADH. The first step in the reaction involves the nonenzymatic formation of the S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione. When formaldehyde concentrations exceed that of glutathione, nonoxidizable adducts can be formed in vitro. The S-(hydroxymethyl)glutathione adduct will be predominant in vivo, since circulating glutathione concentrations are reported to be 50 times that of formaldehyde in humans. Initial velocity, product inhibition, dead-end inhibition, and equilibrium binding studies indicate that the catalytic mechanism for oxidation of S-(hydroxymethyl)glutathione and 12-hydroxydodecanoic acid (12-HDDA) with NAD(+) is random bi-bi. Formation of an E.NADH.12-HDDA abortive complex was evident from equilibrium binding studies, but no substrate inhibition was seen with 12-HDDA. 12-Oxododecanoic acid (12-ODDA) exhibited substrate inhibition, which is consistent with a preferred pathway for substrate addition in the reductive reaction and formation of an abortive E.NAD(+).12-ODDA complex. The random mechanism is consistent with the published three-dimensional structure of the formaldehyde dehydrogenase.NAD(+) complex, which exhibits a unique semi-open coenzyme-catalytic domain conformation where substrates can bind or dissociate in any order.  相似文献   

6.
Previous studies of Escherichia coli 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS, EC 2.5.1.19) have suggested that the kinetic reaction mechanism for this enzyme in the forward direction is equilibrium ordered with shikimate 3-phosphate (S3P) binding first followed by phosphoenolpyruvate (PEP). Recent results from this laboratory, however, measuring direct binding of PEP and PEP analogues to free EPSPS suggest more random character to the enzyme. Steady-state kinetic and spectroscopic studies presented here indicate that E. coli EPSPS does indeed follow a random kinetic mechanism. Initial velocity studies with S3P and PEP show competitive substrate inhibition by PEP added to a normal intersecting pattern. Substrate inhibition is proposed to occur by competitive binding of PEP at the S3P site [Ki(PEP) = 6-8 mM]. To test for a productive EPSPS.PEP binary complex, the reaction order of EPSPS was evaluated with shikimic acid and PEP as substrates. The mechanism for this reaction is equilibrium ordered with PEP binding first giving a Kia value for PEP in agreement with the independently measured Kd of 0.39 mM (shikimate Km = 25 mM). Results from this study also show that the 3-phosphate moiety of S3P offers 8.7 kcal/mol in binding energy versus a hydroxyl in this position. Over 60% of this binding energy is expressed in binding of substrate to enzyme rather than toward increasing kcat. Glyphosate inhibition of shikimate turnover was poor with approximately 8 x 10(4) loss in binding capacity compared to the normal reaction, consistent with the independently measured Kd of 12 mM for the EPSPS.glyphosate binary complex. The EPSPS.glyphosate complex induces shikimate binding, however, by a factor of 7 greater than EPSPS.PEP. Carboxyallenyl phosphate and (Z)-3-fluoro-PEP were found to be strong inhibitors of the enzyme that have surprising affinity for the S3P binding domain in addition to the PEP site as measured both kinetically and by direct observation with 31P NMR. The collective data indicate that the true kinetic mechanism for EPSPS in the forward direction is random with synergistic binding occurring between substrates and inhibitors. The synergism explains how the mechanism can be random with S3P and PEP, but yet equilibrium ordered with PEP binding first for shikimate turnover. Synergism also accounts for how glyphosate can be a strong inhibitor of the normal reaction, but poor versus shikimate turnover.  相似文献   

7.
Interactive computer graphics was used as a tool in studying the cleavage mechanism of the model substrate Z-Phe-Phe-Leu-Trp by the zinc endopeptidase thermolysin. Two Michaelis complexes and three binding orientations of the tetrahedral intermediate to the crystal structure of thermolysin were investigated. Our results indicate that a Michaelis complex, which does not involve coordination of the scissile peptide to the zinc, is consistent with available experimental data and the most plausible of the two complexes. A tetrahedral intermediate complex wherein the two oxygens of the hydrated scissile peptide straddle the zinc in a bidentate fashion results in the most favorable interactions with the active site. The preferred tetrahedral intermediate and Michaelis complex provide a rationalization for the published substrate data. A trajectory for proceeding from the Michaelis complex to the tetrahedral intermediate is proposed. This trajectory involves a simultaneous activation of the zinc-bound water molecule concurrent with attack on the scissile peptide. A detailed ordered product release mechanism is also presented. These studies suggest some modifications and a number of extensions to the mechanism proposed earlier [Kester, W. R., & Matthews, B. W. (1977) Biochemistry 16, 2506; Holmes, M. A., & Matthews, B. W. (1981) Biochemistry 20, 6912]. The binding mode of the thermolysin inhibitor N-(1-carboxy-3-phenylpropyl)-L-leucyl-L-tryptophan [Monzingo, A. F., & Matthews, B. W. (1984) Biochemistry (preceding paper in this issue)] is compared with that of the preferred tetrahedral intermediate, providing insight into this inhibitor design.  相似文献   

8.
D W Pettigrew  G J Yu  Y Liu 《Biochemistry》1990,29(37):8620-8627
Substrate binding to Escherichia coli glycerol kinase (EC 2.7.1.30; ATP-glycerol 3-phosphotransferase) was investigated by using both kinetics and binding methods. Initial-velocity studies in both reaction directions show a sequential kinetic mechanism with apparent substrate activation by ATP and substrate inhibition by ADP. In addition, the Michaelis constants differ greatly from the substrate dissociation constants. Results of product inhibition studies and dead-end inhibition studies using 5'-adenylyl imidodiphosphate show the enzyme has a random kinetic mechanism, which is consistent with the observed formation of binary complexes with all the substrates and the glycerol-independent MgATPase activity of the enzyme. Dissociation constants for substrate binding determined by using ligand protection from inactivation by N-ethylmaleimide agree with those estimated from the initial-velocity studies. Determinations of substrate binding stoichiometry by equilibrium dialysis show half-of-the-sites binding for ATP, ADP, and glycerol. Thus, the regulation by nucleotides does not appear to reflect binding at a separate regulatory site. The random kinetic mechanism obviates the need to postulate such a site to explain the formation of binary complexes with the nucleotides. The observed stoichiometry is consistent with a model for the nucleotide regulatory behavior in which the dimer is the enzyme form present in the assay and its subunits display different substrate binding affinities. Several properties of the enzyme are consistent with negative cooperativity as the basis for the difference in affinities. The possible physiological importance of the regulatory behavior with respect to ATP is considered.  相似文献   

9.
Kinetic studies of thymidine phosphorylase from mouse liver   总被引:6,自引:0,他引:6  
M H Iltzsch  M H el Kouni  S Cha 《Biochemistry》1985,24(24):6799-6807
Initial velocity and product inhibition studies of thymidine phosphorylase from mouse liver revealed that the basic reaction mechanism of this enzyme is a rapid equilibrium random bi-bi mechanism with an enzyme-phosphate-thymine dead-end complex. Thymine displayed both substrate inhibition and nonlinear product inhibition, i.e., slope and intercept replots vs. 1/[thymine] were nonlinear, indicating that there is more than one binding site on the enzyme for thymine and that when thymine is bound to one of these sites, the enzyme is inhibited. Furthermore, both thymidine and phosphate showed "cooperative effects" in the presence of thymine at concentrations above 60 microM, suggesting that the enzyme may have multiple interacting allosteric and/or catalytic sites. The deoxyribosyl transferase reaction catalyzed by this enzyme is phosphate-dependent, requires nonstoichiometric amounts of phosphate, and can proceed by an "enzyme-bound" 2-deoxyribose 1-phosphate intermediate. These findings are in accord with the rapid equilibrium random bi-bi mechanism and demonstrate that deoxyribosyl transfer by this enzyme involves an indirect-transfer mechanism. These results strongly suggest that phosphorolysis and deoxyribosyl transfer are catalyzed by the same site on thymidine phosphorylase.  相似文献   

10.
Interaction between a 70-amino acid and zinc-binding polypeptide from the regulatory chain and the catalytic (C) trimer of aspartate transcarbamoylase (ATCase) leads to dramatic changes in enzyme activity and affinity for active site ligands. The hypothesis that the complex between a C trimer and 3 polypeptide fragments (zinc domain) is an analog of R state ATCase has been examined by steady-state kinetics, heavy-atom isotope effects, and isotope trapping experiments. Inhibition by the bisubstrate ligand, N-(phosphonacetyl)-L-aspartate (PALA), or the substrate analog, succinate, at varying concentrations of substrates, aspartate, or carbamoyl phosphate indicated a compulsory ordered kinetic mechanism with carbamoyl phosphate binding prior to aspartate. In contrast, inhibition studies on C trimer were consistent with a preferred order mechanism. Similarly, 13C kinetic isotope effects in carbamoyl phosphate at infinite aspartate indicated a partially random kinetic mechanism for C trimer, whereas results for the complex of C trimer and zinc domain were consistent with a compulsory ordered mechanism of substrate binding. The dependence of isotope effect on aspartate concentration observed for the Zn domain-C trimer complex was similar to that obtained earlier for intact ATCase. Isotope trapping experiments showed that the compulsory ordered mechanism for the complex was attributable to increased "stickiness" of carbamoyl phosphate to the Zn domain-C trimer complex as compared to C trimer alone. The rate of dissociation of carbamoyl phosphate from the Zn domain-C trimer complex was about 10(-2) that from C trimer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The kinetic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae was determined using initial velocity studies in the absence and presence of product and dead end inhibitors in both reaction directions. Data suggest a steady state random kinetic mechanism. The dissociation constant of the Mg-homoisocitrate complex (MgHIc) was estimated to be 11 +/- 2 mM as measured using Mg2+ as a shift reagent. Initial velocity data indicate the MgHIc complex is the reactant in the direction of oxidative decarboxylation, while in the reverse reaction direction, the enzyme likely binds uncomplexed Mg2+ and alpha-ketoadipate. Curvature is observed in the double-reciprocal plots for product inhibition by NADH and the dead-end inhibition by 3-acetylpyridine adenine dinucleotide phosphate when MgHIc is the varied substrate. At low concentrations of MgHIc, the inhibition by both nucleotides is competitive, but as the MgHIc concentration increases, the inhibition changes to uncompetitive, consistent with a steady state random mechanism with preferred binding of MgHIc before NAD. Release of product is preferred and ordered with respect to CO2, alpha-ketoadipate, and NADH. Isocitrate is a slow substrate with a rate (V/E(t)) 216-fold slower than that measured with HIc. In contrast to HIc, the uncomplexed form of isocitrate and Mg2+ bind to the enzyme. The kinetic mechanism in the direction of oxidative decarboxylation of isocitrate, on the basis of initial velocity studies in the absence and presence of dead-end inhibitors, suggests random addition of NAD and isocitrate with Mg2+ binding before isocitrate in rapid equilibrium, and the mechanism approximates rapid equilibrium random. The Keq for the overall reaction measured directly using the change in NADH as a probe is 0.45 M.  相似文献   

12.
In an effort to probe the structure of the reaction intermediate of metallo-beta-lactamase L1 when reacted with nitrocefin and other beta-lactams, time-dependent absorption and rapid-freeze-quench (RFQ) EPR spectra were obtained using the Co(II)-substituted form of the enzyme. When using nitrocefin as the substrate, time-dependent absorption spectra demonstrate that Co(II)-substituted L1 utilizes a reaction mechanism, similar to that of the native Zn(II) enzyme, in which a short-lived intermediate forms. RFQ-EPR spectra of this intermediate demonstrate that the binding of substrate results in a change in the electronic properties of one or both of the Co(II)'s in the enzyme that is consistent with a change in the coordination sphere of this metal ion. This observation provides evidence that the reaction intermediate is a metal-bound species. RFQ-EPR studies also demonstrate that other beta-lactams, such as cephalothin, meropenem, and penicillin G, proceed through an electronically similar complex and that the role of metal is similar in all cases. EPR spectroscopy has also identified distinct product-bound species of L1, indicating that reversible product binding must be considered in all future kinetic mechanisms. Consideration of the time-dependent optical and EPR studies in light of available crystallographic information indicates the intimate involvement of the metal ion in the Zn(2)-binding site of L1 in the hydrolytic reaction.  相似文献   

13.
The structure of the thermolysin inhibitor phosphoramidon (N-(α-l-rhamnopyranosyl-oxyhydroxyphosphinyl)-l-leucyl-l-tryptophan bound to the crystalline enzyme has been determined to a resolution of 2.3 Å by X-ray crystallography. The study shows that the complex of phosphoramidon with thermolysin resembles that of the presumed catalytic transition state inferred from the geometry of binding of dipeptide inhibitors. Also, the study reveals the mode of binding of thermolysin substrates extended on the imino side of the scissile peptide bond.The crystallographic results are consistent with a variety of other studies on the catalytic activity of thermolysin, and suggest a mechanism of action which is analogous to one of the two alternative mechanisms proposed by Lipscomb and co-workers (1968) for carboxypeptidase A. Key features of the proposed mechanism are that the substrate is initially bound to the enzyme with the carbonyl oxygen of the scissile peptide liganded to the zinc; that Glu143 promotes the nucleophilic attack of a buried water molecule on the carbonyl carbon, forming a tetrahedral intermediate; and that His231 acts as a proton donor. The observed binding of phosphoramidon to thermolysin provides further evidence supporting the mechanism in which Glu143 acts as a general base, promoting the attack of water on the carbonyl carbon, rather than the alternative mechanism in which Glu143 attacks the carbonyl carbon directly, forming an anhydride intermediate.  相似文献   

14.
Purified adenosine kinase from L1210 cells displayed substrate inhibition by high concentrations of adenosine (Ado), ATP, and MgCl2. When incubated with ATP and MgCl2, the enzyme was phosphorylated, and the phosphorylated kinase transferred phosphate to adenosine in the absence of ATP and MgCl2. Substrate binding, isotope exchange, and kinetic studies suggested that the enzyme catalyzes the reaction by means of a two-site ping-pong mechanism with the phosphorylated enzyme as an obligatory intermediate. Among many possible pathways within this mechanism probably a random-bi ordered-bi route is the preferred sequence in which the two substrates, adenosine and MgATP, bind in a random order to form the ternary complex MgATP . E . Ado followed by the sequential dissociation of MgADP and AMP. Dissociation constants of various enzyme-substrate and enzyme-product complexes and the first-order rate constant of the rate-limiting step were estimated.  相似文献   

15.
The kinetic mechanism of carbamoyl-phosphate synthetase II from Syrian hamster kidney cells has been determined at pH 7.2 and 37 degrees C. Initial velocity, product inhibition, and dead-end inhibition studies of both the biosynthetic and bicarbonate-dependent adenosinetriphosphatase (ATPase) reactions are consistent with a partially random sequential mechanism in which the ordered addition of MgATP, HCO3-, and glutamine is followed by the ordered release of glutamate and Pi. Subsequently, the binding of a second MgATP is followed by the release of MgADP, which precedes the random release of carbamoyl phosphate and a second MgADP. Carbamoyl-phosphate synthetase II catalyzes beta gamma-bridge:beta-nonbridge positional oxygen exchange of [gamma-18O]ATP in both the ATPase and biosynthetic reactions. Negligible exchange is observed in the strict absence of HCO3- (and glutamine or NH4+). The ratio of moles of MgATP exchanged to moles of MgATP hydrolyzed (nu ex/nu cat) is 0.62 for the ATPase reaction, and it is 0.39 and 0.16 for the biosynthetic reaction in the presence of high levels of glutamine and NH4+, respectively. The observed positional isotope exchange is suppressed but not eliminated at nearly saturating concentrations of either glutamine or NH4+, suggesting that this residual exchange results from either the facile reversal of an E-MgADP-carboxyphosphate-Gln(NH4+) complex or exchange within an E-MgADP-carbamoyl phosphate-MgADP complex, or both. In the 31P NMR spectra of the exchanged [gamma-18O]ATP, the distribution patterns of 16O in the gamma-phosphorus resonances in all samples reflect an exchange mechanism in which a rotationally unhindered molecule of [18O3, 16O]Pi does not readily participate. These results suggest that the formation of carbamate from MgATP, HCO3-, and glutamine proceeds via a stepwise, not concerted mechanism, involving at least one kinetically competent covalent intermediate, such as carboxyphosphate.  相似文献   

16.
Eukaryotic protein kinases catalyze the phosphoryl transfer of the gamma-phosphate of ATP to the serine, threonine, or tyrosine residue of protein substrates. The catalytic mechanism of phospho-CDK2/cyclin A (pCDK2/cyclin A) has been probed with structural and kinetic studies using the trigonal NO(3)(-) ion, which can be viewed as a mimic of the metaphosphate transition state. The crystal structure of pCDK2/cyclin A in complex with Mg(2+)ADP, nitrate, and a heptapeptide substrate has been determined at 2.7 A. The nitrate ion is located between the beta-phosphate of ADP and the hydroxyl group of the serine residue of the substrate. In one molecule of the asymmetric unit, the nitrate is close to the beta-phosphate of ADP (distance from the nitrate nitrogen to the nearest beta-phosphate oxygen of 2.5 A), while in the other subunit, the nitrate is closer to the substrate serine (distance of 2.1 A). Kinetic studies demonstrate that nitrate is not an effective inhibitor of protein kinases, consistent with the structural results that show the nitrate ion makes few stabilizing interactions with CDK2 at the catalytic site. The binding of orthovanadate was also investigated as a mimic of a pentavalent phosphorane intermediate of an associative mechanism for phosphoryl transfer. No vanadate was observed bound in a 3.4 A resolution structure of pCDK2/cyclin A in the presence of Mg(2+)ADP, and vanadate did not inhibit the kinase reaction. The results support the notion that the protein kinase reaction proceeds through a mostly dissociative mechanism with a trigonal planar metaphosphate intermediate rather than an associative mechanism that involves a pentavalent phosphorane intermediate.  相似文献   

17.
The kinetic mechanism of NADPH-dependent aldehyde reductase II and aldose reductase, purified from human placenta, has been studied using L-glucuronate and DL-glyceraldehyde as their respective substrates. For aldehyde reductase II, the initial velocity and product inhibition studies (using NADP and gulonate) indicate that the enzyme reaction sequence is ordered with NADPH binding to the free enzyme and NADP being the last product to be released. Inhibition patterns using menadione (an analog of the aldehydic substrate) and ATP-ribose (an analog of NADPH) are also consistent with a compulsory ordered reaction sequence. Isotope effects of deuterium-substituted NADPH (NADPD) also corroborate the above reaction scheme and indicate that hydride transfer is not the sole rate-limiting step in the reaction sequence. For aldose reductase, initial velocity patterns, product, and dead-end inhibition studies indicate a random binding pattern of the substrates and an ordered release of product; the coenzyme is released last. A steady-state random mechanism is also consistent with deuterium isotope effects of NADPD on the reaction sequence catalyzed by this enzyme. However, the hydride transfer step seems to be more rate determining for aldose reductase than for aldehyde reductase II.  相似文献   

18.
Glutathione synthetase (GS) catalyzes the ATP-dependent formation of the ubiquitous peptide glutathione from gamma-glutamylcysteine and glycine. The bacterial and eukaryotic GS form two distinct families lacking amino acid sequence homology. Moreover, the detailed kinetic mechanism of the bacterial and the eukaryotic GS remains unclear. Here we have overexpressed Arabidopsis thaliana GS (AtGS) in an Escherichia coli expression system and purified the recombinant enzyme for biochemical characterization. AtGS is functional as a homodimeric protein with steady-state kinetic properties similar to those of other eukaryotic GS. The kinetic mechanism of AtGS was investigated using initial velocity methods and product inhibition studies. The best fit of the observed data was to the equation for a random Ter-reactant mechanism in which dependencies between the binding of some substrate pairs were preferred. The binding of either ATP or gamma-glutamylcysteine increased the binding affinity of AtGS for the other substrate by 10-fold. Likewise, the binding of ATP or glycine increased binding affinity for the other ligand by 3.5-fold. In contrast, binding of either glycine or gamma-glutamylcysteine causes a 6.7-fold decrease in binding affinity for the second molecule. Product inhibition studies suggest that ADP is the last product released from the enzyme. Overall, these observations are consistent with a random Ter-reactant mechanism for the eukaryotic GS in which the binding order of certain substrates is kinetically preferred for catalysis.  相似文献   

19.
The acid-induced unfolding of human platelet profilin (HPP) can be minimally modeled as a three-state process. Equilibrium unfolding studies have been performed on human platelet profilin1 (HPP) and monitored by far-UV circular dichroism, tryptophan fluorescence, ANS binding, and NMR spectroscopy. Far-UV CD measurements obtained by acid titration demonstrate that HPP unfolds via a three-state mechanism (N --> I --> U), with a highly populated intermediate between pH 4 and 5. Approximately 80% of native helical secondary structural content remains at pH 4, as indicated by monitoring the CD signal at 222 nm. The stability (DeltaGH2O) of the native conformation at pH 7.0 (obtained by monitoring the change in tryptophan signal as a function of urea concentration) is 5.56 +/- 0.51 kcal mol-1; however, the DeltaGH2O for the intermediate species at pH 4 is 2.01 +/- 0.47 kcal mol-1. The calculated m-values for the pH 7.0 and pH 4.0 species were 1.64 +/- 0.15 and 1.34 +/- 0.17 kcal mol-1 M-1, respectively, which is an indication that the native and intermediate species are similarly compact. Additionally, translational diffusion measurements obtained by NMR spectroscopy and ANS binding studies are consistent with a globular and compact conformation at both pH 7.0 and 4.0. The pKa values for the two histidine (His) residues located on helix 4 of HPP were determined to be 5.6 and 5.7 pH units. These pKa values coincide with the midpoint of the far-UV CD acid titration curve and suggest that the protonation of one or both His residues may play a role in the formation of the unfolding intermediate. Stable intermediate species populate the 2D 1H-15N HSQC NMR spectra between pH 4 and 5. A number of backbone and side-chain resonances show significant perturbations relative to the native spectrum; however, considerable nativelike tertiary contacts remain. Interestingly, the residues on HPP that are significantly altered at low pH coincide with segments of the G-actin binding surface and poly-l-proline binding interface. The earlier reports that a decrease in pH below 6.0 induces structural alterations in profilin, favoring dissociation of the profilin-actin complex, corresponds with the structural alterations observed in the partially unfolded species. Our findings suggest that a novel mechanism for pH induced disruption of the profilin-G-actin complex involve a nativelike unfolding intermediate of profilin.  相似文献   

20.
A steady-state kinetic investigation of the uricase reaction mechanism   总被引:1,自引:0,他引:1  
The steady-state kinetics of porcine liver uricase has been investigated over an extensive range of both urate and oxygen concentration. Spectrophotometric assay of the accumulation of reaction intermediate which absorbs strongly in the ultraviolet region as well as the oxygen electrode were used to minimize inaccuracies in initial velocity measurements. The Superoxide radical could not be detected as a product of the uricase reaction. Reciprocal plots with both urate and oxygen showed extensive nonlinearity. Mechanisms involving second binding sites on uricase appear unlikely in view of the structural properties of the enzyme. A random substrate binding scheme has been shown to be consistent with all of the nonlinear reciprocal plots and is thus suggested as the most probable mechanism of action for uricase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号