首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The availability of increasingly inexpensive sequencing combined with an ever‐expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next‐generation high‐throughput sequencing (Tn‐seq) promises to revolutionize systems level analysis of microbial metabolism. Tn‐seq measures the frequency of actual members of a heterogeneous mutant pool undergoing purifying selection to determine the contribution of every non‐essential gene in the genome to the fitness of an organism under a given condition. Here we use Tn‐seq to assess gene function in the Gram negative γ‐proteobacterium Shewanella oneidensis strain MR‐1. In addition to being a model environmental organism, there is considerable interest in using S. oneidensis as a platform organism for bioremediation and biotechnology, necessitating a complete understanding of the metabolic pathways that may be utilized. Our analysis reveals unique aspects of S. oneidensis metabolism overlooked by over 30 years of classical genetic and systems level analysis. We report the utilization of an alternative citrate synthase and describe a dynamic branching of the S. oneidensis anaerobic tricarboxylic acid cycle, unreported in any other organism, which may be a widespread strategy for microbes adept at dissipating reducing equivalents via anaerobic respiration.  相似文献   

3.
Borrelia burgdorferi, the Lyme disease spirochete, adapts as it moves between the arthropod and mammalian hosts that it infects. We hypothesize that BosR serves as a global regulator in B. burgdorferi to modulate the oxidative stress response and adapt to mammalian hosts. To test this hypothesis, a bosR mutant in a low‐passage B. burgdorferi isolate was constructed. The resulting bosR::kanR strain was altered when grown microaerobically or anaerobically suggesting that BosR is required for optimal replication under both growth conditions. The absence of BosR increased the sensitivity of B. burgdorferi to hydrogen peroxide and reduced the synthesis of Cdr and NapA, proteins important for cellular redox balance and the oxidative stress response, respectively, suggesting an important role for BosR in borrelial oxidative homeostasis. For the bosR mutant, the production of RpoS was abrogated and resulted in the loss of OspC and DbpA, suggesting that BosR interfaces with the Rrp2–RpoN–RpoS regulatory cascade. Consistent with the linkage to RpoS, cells lacking bosR were non‐infectious in the mouse model of infection. These results indicate that BosR is required for resistance to oxidative stressors and provides a regulatory response that is necessary for B. burgdorferi pathogenesis.  相似文献   

4.

Background  

The bacterium Borrelia burgdorferi, the causative agent of Lyme disease, is a limited-genome organism that must obtain many of its biochemical building blocks, including N-acetylglucosamine (GlcNAc), from its tick or vertebrate host. GlcNAc can be imported into the cell as a monomer or dimer (chitobiose), and the annotation for several B. burgdorferi genes suggests that this organism may be able to degrade and utilize chitin, a polymer of GlcNAc. We investigated the ability of B. burgdorferi to utilize chitin in the absence of free GlcNAc, and we attempted to identify genes involved in the process. We also examined the role of RpoS, one of two alternative sigma factors present in B. burgdorferi, in the regulation of chitin utilization.  相似文献   

5.
The Lyme disease agent Borrelia burgdorferi, which is transmitted via a tick vector, is dependent on its tick and mammalian hosts for a number of essential nutrients. Like other bacterial diderms, it must transport these biochemicals from the extracellular milieu across two membranes, ultimately to the B. burgdorferi cytoplasm. In the current study, we established that a gene cluster comprising genes bb0215 through bb0218 is cotranscribed and is therefore an operon. Sequence analysis of these proteins suggested that they are the components of an ABC‐type transporter responsible for translocating phosphate anions from the B. burgdorferi periplasm to the cytoplasm. Biophysical experiments established that the putative ligand‐binding protein of this system, BbPstS (BB0215), binds to phosphate in solution. We determined the high‐resolution (1.3 Å) crystal structure of the protein in the absence of phosphate, revealing that the protein's fold is similar to other phosphate‐binding proteins, and residues that are implicated in phosphate binding in other such proteins are conserved in BbPstS. Taken together, the gene products of bb0215‐0218 function as a phosphate transporter for B. burgdorferi.  相似文献   

6.
Borrelia burgdorferi is the causative agent of Lyme disease that persists in a complex enzootic life cycle, involving Ixodes ticks and vertebrate hosts. The microbe invades ticks and vertebrate hosts in spite of active immune surveillance and potent microbicidal responses, and establishes long‐term infection utilising mechanisms that are yet to be unravelled. The pathogen can cause multi‐system disorders when transmitted to susceptible mammalian hosts, including in humans. In the past decades, several studies identified a limited number of B. burgdorferi gene‐products critical for pathogen persistence, transmission between the vectors and the host, and host–pathogen interactions. This review will focus on the interactions between B. burgdorferi proteins, as well as between microbial proteins and host components, protein and non‐protein components, highlighting their roles in pathogen persistence in the mammalian host. A better understanding of the contributions of protein interactions in the microbial virulence and persistence of B. burgdorferi would support development of novel therapeutics against the infection.  相似文献   

7.
Borrelia burgdorferi sensu lato (s.l.) is the causative agent of Lyme borreliosis, the most common tick‐borne zoonosis of humans in Europe and North America. Here, we assessed the relative importance of different passerine bird species as tick hosts and their contribution to the B. burgdorferi s.l. transmission cycle in a rural residential area in Scotland. We caught 1229 birds of 22 species during the tick‐questing season. On average, 29% carried larval ticks (0.8 larvae per individual) and 5% carried nymph ticks (0.06 nymphs per individual). All attached ticks tested were Ixodes ricinus. Using a nested‐PCR, we found that 20% of nymphs tested positive to B. burgdorferi s.l. and all these were of the genospecies Borrelia garinii. We identified two new bird species carrying infected nymphs: Eurasian Siskin Carduelis spinus and European Greenfinch Carduelis chloris. Ground‐foraging species were more important than arboreal species in hosting I. ricinus nymphs and B. burgdorferi s.l. Common Blackbirds Turdus merula were the most common hosts, with Song Thrushes Turdus philomelos, Dunnocks Prunella modularis, European Greenfinches and Chaffinches Fringilla coelebs also hosting high rates of infection.  相似文献   

8.
Most emerging infectious diseases of humans are transmitted to humans from other animals. The transmission of these “zoonotic” pathogens is affected by the abundance and behavior of their wildlife hosts. However, the effects of infection with zoonotic pathogens on behavior of wildlife hosts, particularly those that might propagate through ecological communities, are not well understood. Borrelia burgdorferi is a bacterium that causes Lyme disease, the most common vector‐borne disease in the USA and Europe. In its North American range, the pathogen is most frequently transmitted among hosts through the bite of infected blacklegged ticks (Ixodes scapularis). Using sham and true vaccines, we experimentally manipulated infection load with this zoonotic pathogen in its most competent wildlife reservoir host, the white‐footed mouse, Peromyscus leucopus, and quantified the effects of infection on mouse foraging behavior, as well as levels of mouse infestation with ticks. Mice treated with the true vaccine had 20% fewer larval blacklegged ticks infesting them compared to mice treated with the sham vaccine, a significant difference. We observed a nonsignificant trend for mice treated with the true vaccine to be more likely to visit experimental foraging trays (20%–30% effect size) and to prey on gypsy moth pupae (5%–20% effect size) compared to mice treated with the sham vaccine. We observed no difference between mice on true‐ versus sham‐vaccinated grids in risk‐averse foraging. Infection with this zoonotic pathogen appears to elicit behavioral changes that might reduce self‐grooming, but other behaviors were affected subtly or not at all. High titers of B. burgdorferi in mice could elicit a self‐reinforcing feedback loop in which reduced grooming increases tick burdens and hence exposure to tick‐borne pathogens.  相似文献   

9.
The genome of Borrelia burgdorferi encodes a set of genes putatively involved in cyclic‐dimeric guanosine monophosphate (cyclic‐di‐GMP) metabolism. Although BB0419 was shown to be a diguanylate cyclase, the extent to which bb0419 or any of the putative cyclic‐di‐GMP metabolizing genes impact B. burgdorferi motility and pathogenesis has not yet been reported. Here we identify and characterize a phosphodiesterase (BB0363). BB0363 specifically hydrolyzed cyclic‐di‐GMP with a Km of 0.054 µM, confirming it is a functional cyclic‐di‐GMP phosphodiesterase. A targeted mutation in bb0363 was constructed using a newly developed promoterless antibiotic cassette that does not affect downstream gene expression. The mutant cells exhibited an altered swimming pattern, indicating a function for cyclic‐di‐GMP in regulating B. burgdorferi motility. Furthermore, the bb0363 mutant cells were not infectious in mice, demonstrating an important role for cyclic‐di‐GMP in B. burgdorferi infection. The mutant cells were able to survive within Ixodes scapularis ticks after a blood meal from naïve mice; however, ticks infected with the mutant cells were not able to infect naïve mice. Both motility and infection phenotypes were restored upon genetic complementation. These results reveal an important connection between cyclic‐di‐GMP, B. burgdorferi motility and Lyme disease pathogenesis. A mechanism by which cyclic‐di‐GMP influences motility and infection is proposed.  相似文献   

10.
11.
12.
Lyme disease is reported across Canada, but pinpointing the source of infection has been problematic. In this three‐year, bird‐tick‐pathogen study (2004–2006), 366 ticks representing 12 species were collected from 151 songbirds (31 passerine species/subspecies) at 16 locations Canada‐wide. Of the 167 ticks/pools tested, 19 (11.4%) were infected with Borrelia burgdorferi sensu lato (s.l.). Sequencing of the rrf‐rrl intergenic spacer gene revealed four Borrelia genotypes: B. burgdorferi sensu stricto (s.s.) and three novel genotypes (BC genotype 1, BC genotype 2, BC genotype 3). All four genotypes were detected in spirochete‐infected Ixodes auritulus (females, nymphs, larvae) suggesting this tick species is a vector for B. burgdorferi s.l. We provide first‐time records for: ticks in the Yukon (north of 60° latitude), northernmost collection of Amblyomma americanum in North America, and Amblyomma imitator in Canada. First reports of bird‐derived ticks infected with B. burgdorferi s.l. include: live culture of spirochetes from Ixodes pacificus (nymph) plus detection in I. auritulus nymphs, Ixodes scapularis in New Brunswick, and an I. scapularis larva in Canada. We provide the first account of B. burgdorferi s. l. in an Ixodes muris tick collected from a songbird anywhere. Congruent with previous data for the American Robin, we suggest that the Common Yellowthroat, Golden‐crowned Sparrow, Song Sparrow, and Swainson's Thrush are reservoir‐competent hosts. Song Sparrows, the predominant hosts, were parasitized by I. auritulus harboring all four Borrelia genotypes. Our results show that songbirds import B. burgdorferi s.l.‐infected ticks into Canada. Bird‐feeding I. scapularis subadults were infected with Lyme spirochetes during both spring and fall migration in eastern Canada. Because songbirds disperse millions of infected ticks across Canada, people and domestic animals contract Lyme disease outside of the known and expected range.  相似文献   

13.
This study was undertaken to determine which rodent species serve as primary reservoirs for the Lyme disease spirochete Borrelia burgdorferi in commonly occurring woodland types in inland areas of northwestern California, and to examine whether chaparral or grassland serve as source habitats for dispersal of B. burgdorferi‐ or B. bissettii‐infected rodents into adjacent woodlands. The western gray squirrel (Sciurus griseus) was commonly infected with B. burgdorferi in oak woodlands, whereas examination of 30 dusky‐footed woodrats (Neotoma fuscipes) and 280 Peromyscus spp. mice from 13 widely‐spaced Mendocino County woodlands during 2002 and 2003 yielded only one infected woodrat and one infected deer mouse (P. maniculatus). These data suggest that western gray squirrels account for the majority of production by rodents of fed Ixodes pacificus larvae infected with B. burgdorferi in the woodlands sampled. Infections with B. burgdorferi also were rare in woodrats (0/47, 0/3) and mice (3/66, 1/6) captured in chaparral and grassland, respectively, and therefore these habitats are unlikely sources for dispersal of this spirochete into adjacent woodlands. On the other hand, B. bissettii was commonly detected in both woodrats (22/47) and mice (15/66) in chaparral. We conclude that the data from this and previous studies in northwestern California are suggestive of a pattern where inland oak‐woodland habitats harbor a B. burgdorferi transmission cycle driven primarily by I. pacificus and western gray squirrels, whereas chaparral habitats contain a B. bissettii transmission cycle perpetuated largely by I. spinipalpis, woodrats, and Peromyscus mice. The dominant role of western gray squirrels as reservoirs of B. burgdorferi in certain woodlands offers intriguing opportunities for preventing Lyme disease by targeting these animals by means of either host‐targeted acaricides or oral vaccination against B. burgdorferi.  相似文献   

14.
The role of migratory birds in the dispersal of Ixodes scapularis ticks in the northeastern U.S. is well established and is presumed to be a major factor in the expansion of the geographic risk for Lyme disease. Population genetic studies of B. burgdorferi sensu stricto, the agent of Lyme disease in this region, consistently reveal the local presence of as many as 15 distinct strain types as designated by major groups of the ospC surface lipoprotein. Recent evidence suggests such strain diversity is adaptive to the diverse vertebrate hosts that maintain enzootic infection. How this strain diversity is established in emergent areas is unknown. To determine whether similar strain diversity is present in ticks imported by birds, we examined B. burgdorferi strains in I. scapularis ticks removed from migrants at an isolated island site. Tick mid‐guts were cultured and isolates underwent DNA amplification with primers targeting ospC. Amplicons were separated by gel electrophoresis and sequenced. One hundred thirty‐seven nymphal ticks obtained from 68 birds resulted in 24 isolates of B. burgdorferi representing eight ospC major groups. Bird‐derived ticks contain diverse strain types of B. burgdorferi, including strain types associated with invasive Lyme disease. Birds and the ticks that feed on them may introduce a diversity of strains of the agent of Lyme disease to emergent areas.  相似文献   

15.
Zoonotic pathogens that cause devastating morbidity and mortality in humans may be relatively harmless in their natural reservoir hosts. The tick-borne bacterium Borrelia burgdorferi causes Lyme disease in humans but few studies have investigated whether this pathogen reduces the fitness of its reservoir hosts under natural conditions. We analyzed four years of capture-mark-recapture (CMR) data on a population of white-footed mice, Peromyscus leucopus, to test whether B. burgdorferi and its tick vector affect the survival of this important reservoir host. We used a multi-state CMR approach to model mouse survival and mouse infection rates as a function of a variety of ecologically relevant explanatory factors. We found no effect of B. burgdorferi infection or tick burden on the survival of P. leucopus. Our estimates of the probability of infection varied by an order of magnitude (0.051 to 0.535) and were consistent with our understanding of Lyme disease in the Northeastern United States. B. burgdorferi establishes a chronic avirulent infection in their rodent reservoir hosts because this pathogen depends on rodent mobility to achieve transmission to its sedentary tick vector. The estimates of B. burgdorferi infection risk will facilitate future theoretical studies on the epidemiology of Lyme disease.  相似文献   

16.
17.
Borrelia burgdorferi, the causative agent of Lyme disease (along with closely related genospecies), is in the deeply branching spirochete phylum. The bacterium is maintained in nature in an enzootic cycle that involves transmission from a tick vector to a vertebrate host and acquisition from a vertebrate host to a tick vector. During its arthropod sojourn, B. burgdorferi faces a variety of stresses, including nutrient deprivation. Here, we review some of the spirochetal factors that promote persistence, maintenance and dissemination of B. burgdorferi in the tick, and then focus on the utilization of available carbohydrates as well as the exquisite regulatory systems invoked to adapt to the austere environment between blood meals and to signal species transitions as the bacteria traverse their enzootic cycle. The spirochetes shift their source of carbon and energy from glucose in the vertebrate to glycerol in the tick. Regulation of survival under limiting nutrients requires the classic stringent response in which RelBbu controls the levels of the alarmones guanosine tetraphosphate and guanosine pentaphosphate (collectively termed (p)ppGpp), while regulation at the tick–vertebrate interface as well as regulation of protective responses to the blood meal require the two‐component system Hk1/Rrp1 to activate production of the second messenger cyclic‐dimeric‐GMP (c‐di‐GMP).  相似文献   

18.
Borrelia burgdorferi and Anaplasma phagocytophilum are obligate intracellular parasites that maintain their life cycles in enzoonotic vector‐host cycles with Ixodes scapularis as a vector. In addition to ticks, the hosts are commonly infested with insects from the Hippoboscidae family. This study confirms the presence of B. burgdorferi and A. phagocytophilum in deer keds (Lipoptena cervi) removed from white‐tailed deer using PCR. Detection of these pathogens in deer ked represents a potential novel susceptibility of wildlife and also suggests the risk of transmission of these pathogens to humans and animals alike through the bite of an infected ectoparasite. This study represents the first instance in the U.S. of detection of tick‐borne pathogens in a member of the Hippoboscid family.  相似文献   

19.
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector‐borne disease in the United States and Europe. The spirochetes are transmitted from mammalian and avian reservoir hosts to humans via ticks. Following tick bites, spirochetes colonize the host skin and then disseminate haematogenously to various organs, a process that requires this pathogen to evade host complement, an innate immune defence system. CspZ, a spirochete surface protein, facilitates resistance to complement‐mediated killing in vitro by binding to the complement regulator, factor H (FH). Low expression levels of CspZ in spirochetes cultivated in vitro or during initiation of infection in vivo have been a major hurdle in delineating the role of this protein in pathogenesis. Here, we show that treatment of B. burgdorferi with human blood induces CspZ production and enhances resistance to complement. By contrast, a cspZ‐deficient mutant and a strain that expressed an FH‐nonbinding CspZ variant were impaired in their ability to cause bacteraemia and colonize tissues of mice or quail; virulence of these mutants was however restored in complement C3‐deficient mice. These novel findings suggest that FH binding to CspZ facilitates B. burgdorferi complement evasion in vivo and promotes systemic infection in vertebrate hosts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号