首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Hydroxyethyl starch (HES) has often been used as a plasma expander, but questions still remain concerning the mechanisms by which it produces changes in the rheological properties of blood and erythrocyte (RBC) suspensions under various flow conditions. The present investigation has shown that the dynamic viscosity of HES (232,000 and 565,000 daltons) solutions rises in a nonlinear fashion with increasing HES concentration, and for a given concentration of HES exhibits Newtonian behavior at shear rates between 0.15 to 124 sec-1. At low (less than 0.9 sec-1) shear rates the apparent viscosity of a 40% RBC suspension increases with lower concentrations of HES because of RBC aggregation. At higher concentrations of HES, increases in suspension viscosity are due to an increase in the viscosity of the continuous phase since the RBC are largely disaggregated. At high (greater than 36 sec-1) shear rates the relative viscosity (eta/eta O) of RBC suspensions slowly decreases with increasing HES concentration. At low shear rates eta/eta O increases and then decreases with increasing HES concentration. Evidence of the concentration-dependent effects of HES on RBC aggregation is provided not only by the viscometric analysis but also from measurements of erythrocyte sedimentation rate (ESR) and the zeta sedimentation ratio (ZSR). HES is a more potent aggregating agent in phosphate buffered saline (PBS) than it is in plasma. Polymer size has only a slight effect on the extent of RBC aggregation produced, but does have a significant effect on the concentration of polymer at which maximum aggregation occurs. The viscosity-corrected electrophoretic mobility of RBC in HES rises monotonically with the concentration of HES in the suspending medium. Decreases in the extent of RBC aggregation with increasing polymer concentrations probably result from an increase in the electrostatic repulsive forces between the cells.  相似文献   

2.
Data on viscous (eta') and elastic (eta') components of the complex viscosity versus oscillatory angular frequency (0.01 to 4.0 rad/s) with increasing strains were obtained for hybridoma cell (62'D3) and HeLa cell (S3) suspensions in PBS at 0.9 (mL/mL) cell volume fraction using a Weissenberg rheogoniometer equipped with two parallel plate geometry at ambient temperature. Both cell suspensions exhibited shear thinning behavior. From the measured viscoelastic properties, the yield stress was calculated. Hybridoma cell suspension (15 mum as the mean diameter of cells) showed the yield stress at 550 dyne/cm(2) that was 1.8 times higher than the value of HeLa cell suspension (22 mum mean diameter) as measured at the oscillatory angular frequency, 4.0 rad/s. The apparent viscosities of HeLa cell suspension at four concentrations and varying steady shear rate were also determined using the Brookfield rotational viscometer. The yield stress to steady shear test was about 130 dyne/cm(2) for HeLa cell suspension at 0.9 (mL/mL) cell volume fraction. The apparent viscosity was in the range about 1 approximately 1000 Poise depending on the cell concentration and shear rate applied. A modified semiempirical Mooney equation, \documentclass{article}\pagestyle{empty}\begin{document}$ \eta = \eta _0 \exp [K\dot \gamma ;{ - \beta } \phi /(1 - K'\sigma \phi _c /D)] $\end{document} was derived based on the cell concentration, the cell morphology, and the steady shear rate. The beta, shear rate index, was estimated as 0.159 in the range of shear rate, 0.16 to 22.1 s(-1), for the cell volume fractions from 0.6 to 0.9 (mL/mL). In this study, the methods of determining the shear sensitivity and the viscous and the elastic components of mammalian cell suspensions are described under the steady shear field. (c) 1993 John Wiley & Sons, Inc.  相似文献   

3.
The effect of NaCl on the rheological properties of suspensions containing spray dried starch nanoparticles produced through high pressure homogenization and emulsion cross-linking technique was studied. Rheological properties such as continuous shear viscosity, viscoelasticity and creep-recovery were measured. NaCl (5-20%, w/w) was found to lower viscosity quite significantly (p<0.05), enhance the heat stability and weaken their gelling behavior compared to starch-only suspension. NaCl reduced both the storage and loss moduli of suspension within the frequency range (0.1-10rads/s) studied. However, NaCl brought higher speed of reduction on the storage modulus than on the loss modulus, which resulted into large increase in loss angle. The creep-recovery behavior of suspension was affected by NaCl and the recovery rate was highest (86%) at 15% NaCl. The Cross, the Power law and the Burger's models followed the experimental viscosity, storage and loss moduli, and creep-recovery data well with R(2)>0.97.  相似文献   

4.
The fields of regenerative medicine and tissue engineering require large‐scale manufacturing of stem cells for both therapy and recombinant protein production, which is often achieved by culturing cells in stirred suspension bioreactors. The rheology of cell suspensions cultured in stirred suspension bioreactors is critical to cell growth and protein production, as elevated exposure to shear stress has been linked to changes in growth kinetics and genetic expression for many common cell types. Currently, little is understood on the rheology of cell suspensions cultured in stirred suspension bioreactors. In this study, we present the impact of three common cell culture parameters, serum content, cell presence, and culture age, on the rheology of a model cell line cultured in stirred suspension bioreactors. The results reveal that cultures containing cells, serum, or combinations thereof are highly shear thinning, whereas conditioned and unconditioned culture medium without serum are both Newtonian. Non‐Newtonian viscosity was modeled using a Sisko model, which provided insight on structural mechanisms driving the rheological behavior of these cell suspensions. A comparison of shear stress estimated by using Newtonian and Sisko relationships demonstrated that assuming Newtonian viscosity underpredicts both mean and maximum shear stress in stirred suspension bioreactors. Non‐Newtonian viscosity models reported maximum shear stresses exceeding those required to induce changes in genetic expression in common cell types, whereas Newtonian models did not. These findings indicate that traditional shear stress quantification of cell or serum suspensions is inadequate and that shear stress quantification methods based on non‐Newtonian viscosity must be developed to accurately quantify shear stress.  相似文献   

5.
A Yamamoto  H Niimi 《Biorheology》1983,20(5):615-622
Effects of high osmotic media on the shape and deformability of RBC were examined for determining increasing factors of blood viscosity. Dog blood and Urographin (a hypertonic contrast medium) were used; the plasma osmolality was changed by Urografin suspended in blood. The viscosity was measured for normal RBC and glutaraldehyde-treated RBC suspensions with a cell volume concentration. The RBC deformability was evaluated from the difference in viscosity between the two suspensions. It was shown that normal RBC suspension increased the viscosity with increase in osmolality at high shear rate; hardened RBC suspension decreased the viscosity with increase in osmolality. It was concluded that the RBC deformability decreased with increasing osmolality.  相似文献   

6.
The flow behavior of native corn and potato starch granule suspensions prepared in a concentrated sucrose solution has been investigated. Measurements were performed using a rotational rheometer with a concentric cylinder geometry. Starch suspensions were dilute to semi-concentrated (1 % to 25 % by volume). Shear and dynamic viscosity were measured by shear flow and dynamic oscillatory testing at 20, 50 and 80 °C. The starch suspensions exhibited essentially Newtonian behavior at all solid contents, although at higher solid volume fractions there was evidence of slight shear thickening. The relative viscosity of suspensions increased with increasing starch granule content, and the data conformed well to Maron-Pierce’s equation. An increase in maximum packing fraction and gravitational depletion of the starch granules with increasing temperature resulted in lower relative viscosities at higher temperatures. Also, the relative viscosities of potato starch granule suspensions with bigger, more oval and anisometric particles were lower than those of corn starch suspensions where granules were closer to sphericity but were angular in shape. Oscillatory shear testing results showed the presence of viscoelastic properties at intermediate solid volume fractions at low frequencies; in addition, the relative shear viscosity was higher than the relative dynamic viscosity, probably due to the formation of shear-induced structures during the shear flow test.  相似文献   

7.
Measurements were made of the viscosity of suspensions of synthetic erythrocytes composed of hemoglobin solutions encapsulated in liposomes, as a function of shear rate, temperature, suspension concentration, lipid membrane composition, and the viscosity of the suspending medium. It was found that the viscous behavior of the synthetic erythrocyte suspensions was non-Newtonian and nearly the same as that of suspensions of natural erythrocytes prepared similarly, with the major difference being that synthetic erythrocyte suspensions are somewhat more viscous. Suspensions of Fluosol FC-43 prepared similarly were found to be essentially Newtonian fluids, and substantially different and more viscous than either erythrocyte suspension. The higher viscosity of synthetic erythrocyte suspensions probably accounts for the ability of these suspensions to maintain normal systemic vascular resistance in transfusion experiments, in spite of the fact that synthetic erythrocytes are smaller than natural erythrocytes.  相似文献   

8.
用旋转黏度计测定了自絮凝颗粒酵母悬浮液的流变特性,并考察了其流变特性的影响因素,如菌体生物量、葡萄糖质量浓度、温度等。结果表明:自絮凝颗粒酵母悬浮液呈假塑性非牛顿流体,其流变特性服从幂律指数模型,随着菌体浓度的增大,稠度系数增大,流动行为指数减小;絮凝悬浮液的表观黏度随着糖浓度的增加有所增加,同一生物量下稠度系数k随着糖浓度的增加而增加,流动行为指数n随着糖浓度的增加变化很小,悬浮液的表观黏度随着温度的升高而降低;相同生物量下的流变指数随温度的升高而升高,而稠度系数随温度升高有所下降。  相似文献   

9.
The bulk rheology of close-packed red blood cells in shear flow   总被引:1,自引:0,他引:1  
T W Secomb  S Chien  K M Jan  R Skalak 《Biorheology》1983,20(3):295-309
A theoretical analysis is made of the dynamical behavior and bulk rheology of close-packed red blood cell suspensions subjected to simple shear flow. The model for the polyhedral cell shapes and tank-treading membrane motion developed in the companion paper (1) is used. The flow in the thin lubricating plasma layers between cells is analyzed taking into account the mechanical properties of the membrane at the corner regions of sharp membrane curvature. This leads to predictions for the apparent viscosity as a function of hematocrit and shear rate. Good agreement with experimental results is obtained at moderate and high shear rates (above 20 s-1). At lower shear rates, a rapid rise in apparent viscosity has been found experimentally, and the mechanisms leading to this behavior are examined.  相似文献   

10.
《Biorheology》1997,34(3):235-247
Low-shear viscometry is one of the methods commonly used to estimate the degree of red blood cell (RBC) aggregation in various bloods and RBC suspensions. However, it has been previously shown that alterations in RBC morphology and mechanical behavior can affect the low-shear apparent viscosity of RBC suspensions; RBC aggregation is also sensitive to these cellular factors. This study used heat treatment (48°C, 5 min), glutaraldehyde (0.005–0.02%) and hydrogen peroxide (1 mM) to modify cell geometry and deformability. Red blood cell aggregation was assessed via a Myrenne Aggregometer (“M” and “Ml” indexes), RBC suspension viscosity was measured using a Contraves LS-30 viscometer, and RBC shape response to fluid shear stresses (i.e., deformability) was determined by ektacytometry (LORCA system). Our results indicate that low-shear apparent viscosity and related indexes may not always reflect changes of RBC aggregation if cellular properties are altered: for situations where RBC aggregation has been only moderately affected, cellular mechanical factors may be the major determinant of low-shear viscosity. These findings thus imply that in situations which may be associated alterations of RBC geometry and/or deformability, low-shear viscometry should not be the sole measurement technique used to assess RBC aggregation.  相似文献   

11.
Lerche D  Frömer D 《Biorheology》2001,38(2-3):249-262
The flow properties of blood are mostly determined using various viscometric approaches, and described in terms of a shear rate or shear stress dependent apparent viscosity. The interpretation of results are rather difficult, especially at low shear rates when particle sedimentation and migration within the viscometer gap are significant. By contrast, analysing the separation process in concentrated RBC suspensions in a centrifugal field also yields information about the viscosity function, including particle-particle interaction and deformation parameters. In this paper, the sedimentation process is approached by means of the theory of kinematic waves and theoretically described by solving the corresponding one-dimensional quasi-linear partial differential equation based on viscosity/flow function as a function of volume concentration. The sedimentation kinetics of rigid spherical RBC suspended in saline and normal RBC suspended in Dx-saline solutions were investigated by means of a separation analyser (LUMiFuge 114). The instrument detects the light transmission over the total length of the cell containing the suspension. During centrifugation the analyser automatically determines the position of the particle free fluid/suspension interface or the sediment by means of a special algorithm. The data obtained with sedimentation of rigid spherical RBC at different volume concentrations demonstrate that, in the case of suspensions rotated in containers of constant cross section, there is good agreement between the theory of kinematic waves developed by Anestis and Schneider (1983) and the results of the experiments. Such good agreement was obtained even though a restrictive one-dimensional model was used to obtain the theoretically derived sedimentation time course. In addition, we describe an algorithm enabling the experimental determination of the viscosity and related flux density function to be made for any suspension. Through this approach, we investigated in detail the rheological behavior of suspended rigid spheres at low Reynolds numbers ranging from 10(-6) to 10(-3). The method here introduced also enabled us to investigate RBC suspensions with respect to the deformability and interactions of the cells by means of the separation analysis. Normal, rigid as well as aggregating RBC exhibited marked differences in the sedimentation kinetics, which were quantified by means of the flux and viscosity functions based on the theory of kinematic waves.  相似文献   

12.
The rheological behavior of suspensions containing vacuum freeze dried and spray dried starch nanoparticles was investigated to explore the effect of these two drying methods in producing starch nanoparticles which were synthesized using high pressure homogenization and mini-emulsion cross-linking technique. Suspensions containing 10% (w/w) spray dried and vacuum freeze dried nanoparticles were prepared. The continuous shear viscosity tests, temperature sweep tests, the frequency sweep and creep-recovery tests were carried out, respectively. The suspensions containing vacuum freeze dried nanoparticles showed higher apparent viscosity within shear rate range (0.1-100s(-1)) and temperature range (25-90°C). The suspensions containing vacuum freeze dried nanoparticles were found to have more shear thinning and less thixotropic behavior compared to those containing spray dried nanoparticles. In addition, the suspensions containing vacuum freeze dried particles had stronger elastic structure. However, the suspensions containing spray dried nanoparticles had more stiffness and greater tendency to recover from the deformation.  相似文献   

13.
The rheological behavior of cultures of Cellulomonas uda with shredded printed newspaper as the carbon source was studied. The initial substrate concentrations ranged from 23 to 60 g/L. The changes in apparent viscosity were followed on-line by applying a commercially available process viscometer and discretely using a rotational viscometer with an anchor impeller. During the time of highest cellulose degradation, the broths exhibited a pseudoplastic behavior which could be explained satisfactorily by the power-law model. At the end of cultivation when cellulose degradation slowed down, the broths became Newtonian in behavior. Endo-1,4-beta-glucanase, 1,4-beta-xylanase, beta-glucosidase, and beta-xylosidase activities were also determined during cultivation as well as cellulose degradation and cell mass production. The beginning of endoglucanase formation and the start of the final viscosity decrease of the bacterial paper pulp suspensions could be correlated.  相似文献   

14.
The rheology of dense suspensions of beta-casein micelles is investigated at pH 6. For a given temperature, the viscosity increases dramatically at a critical concentration (Cc) of about 100 g/L due to jamming of the micelles. For a given concentration close to and above Cc, the viscosity of dense suspensions decreases strongly with increasing temperature because Cc increases. The suspensions show weak shear thickening followed by strong shear thinning. At lower pH, that is, closer to the isoelectric point, spontaneous gelation is observed, which is favored by lowering the temperature and addition of sodium polyphosphate. The gelation process is studied at pH 5.5 by rheology and light scattering.  相似文献   

15.
A Caretta  P J Stein 《FEBS letters》1987,219(1):97-102
Light triggers the cyclic nucleotide cascade in photoreceptor disk membranes. We report here that light-induced changes in the apparent viscosity of disk membrane suspensions can also be observed using either native disk membranes or washed membranes reconstituted with G protein and PDE. The viscosity changes are light- and GTP-dependent and require the presence of G protein and PDE. The magnitude of the viscosity change increases with increasing membrane concentration. Under the same conditions in which light elicits a change in viscosity, we observe a large increase in light scattering by the disk membrane suspension.  相似文献   

16.
《Biorheology》1996,33(3):267-283
The flow properties of aggregating red cell suspensions flowing at low flow rates through horizontal tubes are analyzed using a theoretical model. The effects of sedimentation of small aggregates, which will be formed at comparatively high flow rates, on the relative apparent viscosity are considered. In the case in which a large number of small aggregates are formed in a suspension flowing through a horizontal tube, it seems that red cells are transported as a concentrated suspension through the bottom part of the tube because of sedimentation of aggregates. A two-layer flow model is used for the distribution of red cells. It consists of plasma in the upper part and a concentrated red cell suspension in the bottom part of the tube divided by a smooth and horizontal interface. It is assumed that the suspension is a Newtonian fluid whose viscosity increases exponentially with hematocrit. The velocity distribution, the relative apparent viscosity and the flux of red cells are calculated as functions of width of plasma layer for a different discharge hematocrit. The theoretical results are compared with the results obtained from experimental data. The relative apparent viscosity increases rapidly with an increasing degree of sedimentation over a wide range of plasma layer widths.  相似文献   

17.
In the environment, many microorganisms coexist in communities competing for resources, and they are often associated as biofilms. The investigation of bacterial ecology and interactions may help to improve understanding of the ability of biofilms to persist. In this study, the behaviour of Bacillus cereus and Pseudomonas fluorescens in the planktonic and sessile states was compared. Planktonic tests were performed with single and dual species cultures in growth medium with and without supplemental FeCl3. B. cereus and P. fluorescens single cultures had equivalent growth behaviours. Also, when in co-culture under Fe-supplemented conditions, the bacteria coexisted and showed similar growth profiles. Under Fe limitation, 8 h after co-culture and over time, the number of viable B. cereus cells decreased compared with P. fluorescens. Spores were detected during the course of the experiment, but were not correlated with the decrease in the number of viable cells. This growth inhibitory effect was correlated with the release of metabolite molecules by P. fluorescens through Fe-dependent mechanisms. Biofilm studies were carried out with single and dual species using a continuous flow bioreactor rotating system with stainless steel (SS) substrata. Steady-state biofilms were exposed to a series of increasing shear stress forces. Analysis of the removal of dual species biofilms revealed that the outer layer was colonised mainly by B. cereus. This bacterium was able to grow in the outermost layers of the biofilm due to the inhibitory effect of P. fluorescens being decreased by the exposure of the cells to fresh culture medium. B. cereus also constituted the surface primary coloniser due to its favourable adhesion to SS. P. fluorescens was the main coloniser of the middle layers of the biofilm. Single and dual species biofilm removal data also revealed that B. cereus biofilms had the highest physical stability, followed by P. fluorescens biofilms. This study highlights the inadequacy of planktonic systems to mimic the behaviour of bacteria in biofilms and shows how the culturing system affects the action of antagonist metabolite molecules because dilution and consequent loss of activity occurred in continuously operating systems. Furthermore, the data demonstrate the biocontrol potential of P. fluorescens on the planktonic growth of B. cereus and the ability of the two species to coexist in a stratified biofilm structure.  相似文献   

18.
The shear flow behavior of potato powder suspensions prepared from two different particle sizes and with a range of solids volume fraction (Φ) was studied. A concentrated sucrose solution was used as the continuous phase to maintain particle buoyancy. The shear flow properties were measured at 20, 50 and 80 °C. The suspensions obeyed a power-law equation in the dilute regime while the Herschel-Bulkley equation was the best fit for almost all semi-dilute and more concentrated suspensions. With increasing Φ, particle size and temperature, a gradual development of shear-thinning behavior was evident which coincided with an increase in the consistency index and the development of a yield stress in the suspensions. Potato powder suspensions therefore behave very differently to potato starch suspensions, with flow properties dominated by the effect of intra- and inter-cellular components in the potato powder particles that are transferred to the continuous phase and that alter suspension properties.  相似文献   

19.
Serological typing of Pseudomonas aeruginosa strains (228 strains) by slide coagglutination, using our own reagents (5 polyvalent and 22 monovalent ones, corresponding to the 22 serotypes in Meitert-Meitert scheme), led to identical results obtained by conventional slide agglutination. Utilization of live Ps. aeruginosa cells suspensions, killed by boiling or autoclaving, showed a 100% concordance of results, when using the second and the third suspension types and a 97.37% one between them and the live cells suspension. We noticed that reactions intensity was higher when using bacterial suspensions, boiled for 2.5 hours, in comparison with autoclaved cells suspensions, 30 minutes at 120 C. Compared to conventional slide agglutination, the slide coagglutination presents more advantages, being simple, rapid, specific and economical.  相似文献   

20.
In a previous article, the authors proposed a simple model for the rate of removal of bacterial cells from solid surfaces by fluid shear. This Model has been extended to include the deposition of cells from a flowing suspension. The theory is compared to experimentally obtained data for the deposition of Bacillus cereus cells onto the surface of glass capillaries. The effect of a hydrophobic surface, siliconized glass, and the addition of an antifoam agent to the suspension is also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号