首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subfractions isolated from intact purified spinach chloroplasts are able to prenylate the aromatic moiety of α-tocopherol and plastoquinone-9 precursors. The biosynthesis of α-tocopherol and plastoquinone-9 is a compartmentalized process. The chloroplast envelope membranes are the only site of the enzymatic prenylation in α-tocopherol synthesis whereas the thylakoid membrane is also involved in the prenylation and methylation sequence of plastoquinone-9 biosynthesis. A very active kinase which forms phytyl-PP is localized in the stroma. Phytol but not geranylgeraniol is the polyprenol precursor of the side chain of α-tocopherol in spinach chloroplasts.  相似文献   

2.
Intact chloroplasts and cell walls were prepared from horse-chestnut leaves that had previously metabolized [2-(14)C]mevalonate. The bulk of the castaprenols and plastoquinone-9 was found within the chloroplasts. The remaining portion of the castaprenols was associated with the cell-wall preparation whereas that of the plastoquinone-9 was probably localized in the soluble fraction of the plant cell. The (14)C content of these compounds of different cell fractions indicated the presence of polyisoprenoid-synthesizing activity both inside and outside the chloroplasts. This was confirmed by the relative incorporation of (14)C when ultrasonically treated and intact chloroplasts were incubated with [2-(14)C]mevalonate. As the leaves aged (on the tree) an increase in extraplastidic castaprenols and plastoquinone-9, together with associated synthesizing activities, was observed.  相似文献   

3.
Prenylquinones and pheophytin a in a preparation of photosynthetic reaction center II from spinach chloroplasts were chemically determined. Each reaction center II had two molecules, each of plastoquinone-9 and pheophytin a, but practically no phylloquinone, α-tocopherylquinone or α-tocopherol.  相似文献   

4.
The prenylquinone content and biosynthetic capabilities of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts were analyzed. Both envelope membranes contain prenylquinones, and in almost similar amounts (on a protein basis). However, the outer envelope membrane contains more alpha-tocopherol than the inner one although this prenylquinone is the major one in both fractions. On the contrary, plastoquinone-9 is present in higher amounts in the inner envelope membrane than in the outer one. In addition, it has been demonstrated that all the enzymes involved in the last steps of alpha-tocopherol and plastoquinone-9 biosynthesis, i.e., homogentisate decarboxylase polyprenyltransferase, S-adenosyl-methionine:methyl-6-phytylquinol methyltransferase, S-adenosyl-methionine: alpha-tocopherol methyltransferase, homogentisate decarboxylase solanesyltransferase, S-adenosyl-methionine:methyl-6-solanesylquinol methyltransferase, and possibly 2,3-dimethylphytylquinol cyclase, are localized on the inner envelope membrane. These results demonstrate that the inner membrane of the chloroplast envelope plays a key role in chloroplast biogenesis, and especially for the synthesis of the two major plastid prenylquinones.  相似文献   

5.
We have studied the incorporation of chlorophyll a and plastoquinone-9 in Montal-Mueller membranes. In particular, we have been interested by the influence of both the lipid : chlorophyll a ratio and the asymmetry of incorporation of the constituents on the electrical and fluorescence spectroscopic properties of the planar membranes built up from these constituents. The phospholipid matrix was made from phosphatidylethanolamine and phosphatidylserine. The monitoring of the fluorescence spectral properties of chlorophyll a incorporated in various concentrations leads to the conclusion that chlorophyll a is incorporated in the bilayers in monomeric form inside microdomains. It is shown that chlorophyll a is positioned in these microdomains in such a way that the porphyric ring is interacting with the polar head of the lipid molecules where the interface polarity shows a dielectric constant varying between 25 and 35. The phytyl chain is embedded in the bilayer core, serving as an anchor, running parallel to the aliphatic chains of the phospholipids. We have also monitored the position of the plastoquinone-9 molecules within the bilayer. We found that plastoquinone-9 is incorporated in the center plane of the bilayer, increasing the thickness of the bilayer. This result confirms evidence, gathered in the literature from monolayer and differential scanning calorimetry studies, that long chain quinones and especially plastoquinone-9 are embedded deeply within the hydrophobic core of the bilayer. We also show that when chlorophyll a and plastoquinone-9 are present together in the bilayer, the quinolic ring of the plastoquinone-9 molecule positions itself in the free volume created by the bulky porphyric ring of a chlorophyll a molecule.  相似文献   

6.
N. Murata  M. Miyao  T. Omata  H. Matsunami  T. Kuwabara 《BBA》1984,765(3):363-369
The stoichiometry of the proteins of the photosynthetic oxygen evolution system and of the electron transport components in Photosystem II particles prepared with Triton X-100 from spinach chloroplasts were determined. Per about 220 chlorophyll molecules, there were one reaction center II, one molecule each of the 33, 24 and 18 kDa proteins, four Mn atoms, two cytochromes b-559 (one high-potential, the other low-potential), and 3.5 plastoquinone-9 molecules, but practically no cytochrome b-563, cytochrome f, phylloquinone, α-tocopherol or α-tocopherylquinone.  相似文献   

7.
It is a little known fact that plastoquinone-9, a vital redox cofactor of photosynthesis, doubles as a precursor for the biosynthesis of a vitamin E analog called plastochromanol-8, the physiological significance of which has remained elusive. Gene network reconstruction, GFP fusion experiments, and targeted metabolite profiling of insertion mutants indicated that Arabidopsis possesses two paralogous solanesyl-diphosphate synthases, AtSPS1 (At1g78510) and AtSPS2 (At1g17050), that assemble the side chain of plastoquinone-9 in plastids. Similar paralogous pairs were detected throughout terrestrial plant lineages but were not distinguished in the literature and genomic databases from mitochondrial homologs involved in the biosynthesis of ubiquinone. The leaves of the atsps2 knock-out were devoid of plastochromanol-8 and displayed severe losses of both non-photoactive and photoactive plastoquinone-9, resulting in near complete photoinhibition at high light intensity. Such a photoinhibition was paralleled by significant damage to photosystem II but not to photosystem I. In contrast, in the atsps1 knock-out, a small loss of plastoquinone-9, restricted to the non-photoactive pool, was sufficient to eliminate half of the plastochromanol-8 content of the leaves. Taken together, these results demonstrate that plastochromanol-8 originates from a subfraction of the non-photoactive pool of plastoquinone-9. In contrast to other plastochromanol-8 biosynthetic mutants, neither the single atsps knock-outs nor the atsps1 atsps2 double knock-out displayed any defects in tocopherols accumulation or germination.  相似文献   

8.
The localization of isoprenoid lipids in chloroplasts, the accumulation of particular isoprenoids under high irradiance conditions, and channelling of photosynthetically fixed carbon into plastidic thylakoid isoprenoids, volatile isoprenoids, and cytosolic sterols are reviewed. During leaf and chloroplast development in spring plastidic isoprenoid biosynthesis provides primarily thylakoid carotenoids, the phytyl side-chain of chlorophylls and the electron carriers phylloquinone K1, alpha-tocoquinone and alpha-tocopherol, as well as the nona-prenyl side-chain of plastoquinone-9. Under high irradiance, plants develop sun leaves and high light (HL) leaves with sun-type chloroplasts that possess, besides higher photosynthetic CO2 assimilation rates, different quantitative levels of pigments and prenylquinones as compared to shade leaves and low light (LL) leaves. After completion of chloroplast thylakoid synthesis plastidic isoprenoid biosynthesis continues at high irradiance conditions, constantly accumulating alpha-tocopherol (alpha-T) and the reduced form of plastoquinone-9 (PQ-9H2) deposited in the steadily enlarging osmiophilic plastoglobuli, the lipid reservoir of the chloroplast stroma. In sun leaves of beech (Fagus) and in 3-year-old sunlit Ficus leaves the level of alpha-T and PQ-9 can exceed that of chlorophyll b. Most plants respond to HL conditions (sun leaves, leaves suddenly lit by the sun) with a 1.4-2-fold increase of xanthophyll cycle carotenoids (violaxanthin, zeaxanthin, neoxanthin), an enhanced operation of the xanthophyll cycle and an increase of beta-carotene levels. This is documented by significantly lower values for the weight ratio chlorophylls to carotenoids (range: 3.6-4.6) as compared to shade and LL leaves (range: 4.8-7.0). Many plant leaves emit under HL and high temperature conditions at high rates the volatile compounds isoprene (broadleaf trees) or methylbutenol (American ponderosa pines), both of which are formed via the plastidic 1-deoxy-D: -xylulose-phosphate/2-C-methylerythritol 5-phosphate (DOXP/MEP) pathway. Other plants by contrast, accumulate particular mono- and diterpenes. Under adequate photosynthetic conditions the chloroplastidic DOXP/MEP isoprenoid pathway essentially contributes, with its C5 isoprenoid precusors, to cytosolic sterol biosynthesis. The possible cross-talk between the two cellular isoprenoid pathways, the acetate/MVA and the DOXP/MEP pathways, that preferentially proceeds in a plastid-to-cytosol direction, is shortly discussed.  相似文献   

9.
Homogentisate is the precursor in the biosynthesis of -tocopherol and plastoquinone-9 in chloroplasts. It is formed of 4-hydroxyphenylpyruvate of the shikimate pathway by the 4-hydroxyphenylpyruvate dioxygenase. In experiments with spinach the dioxygenase was shown to be localized predominatedly in the chloroplasts. Envelope membranes exhibit the highest specific activity, however, because of the high stromal portion of chloroplasts, 60–80% of the total activity is housed in the stroma. The incorporation of 4-hydroxyphenylpyruvate into 2-methyl-6-phytylquinol as the first intermediate in the tocopherol synthesis by the two-step-reaction: 4-Hydroxyphenylpyruvate Homogentisate 2-Methyl-6-phytylquinol was demonstrated by using envelope membranes. Homogentisate originates directly from 4-hydroxyphenylpyruvate of the shikimate pathway. Additionally, a bypass exists in chloroplasts which forms 4-hydroxyphenylpyruvate from tyrosine by an L-amino-acid oxidase of the thylakoids and in peroxisomes by a transaminase reaction. Former results about the dioxygenase in peroxisomes were verified.  相似文献   

10.
In photosystem I from plants and cyanobacteria a phylloquinone molecule, called A1, functions as the secondary electron acceptor. In cyanobacteria, genes that encode for proteins involved in phylloquinone biosynthesis can be deleted. Here, we have studied three different gene deletion mutants called menB, menD, and menE mutants. In these mutants, plastoquinone-9 occupies the A1 binding site. Using time-resolved, step-scan FTIR difference spectroscopy we have produced A1(-)/A1 FTIR difference spectra for menB, menD, and menE photosystem I particles at 77 K. These difference spectra show that the P700 triplet state ((3)P700) is formed in a large fraction of the particles. Infrared spectral signatures that are not due to (3)P700 are also observed in the spectra and are suggested to be associated with plastoquinone-9 anion formation in a portion of the particles. By subtracting the known (3)P700 spectral signatures, we produce an A1(-)/A1 FTIR difference spectrum for PS I particles with plastoquinone-9 occupying the binding site. This spectrum shows that a band that we have previously assigned to a C:-O mode of the phylloquinone anion in WT A1(-)/A1 FTIR DS down-shifts approximately 8 cm(-1) when plastoquinone-9 occupies the A1 binding site. Using density functional theory type calculations to produce anion minus neutral infrared difference spectra for both phylloquinone and plastoquinone-9, it is shown that such a downshift is reasonable. A1(-)/A1 FTIR difference spectra, obtained using menB mutant photosystem I particles that were incubated in the presence of phylloquinone, are found to be very similar to those obtained using normal WT photosystem I particles. This result indicates that we were able to reincorporate phylloquinone back into the A1 binding site and that the reincorporated phylloquinone and its immediate protein environment, in both the neutral and anion state, are very similar to that found in wild type photosystem I particles. For the reconstituted menB mutant photosystem I particles, no spectral signatures associated with (3)P700 are observed, indicating that phylloquinone occupies the A1 site in all of the reconstituted menB particles.  相似文献   

11.
Incorporation and release of 14C-label in prenylquinones of Chlorella was investigated under steady state conditions. After one hour of 14CO2-photosynthesis all plastid quinones investigated were labeled. The highest label was found in phylloquinone (18%) while -tocopherol exhibits the lowest label (0.38%). Among the plastoquinones, plastohydroquinone-9 shows a higher labeling degree (5.1%) and a faster labeling kinetic than plastoquinone-9 (1.6%). After replacement of 14CO2 against 12CO2 the total radioactivity in plastohydroquinone-9, -tocopherol and phylloquinone decreases but in -tocoquinone and plastoquinone-9 proceeds further. From this labeling kinetic we conclude, that newly synthesized [14C]-tocopherol molecules are converted to [14C]-tocoquinone and [14C]plastohydroquinone-9 molecules to [14C]plastoquinone-9. From their 14C-incorporation kinetic half-lives could be calculated for all prenylquinones in the same ranges as previously found for the chlorophylls and carotenoids (Grumbach et al., 1978). Half-lives are shorter in plastohydroquinone-9 (30 min) and plastoquinone-9 (40 min) than in phylloquinone (55 min), -tocoquinone (50 min) and -tocopherol (220 min). This means that all prenyl-lipids such as chlorophyll a, -and -carotene, plastohydroquinone-9 and plastoquinone-9 which are more directly involved in the process of photosynthesis are subject to a continuous and higher turnover than the xanthophyll and -tocopherol. From the fast labeling kinetic and short half-lives of -tocoquinone and especially phylloquinone with a labeling degree of 12% after one hour of 14CO2 photosynthesis we suppose that perhaps these two prenylquinones are also involved in the photosynthetic activity of chloroplasts.  相似文献   

12.
The reduction of plastocyanin by plastoquinol-1 was efficiently catalysed by disrupted chloroplasts or etioplasts in the dark. The reaction was inhibited by 2,5-dibromomethylisopropyl-p-benzo-quinone which inhibits photosynthetic electron transport between plastoquinone and cytochrome f. Evidence is presented that the reduction took place via cytochrome f, and that plastoquinone-9 was not involved. Triton X-100 and organic solvents were inhibitory, but partial fractionation was achieved without loss of activity by density gradient centrifugation in the presence of high digitonin concentrations. All active material contained cytochromes b-559LP and b-563 in addition to cytochrome f, but these b-type cytochromes were not directly involved. Other 1-electron acceptors could be used in place of plastocyanin, for instance ferricyanide and Pseudomonas cytochrome c-551. The reaction can be applied to give a sensitive dark assay for active cytochrome f. It is suggested that cytochrome f possesses two sites for interaction with redox reagents: a hydrophilic site with which plastocyanin reacts by electron transfer and a hydrophobic site with which plastoquinol reacts by hydrogen atom transfer.  相似文献   

13.
We have examined scavenging of a superoxide by various prenyllipids occurring in thylakoid membranes, such as plastoquinone-9, alpha-tocopherolquinone, their reduced forms, and alpha-tocopherol, measuring oxygen uptake in hexane-extracted and untreated spinach thylakoids with a fast oxygen electrode under flash-light illumination. The obtained results demonstrated that all the investigated prenyllipids showed the superoxide scavenging properties, and plastoquinol-9 was the most active in this respect. Plastoquinol-9 formed in thylakoids as a result of enzymatic reduction of plastoquinone-9 by ferredoxin-plastoquinone reductase was even more active than the externally added plastoquinol-9 in the investigated reaction. Scavenging of superoxide by plastoquinol-9 and other prenyllipids could be important for protecting membrane components against the toxic action of superoxide. Moreover, our results indicate that vitamin K(1) is probably the most active redox component of photosystem I in the generation of superoxide within thylakoid membranes.  相似文献   

14.
The brown alga Desmarestia aculeata was found to contain β-carotene, plastoquinone-9, fucoxanthin and a C27 sterol with a novel side chain.  相似文献   

15.
Electron transport from H2, NADPH, NADH and succinate to O2 or ferricytochrome c in respiratory particles isolated from Anacystis nidulans in which hydrogenase had been induced was abolished after extraction of the membranes with n-pentane; oxidation of ascorbate plus NNN'N'-tetramethyl-p-phenylenediamine remained unaffected. Incorporation of authentic ubiquinone-10, plastoquinone-9, menaquinone-7 and phylloquinone (in order of increasing efficiency) restored the electron-transport reactions. ATP-dependent reversed electron flow from NNN'N'-tetramethyl-p-phenylenediamine to NADP+ or, via the membrane-bound hydrogenase, to H+ was likewise abolished by pentane extraction and restored by incorporation of phylloquinone. Participation of the incorporated quinones in the respiratory electron-transport reactions of reconstituted particles was confirmed by measuring the degree of steady-state reduction of the quinones. Isolation and identification of the quinones present in native Anacystis membranes yielded mainly plastoquinone-9 and phylloquinone; neither menaquinone nor alpha-tocopherolquinone could be detected. Together with the results from reconstitution experiments this suggests that phylloquinone might function as the main respiratory quinone in Anacystis nidulans.  相似文献   

16.
A photosynthetic mutant of Lemna perpusilla (no. 1073) has been examined by spectrophotometric and immunoblotting techniques in order to localize the site of defect. In contrast to previous conclusions (Shahak, Y., Posner, H.B. and Avron, M. (1976) Plant Physiol. 57, 577-679), neither cytochrome f nor cytochrome b6 could be detected spectrophotometrically in the mutant. Furthermore, immunoblotting using antibodies specific for each of the four constituent subunits of the cytochrome b6-f complex demonstrate that the entire complex is absent in the mutant. The light-harvesting chlorophyll-protein complex of Photosystem II is present in similar amounts in wild-type and mutant Lemna. However, the total amount of plastoquinone-9 is reduced by approx. 65% in the mutant strain, while the photoreducible plastoquinone-9 pool is comparable in wild-type and mutant Lemna.  相似文献   

17.
BAL (2,3-dithiopropan-1-ol) treatment of chloroplasts has previously been reported to induce a block in electron transport from water to NADP+ at a site preceding plastocyanin [Belkin et al. (1980) Biochim. Biophys. Acta 766, 563-569]. In the present work the block was further characterized. The following properties of BAL treatment are described. Inhibition of electron transport from water to lipophilic acceptors but not to silicomolybdate. Inhibition of the slow, sigmoidal phase of chlorophyll a fluorescence induction. Inability of N,N,N',N',-tetramethyl-p-phenylenediamine to bypass the inhibition of NADP+ photoreduction with water as the electron donor. Inhibition of electron transport from externally added quinols to NADP+. Inhibition of cytochrome f reduction by photosystem II, but not its oxidation by photosystem I. Inhibition of cytochrome b6 turnover and cytochrome f rereduction after single-turnover flash illumination under cyclic electron-flow conditions. The BAL-induced block is therefore located between the secondary quinone acceptor (QB) and the cytochrome b6f complex. It was further found that (a) the isolated cytochrome complex is not inhibited after BAL treatment; (b) BAL-reacted plastoquinone-1 inhibits electron transport in chloroplasts; (c) BAL does not inhibit electron transport in chromatophores of Rhodospirilum rubrum or Rhodopseudomonas capsulata. It is suggested that the inhibition of electron transport in chloroplasts results from specific reaction of BAL with the endogenous plastoquinone.  相似文献   

18.
Tocopherols, collectively known as vitamin E, are lipid-soluble antioxidants synthesized exclusively by photosynthetic organisms and are required components of mammalian diets. The committed step in tocopherol biosynthesis involves condensation of homogentisic acid and phytyl diphosphate (PDP) catalyzed by a membrane-bound homogentisate phytyltransferase (HPT). HPTs were identified from Synechocystis sp. PCC 6803 and Arabidopsis based on their sequence similarity to chlorophyll synthases, which utilize PDP in a similar prenylation reaction. HPTs from both organisms used homogentisic acid and PDP as their preferred substrates in vitro but only Synechocystis sp. PCC 6803 HPT was active with geranylgeranyl diphosphate as a substrate. Neither enzyme could utilize solanesyl diphosphate, the prenyl substrate for plastoquinone-9 synthesis. In addition, disruption of Synechocystis sp. PCC 6803 HPT function causes an absence of tocopherols without affecting plastoquinone-9 levels, indicating that separate polyprenyltransferases exist for tocopherol and plastoquinone synthesis in Synechocystis sp. PCC 6803. It is surprising that the absence of tocopherols in this mutant had no discernible effect on cell growth and photosynthesis.  相似文献   

19.
Summary The rate of prenyl chain accumulation (C40 carotenoids; C45 in plastoquinone-9; C20 phytyl in chlorophylls, -tocopherol and vitamin K1) in plastids of etiolated radish seedlings (Raphanus sativus L.) is determined in continuous darkness and after far-red and white light treatment. Continuous far-red light (active phytochrome P fr ) stimulates the synthesis of all prenyl chains, but has no or only little effect on the dark pattern of the prenyl chain formation. White light enhances the accumulation of prenyl chains to a much higher degree than does far-red light. By a particularly strong promotion of the accumulation of phytyl chains, which are incorporated into chlorophyll, white light changes the percentage composition of prenyl chains to that of chloroplasts.  相似文献   

20.
Fibrillins are lipid-associated proteins in plastids and are ubiquitous in plants. They accumulate in chromoplasts and sequester carotenoids during the development of flowers and fruits. However, little is known about the functions of fibrillins in leaf tissues. Here, we identified fibrillin 5 (FBN5), which is essential for plastoquinone-9 (PQ-9) biosynthesis in Arabidopsis thaliana. Homozygous fbn5-1 mutations were seedling-lethal, and XVE:FBN5-B transgenic plants expressing low levels of FBN5-B had a slower growth rate and were smaller than wild-type plants. In chloroplasts, FBN5-B specifically interacted with solanesyl diphosphate synthases (SPSs) 1 and 2, which biosynthesize the solanesyl moiety of PQ-9. Plants containing defective FBN5-B accumulated less PQ-9 and its cyclized product, plastochromanol-8, but the levels of tocopherols were not affected. The reduced PQ-9 content of XVE:FBN5-B transgenic plants was consistent with their lower photosynthetic performance and higher levels of hydrogen peroxide under cold stress. These results indicate that FBN5-B is required for PQ-9 biosynthesis through its interaction with SPS. Our study adds FBN5 as a structural component involved in the biosynthesis of PQ-9. FBN5 binding to the hydrophobic solanesyl moiety, which is generated by SPS1 and SPS2, in FBN5-B/SPS homodimeric complexes stimulates the enzyme activity of SPS1 and SPS2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号