首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The WalRK (YycFG) two‐component system co‐ordinates cell wall metabolism with growth by regulating expression of autolysins and proteins that modulate autolysin activity. Here we extend its role in cell wall metabolism by showing that WalR binds to 22 chromosomal loci in vivo. Among the newly identified genes of the WalRK bindome are those that encode the wall‐associated protein WapA, the penicillin binding proteins PbpH and Pbp5, the minor teichoic acid synthetic enzymes GgaAB and the regulators σI RsgI. The putative WalR binding sequence at many newly identified binding loci deviates from the previously defined consensus. Moreover, expression of many newly identified operons is controlled by multiple regulators. An unusual feature is that WalR binds to an extended DNA region spanning multiple open reading frames at some loci. WalRK directly activates expression of the sigIrsgI operon from a newly identified σA promoter and represses expression from the previously identified σI promoter. We propose that this regulatory link between WalRK and σI RsgI expression ensures that the endopeptidase requirement (CwlO or LytE) for cell viability is fulfilled during growth and under stress conditions. Thus the WalRK and σI RsgI regulatory systems cooperate to control cell wall metabolism in growing and stressed cells.  相似文献   

9.
10.
11.
12.
13.
In Bacillus subtilis, the extracytoplasmic function (ECF) σ factors σM, σW and σX all contribute to resistance against lantibiotics. Nisin, a model lantibiotic, has a dual mode of action: it inhibits cell wall synthesis by binding lipid II, and this complex also forms pores in the cytoplasmic membrane. These activities can be separated in a nisin hinge‐region variant (N20P M21P) that binds lipid II, but no longer permeabilizes membranes. The major contribution of σM to nisin resistance is expression of ltaSa, encoding a stress‐activated lipoteichoic acid synthase, and σX functions primarily by activation of the dlt operon controlling d ‐alanylation of teichoic acids. Together, σM and σX regulate cell envelope structure to decrease access of nisin to its lipid II target. In contrast, σW is principally involved in protection against membrane permeabilization as it provides little protection against the nisin hinge region variant. σW contributes to nisin resistance by regulation of a signal peptide peptidase (SppA), phage shock proteins (PspA and YvlC, a PspC homologue) and tellurite resistance related proteins (YceGHI). These defensive mechanisms are also effective against other lantibiotics such as mersacidin, gallidermin and subtilin and comprise an important subset of the intrinsic antibiotic resistome of B. subtilis.  相似文献   

14.
15.
16.
The phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) catalyzes transport of carbohydrates by coupling carbohydrate translocation and phosphorylation. Enzyme I and HPr, encoded in ptsI and ptsH, respectively, are cytoplasmic proteins commonly used for transport of variety of PTS sugars. In this study, we investigated the role of SugR on the expression of the ptsI and ptsH which increases in the presence of PTS sugars in Corynebacterium glutamicum. Disruption of sugR resulted in the increased expression of ptsI and ptsH in the absence of PTS sugar. Introduction of a plasmid containing sugR gene complemented the effect of sugR disruption. SugR was purified and binding to the promoter regions of ptsI and ptsH was indicated by EMSA. DNase I footprinting analysis indicated the binding sites of SugR on the promoter region of divergently transcribed ptsI gene and fructose-pts operon. The binding sites contain a possible SugR binding motif which is conserved in the promoter regions of general and sugar-specific pts genes. Mutations in this motif resulted in the decrease of SugR binding to the ptsI promoter. These results suggest that SugR represses ptsI and ptsH in the absence of PTS sugar and derepression is the mechanism for the induction of the general components of PTS.  相似文献   

17.
18.
In promoter DNA, the preferred distance of the ?10 and ?35 elements for interacting with RNA polymerase‐bound σ70 is 17 bp. However, the Devi et al. paper in this issue of Molecular Microbiology demonstrates that when the C‐terminal domain of σ70, including the 3.2 linker, is not attached to the core enzyme, distances between 0 and 3 bp can be accommodated. This attests to the great flexibility of the 3.2 linker. The particularly stable complex with the 2 bp separation may lend itself to structural studies of an early elongation complex containing σ70.  相似文献   

19.
20.
Clostridium cellulolyticum is a model mesophilic anaerobic bacterium that efficiently degrades plant cell walls. The recent genome release offers the opportunity to analyse its complete degradation system. A total of 148 putative carbohydrate‐active enzymes were identified, and their modular structures and activities were predicted. Among them, 62 dockerin‐containing proteins bear catalytic modules from numerous carbohydrate‐active enzymes' families and whose diversity reflects the chemical and structural complexity of the plant carbohydrate. The composition of the cellulosomes produced by C. cellulolyticum upon growth on different substrates (cellulose, xylan, and wheat straw) was investigated by LC MS/MS. The majority of the proteins encoded by the cip‐cel operon, essential for cellulose degradation, were detected in all cellulosome preparations. In the presence of wheat straw, the natural and most complex of the substrates studied, additional proteins predicted to be involved in hemicellulose degradation were produced. A 32‐kb gene cluster encodes the majority of these proteins, all harbouring carbohydrate‐binding module 6 or carbohydrate‐binding module 22 xylan‐binding modules along dockerins. This newly identified xyl‐doc gene cluster, specialised in hemicellulose degradation, comes in addition of the cip‐cel operon for plant cell wall degradation. Hydrolysis efficiencies determined on the different substrates corroborates the finding that cellulosome composition is adapted to the growth substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号