首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to prevailing unitary model of involutional osteoporosis, female postmenopausal bone loss can be divided into two separate phases: the accelerated, transient phase, which is most distinct over the subsequent decade after the menopause and accounts for 20-30% of the cancellous bone loss and 5-10% of the cortical bone loss (type I osteoporosis), and the following gradual, continuous bone loss (type II osteoporosis). Estrogen deficiency is currently quite unanimously accepted as the primary cause of type I osteoporosis, as well as also a major determinant of type II osteoporosis, and quite plausibly, the quest to uncover the origin of type I (and II) osteoporosis has focused on the estrogen withdrawal-related skeletal changes at and around the menopause. However, given that the cyclical secretion of estrogen begins normally in early adolescence and continues over the entire fertile period (excluding the potential periods of pregnancy) until the eventual cessation of female reproductive capability, one could argue that this menopause-oriented approach is limited in scope. In this review, some classic findings of the pubertal effects of estrogen on female bones are presented, findings that were paramount to Fuller Albright when he first described the disease called postmenopausal osteoporosis in 1940, but studies/findings that have failed to attract the attention they deserve. When these findings are incorporated with the primary function of the axial skeleton and long bones, the locomotion, an alternative, novel explanation for the function of estrogen and accordingly, the origin of the accelerated phase of postmenopausal bone loss, is proposed: estrogen packs mechanically excess bone/mineral into the female skeleton at puberty, a bone stock that later serves as the origin of the type I postmenopausal osteoporosis.  相似文献   

2.
Clarke BL  Khosla S 《Steroids》2009,74(3):296-305
Testosterone is the major gonadal sex steroid produced by the testes in men. Testosterone is also produced in smaller amounts by the ovaries in women. The adrenal glands produce the weaker androgens dehydroepiandrosterone, dehydroepiandrosterone sulfate, and androstenedione. These androgens collectively affect skeletal homeostasis throughout life in both men and women, particularly at puberty and during adult life. Because testosterone can be metabolized to estradiol by the aromatase enzyme, there has been controversy as to which gonadal sex steroid has the greater skeletal effect. The current evidence suggests that estradiol plays a greater role in maintenance of skeletal health than testosterone, but that androgens also have direct beneficial effects on bone. Supraphysiological levels of testosterone likely have similar effects on bone as lower levels via direct interaction with androgen receptors, as well as effects mediated by estrogen receptors after aromatization to estradiol. Whether high doses of synthetic, non-aromatizable androgens may, in fact, be detrimental to bone due to suppression of endogenous testosterone (and estrogen) levels is a potential concern that warrants further study.  相似文献   

3.
Osteoporosis is a growing disease, and attention should be directed to possible means of preventing and treating this disease. Osteoporosis may be caused by a number of diseases (secondary osteoporosis), but it most often occurs in otherwise healthy persons. The major risk factors are a low bone mass at skeletal maturity, and a rapid bone loss. Postmenopausal bone loss may be prevented by hormone replacement therapy. All types of oestrogens and all administration forms are effective, as long as a sufficient serum concentration is obtained. The greatest benefit of hormone replacement therapy is obtained if instituted right after the menopause, when the bone loss is most rapid. But oestrogen will also arrest the bone loss when instituted much later in life.  相似文献   

4.
Growth hormone (GH) exerts important influences on bone metabolism during lifespan. During childhood, GH is a major determinant of acquisition of bone mass and in adult life, GH partly determines the rate of bone remodelling and therefore influences maintenance of bone mineral density (BMD). Insights into the importance of GH in these respects may be obtained by studies of BMD and indices of bone remodelling in GH deficiency (GHD) of adult-onset and childhood-onset. Adult-onset GHD, usually accompanied by other features of hypopituitarism, may be associated with osteopenia and an increased fracture risk. Postulated mechanisms include GHD and gonadal steroid deficiency of unknown duration; glucocorticoid and thyroxine replacement do not appear to exert a major role. GH replacement in adult-onset GHD results in an early increment in indices of bone remodelling which persists for up to 5 years; BMD increases by 0.5-1.0 SD in males and stabilizes in females over this time period. In adolescents with GHD who traditionally discontinue GH at completion of linear growth, BMD is substantially lower than peak bone mass for a young adult population. Studies addressing the effects of continuation of GH after achievement of final height are currently underway and will provide insights into the possible need to continue GH into adult life. Such studies may confirm a role for GH in promoting continued accrual of bone mass and thereby demonstrate that cessation of GH at achievement of final height, by limiting peak bone mass, may predispose to clinically significant osteoporosis in later life. In addition to the potential importance of GH for achievement of peak bone mass, there may be a superimposed accelerated loss of BMD with advancing age similar to the situation observed in adult-onset GHD. To date, this has been difficult to assess in adult GHD of childhood-onset because the relative contributions of low peak bone mass and increased loss of bone in later life could not be distinguished.  相似文献   

5.
The purpose of this study was to assess the long-term effects of aging and sex hormone deficiency on skeletal metabolism and body composition in rapidly growing male rats. Sprague-Dawley male rats were sham-operated (sham) or orchidectomized (ORX) at 3 months of age. Eight sham rats and eight ORX rats at each time point were serially sacrificed at 3, 4, 8, 12, 15, and 23 months of age. Bone mass in sham rats rapidly increased until 8 months of age, then slightly increased between 8 to 12 months of age; thereafter, an age-related decrease in bone mass was found between 12 to 23 months of age. In sham rats, bone formation parameters decreased between 3 and 8 months, and maintained at the lower level between 8 and 23 months of age, while bone resorption parameters decreased between 3 and 12 months, and thereafter, increased with age between 12 and 23 months of age. ORX significantly inhibited age-related gain in body weight, lean body mass, and cancellous and cortical bone mass and decreased peak bone mass (approximately 20% less versus sham). Further, we found that the lower bone and lean body mass in ORX rats was due to the lack of age-related gain rather than the net loss from basal controls. These data suggest that sex hormones are important factors for the accumulation of peak bone and lean body mass in male rats.  相似文献   

6.
It is well established that aging of the human skeleton includes the loss of bone mass or density, but little comparative information on age-related osteopenia in other primates is available. In order to determine whether bone loss occurs in normally locomoting nonhuman primates, radiographs of 139 rhesus monkey skeletons from the Cayo Santiago collection were examined, and measures of percent cortical bone (PCT) at the midshaft of second metacarpals, humeri, and femora were calculated. An age-related osteopenia was observed in the metacarpal of adult female macaques, although much individual variation was present. This variability could not be explained by reproductive history (number of offspring), matrilineal affiliation, or degree of osteoarthrosis. However, in a subsample of 15 animals, females who had given birth in the three months prior to death showed lower PCTs than those who had not conceived in the previous mating season. In adult males, PCT did not vary significantly with age, but males that weighed less and those with no/little osteoarthrosis showed lower PCTs than heavier or more arthritic animals, respectively. The multifactorial nature of the variation in PCT observed here suggests that similar processes of bone behavior are involved in the skeletal aging of both humans and rhesus monkeys.  相似文献   

7.
Remarkable changes occur in the mammalian skeleton prior to, during and after the reproductive cycle. Skeletal changes occur with ovarian maturation and initiation of menses and estrus in adolescence, which may result in a greater accumulation of skeletal mineral in the female vs the male skeleton. There is also some evidence to suggest an excess skeletal mass in young female experimental animals. In early pregnancy, growth, modeling and perhaps suppressed remodeling promote the accumulation of calcium. Some changes may also occur with the transition from pituitary to placental control of the pregnancy. In later pregnancy, an increase in bone turnover appears to coincide with fetal skeletal mineralization. Rapid and important changes occur in the skeleton and mineral metabolism in the transition from pregnancy to lactation as the mammary gland rather than the uterus draws on the maternal calcium stores. Lactational demands are met at least partially by a temporary demineralization of the skeleton, which is associated with increased bone modeling and remodeling. Endochondral growth almost ceases during lactation, but envelope-specific bone modeling and remodeling are greatly increased. This is generally associated with a loss of skeletal mass and density, more apparent at sites with less of a mechanical role (e.g. central metaphysis regions and the endocortical envelope). The post-lactational period is profoundly anabolic with substantial increases in bone formation, but blunted resorption at almost all skeletal envelopes. Skeletal mass is increased during this period and it is associated with improved skeletal mechanical properties. There are several important observations. 1) The nulliparous animal appears to have an excess skeletal mass to perhaps compensate for maternal metabolic inefficiency of the first reproductive cycle. 2) Changes in growth, modeling and remodeling occur at different times and at different skeletal envelopes during the reproductive cycle. These site-specific, temporal changes appear to be adaptations that facilitate the use of skeletal mineral while preserving mechanical competence. 3) After the first reproductive cycle, modeling and remodeling optimize the existing skeletal mass into a structure that better accommodates the prevailing mechanical environment. 4) The post-lactational period is profoundly anabolic and may provide new strategies for preservation of skeletal mass when reproductive capacity ceases.  相似文献   

8.
Osteoporosis most commonly affects postmenopausal women. Although men are also affected, women over 65 are 6 times more likely to develop osteoporosis than men of the same age. This is largely due to accelerated bone remodeling after menopause; however, the peak bone mass attained during young adulthood also plays an important role in osteoporosis risk. Multiple studies have demonstrated sexual dimorphisms in peak bone mass, and additionally, the female skeleton is significantly altered during pregnancy/lactation. Although clinical studies suggest that a reproductive history does not increase the risk of developing postmenopausal osteoporosis, reproduction has been shown to induce long-lasting alterations in maternal bone structure and mechanics, and the effects of pregnancy and lactation on maternal peak bone quality are not well understood. This study compared the structural and mechanical properties of male, virgin female, and post-reproductive female rat bone at multiple skeletal sites and at three different ages. We found that virgin females had a larger quantity of trabecular bone with greater trabecular number and more plate-like morphology, and, relative to their body weight, had a greater cortical bone size and greater bone strength than males. Post-reproductive females had altered trabecular microarchitecture relative to virgins, which was highly similar to that of male rats, and showed similar cortical bone size and bone mechanics to virgin females. This suggests that, to compensate for future reproductive bone losses, females may start off with more trabecular bone than is mechanically necessary, which may explain the paradox that reproduction induces long-lasting changes in maternal bone without increasing postmenopausal fracture risk.  相似文献   

9.
Nonhuman primate models of menopause workshop   总被引:1,自引:0,他引:1  
The Nonhuman Primate Models of Menopause Workshop was held on the National Institutes of Health campus in January 2001. The purpose of this workshop, sponsored by the National Institute on Aging, was to review what is known about the female reproductive aging process in various species of monkeys (particularly rhesus, baboons, cynomolgus, and chimpanzees), including hormone profiles during the menopausal transition, occurrence of hot flashes, extent of age-related and menopause-associated changes in hormone levels on metabolism, bone loss, and impaired cardiovascular and cognitive function. Many aspects of the female reproductive aging process appear to be concordant between humans and these monkey species, but several important features may be species-specific. Those features that appear to parallel human menopause and aging include general similarity of hormone profiles across the menopausal transition, progression to cycle termination through irregular cycles, declining fertility with age, age-related gains in weight and percentage body fat content (with tendencies toward insulin resistance and glucose intolerance), increased low-density lipoprotein cholesterol and decreased high-density lipoprotein cholesterol, declines in serum dehydroepiandrosterone, similarities in temperature-regulation systems, protective responses to estrogen replacement following ovariectomy in terms of bone metabolism, lipid profiles, and cognitive changes. Important differences include relatively short postmenopausal life span, timing in menopause-related changes in hormone secretion, and seasonal menstrual cycles. In addition, the question of whether ovariectomy in young adults is an appropriate model for the consequences of natural or surgical menopause in middle-aged and older adults is unresolved, and the numbers of older female animals available for research on menopause are very limited. The use of animal models is seen by workshop participants to be crucial for a mechanistic understanding of the human menopausal process and its connections to postmenopausal health problems; however, extensive in-depth and broad-based research is required to determine if nonhuman primates are appropriate models of human menopause.  相似文献   

10.
Osteoporosis is characterized by reduced bone density and strength. Bone mass peaks between age 30 and 40 and then declines. This can be accelerated by factors including menopause and insufficient dietary calcium. Hormone replacement therapy (HRT) is currently the standard treatment for osteoporosis. However, growing concern over potential side effects of HRT has driven a search for alternative therapies. A recent report 1 reveals a potential alternative to HRT: a gender-neutral synthetic steroid that increases bone mass and strength without affecting reproductive organs. This compound acts via a novel extranuclear sex steroid receptor signaling mechanism that has important implications for nuclear receptor biology and human health.  相似文献   

11.
Mechanisms of sex steroid effects on bone   总被引:17,自引:0,他引:17  
Sex steroids play a major role in the regulation of bone turnover. Thus, gonadectomy in either sex is associated with an increase in bone remodeling, increased bone resorption, and a relative deficit in bone formation, resulting in accelerated bone loss. Recent physiological studies have established an important role for estrogen in regulating bone turnover not only in females, but also in males. Studies in mice with knock out of the estrogen receptor, aromatase, or androgen receptor have provided important insights into the in vivo mechanisms of sex steroid action on bone. The cellular and molecular mediators of sex steroid effects on the bone-forming osteoblasts and bone-resorbing osteoclasts are also being increasingly better defined. Estrogen inhibits bone remodeling by concurrently suppressing osteoblastogenesis and osteoclastogenesis from marrow precursors. Both estrogen and androgens inhibit bone resorption via effects on the receptor activator of NF-kappaB ligand (RANKL)/RANK/osteoprotegerin system, as well as by reducing the production of a number of pro-resorptive cytokines, along with direct effects on osteoclast activity and lifespan. Sex steroid effects on bone formation are also likely mediated by multiple mechanisms, including a prolongation of osteoblast lifespan via non-genotropic mechanisms, as well as effects on osteoblast differentiation and function. These pleiotropic actions of sex steroids on virtually all aspects of bone metabolism belie the importance of the skeleton not only in providing structural support for the body and in locomotion, but also as a dynamic tissue responsive, among other things, to the reproductive needs of the organism for calcium.  相似文献   

12.
Reproduction is a period of high calcium demand in vertebrates; therefore, calcium deficiency can limit reproductive output in mammals. Nutritional analyses show that insects are a poor calcium source, suggesting that insectivorous species are more likely to be calcium deficient. During pregnancy, big brown bats Eptesicus fuscus consume between 8 and 18 times less calcium than they are estimated to require. To accommodate calcium demand during pregnancy, many mammals mobilize more calcium from the skeleton, and extensive bone loss has been observed in some bats during pregnancy. A conflict may arise between the female and developing embryo over allocation of limited calcium supplies, which could limit reproductive output with respect to offspring size, mass and number. The effects of calcium deficiency on these three factors were tested by providing pregnant captive big brown bats with either a calcium-deficient diet or a diet providing the daily calcium requirement, as estimated for pregnant big brown bats, from the time of capture until parturition. Neonates were compared between groups for size, mass and number per female, as were the effects of maternal mass and size on neonate mass and size. Maternal mass and litter mass were positively related for the calcium-deficient group, but not for the calcium-supplemented group. This suggests that there is some interaction between maternal mass and calcium availability, most likely due to the relationship between body mass and skeletal mass, and that calcium availability is limiting the overall biomass of young that a female can produce.  相似文献   

13.
Effect of treadmill exercise on bone mass in female rats.   总被引:4,自引:0,他引:4  
Increasing peak bone mass at skeletal maturity, minimizing bone loss during middle age and after menopause, and increasing bone mass and preventing falls in advanced age are important measures for preventing osteoporotic fractures in women. Exercise has generally been considered to have a positive influence on bone health. This paper reviews the effects of treadmill exercise on bone in young, adult, ovariectomized, and osteopenic female rats. Treadmill exercise increases cortical and cancellous bone mass of the tibia as a result of increased bone formation and decreased bone resorption in young and adult rats. The increase in lumbar bone mass seems to be more significant when long-term exercise is applied. Treadmill exercise prevents cancellous bone loss at the tibia as a result of suppressed bone resorption in ovariectomized rats, and increases bone mass of the tibia and mechanical strength of the femur, as a result of suppressed bone resorption and increased bone formation in osteopenic rats after ovariectomy. Treadmill exercise transiently decreases the serum calcium level as a result of accumulation of calcium in bone, resulting in an increase in serum 1,25-dihydroxyvitamin D(3) level and a decrease in serum parathyroid hormone level. We conclude that treadmill exercise may be useful to increase bone mass in young and adult rats, prevent bone loss in ovariectomized rats, and increase bone mass and bone strength in osteopenic rats, especially in the long bones at weight-bearing sites. Treadmill exercise may have a positive effect on the skeleton in young, and adult, ovariectomized, and osteopenic female rats.  相似文献   

14.
To examine the role of the estrogen receptor-alpha (ERalpha) during male skeletal development, bone density and structure of aged ERalphaKO mice and wild-type (WT) littermates were analyzed and skeletal changes in response to sex steroid deficiency and replacement were also studied. In comparison to WT, ERalphaKO mice had smaller and thinner bones, arguing for a direct role of ERalpha to obtain full skeletal size in male mice. However, male ERalphaKO mice had significantly more trabecular bone as assessed both by pQCT and histomorphometry, indicating that ERalpha is not essential to maintain cancellous bone mass. Six weeks following orchidectomy (ORX), both WT and ERalphaKO mice showed high-turnover osteoporosis as revealed by increases in serum osteocalcin and decreases in trabecular (-38% and -58% in WT and ERalphaKO, respectively) and cortical bone density (-5% and -4% in WT and ERalphaKO, respectively). Administration of testosterone propionate (T, 5 mg/kg/day) completely prevented bone loss both in ERalphaKO and in WT mice. As expected, estradiol (E2, 60 microg/kg/day) replacement did not prevent cancellous bone loss in ORX ERalphaKO mice. However, E2 stimulated bone formation at the endocortical surface in ORX ERalphaKO, suggesting that osteoblasts may respond to nonERalpha-mediated estrogen action. In conclusion, although functional ERalpha may play a significant role during male skeletal development, this receptor does not seem essential for androgen-mediated skeletal maintenance in older male mice.  相似文献   

15.
Reduction in levels of sex hormones at menopause in women is associated with two common, major outcomes, the accumulation of white adipose tissue, and the progressive loss of bone because of excess osteoclastic bone resorption exceeding osteoblastic bone formation. Current antiresorptive therapies can reduce osteoclastic activity but have only limited capacity to stimulate osteoblastic bone formation and restore lost skeletal mass. Likewise, the availability of effective pharmacological weight loss treatments is currently limited. Here we demonstrate that conditional deletion of hypothalamic neuropeptide Y2 receptors can prevent ongoing bone loss in sex hormone-deficient adult male and female mice. This benefit is attributable solely to activation of an anabolic osteoblastic bone formation response that counterbalances persistent elevation of bone resorption, suggesting the Y2-mediated anabolic pathway to be independent of sex hormones. Furthermore, the increase in fat mass that typically occurs after ovariectomy is prevented by germ line deletion of Y2 receptors, whereas in male mice body weight and fat mass were consistently lower than wild-type regardless of sex hormone status. Therefore, this study indicates a role for Y2 receptors in the accumulation of adipose tissue in the hypogonadal state and demonstrates that hypothalamic Y2 receptors constitutively restrain osteoblastic activity even in the absence of sex hormones. The increase in bone formation after release of this tonic inhibition suggests a promising new avenue for osteoporosis treatment.  相似文献   

16.
Gonadotropin-releasing hormone-1 (GnRH-1) neurons play critical roles in the development and maintenance of reproductive function in all vertebrates. Due to a truncation in the GnRH-1 gene, hypogonadal (hpg) mice are unable to synthesize GnRH-1 and are infertile. These animals develop in the complete absence of exposure to gonadal steroid hormones, making them an interesting model for understanding brain sexual differentiation and dimorphism. We studied expression of the estrogen receptors (ERs) alpha and beta in the medial anteroventral periventricular nucleus (mAVPV), an important reproductive neuroendocrine brain region, in wild-type and hpg mice of both sexes. Adult wild-type and hpg mice of the same genetic background were used to quantify numbers of ERalpha and ERbeta immunoreactive cells in the mAVPV using a stereologic approach. Quantitative analyses showed that ERalpha cell numbers were significantly higher in hpg than wild-type mice, irrespective of sex. Qualitatively, ERalpha-immunoreactive cells were concentrated more densely along the ventricular zone of the AVPV of wild-type female mice compared with wild-type male mice or hpg male and female mice. No ERbeta-immunoreactive cells were detected in the mAVPV of any mice, a result that was surprising because ERbeta expression is abundant in the mAVPV of rats. These results on ERalpha provide additional evidence that the female brain is not the "default" organizational pattern, because neither ERalpha cell number nor its distribution in hpg mice, which develops with a deficiency of reproductive hormones, resembles that of the wild-type female mouse. Differences in ERalpha expression may be due in part to the absence of gonadal steroid hormones, although they more likely to also involve other factors, potentially GnRH itself.  相似文献   

17.
Declining adrenal androgens: an association with bone loss in aging women   总被引:2,自引:0,他引:2  
Bone loss in aging women is a major contributing factor to the onset of osteoporosis. To determine whether a decline in adrenal androgen output might be important in the loss of bone with age, we studied a highly selected group of 14 women, average age 70, and measured adrenal androgens in relationship to trabecular bone density. Dehydroepiandrosterone sulfate (DHEAS) levels were used as a marker of adrenal sex steroid output while quantitative, computerized tomography was used to determine trabecular bone density. Our results showed that both bone density (r = -0.69, P less than 0.01) and DHEAS levels (r = -0.68, P less than 0.01) declined with age, and that DHEAS was positively correlated with bone density (r = 0.66, P = 0.01). These data emphasize the association of declining adrenal sex steroid production with declining bone density during the process of aging.  相似文献   

18.
Prenatal testosterone exposure impacts postnatal reproductive and endocrine function, leading to alterations in sex steroid levels. Because gonadal steroids are key regulators of cardiovascular function, it is possible that alteration in sex steroid hormones may contribute to development of hypertension in prenatally testosterone-exposed adults. The objectives of this study were to evaluate whether prenatal testosterone exposure leads to development of hypertension in adult males and females and to assess the influence of gonadal hormones on arterial pressure in these animals. Offspring of pregnant rats treated with testosterone propionate or its vehicle (controls) were examined. Subsets of male and female offspring were gonadectomized at 7 wk of age, and some offspring from age 7 to 24 wk received hormone replacement, while others did not. Testosterone exposure during prenatal life significantly increased arterial pressure in both male and female adult offspring; however, the effect was greater in males. Prenatal androgen-exposed males and females had more circulating testosterone during adult life, with no change in estradiol levels. Gonadectomy prevented hyperandrogenism and also reversed hypertension in these rats. Testosterone replacement in orchiectomized males restored hypertension, while estradiol replacement in ovariectomized females was without effect. Steroidal changes were associated with defective expression of gonadal steroidogenic genes, with Star, Sf1, and Hsd17b1 upregulation in testes. In ovaries, Star and Cyp11a1 genes were upregulated, while Cyp19 was downregulated. This study showed that prenatal testosterone exposure led to development of gonad-dependent hypertension during adult life. Defective steroidogenesis may contribute in part to the observed steroidal changes.  相似文献   

19.
The rapid activation of stress-responsive neuroendocrine systems is a basic reaction of animals to perturbations in their environment. One well-established response is that of the hypothalamo-pituitary-adrenal (HPA) axis. In rats, corticosterone is the major adrenal steroid secreted and is released in direct response to adrenocorticotropin (ACTH) secreted from the anterior pituitary gland. ACTH in turn is regulated by the hypothalamic factor, corticotropin-releasing hormone. A sex difference exists in the response of the HPA axis to stress, with females reacting more robustly than males. It has been demonstrated that in both sexes, products of the HPA axis inhibit reproductive function. Conversely, the sex differences in HPA function are in part due to differences in the circulating gonadal steroid hormone milieu. It appears that testosterone can act to inhibit HPA function, whereas estrogen can enhance HPA function. One mechanism by which androgens and estrogens modulate stress responses is through the binding to their cognate receptors in the central nervous system. The distribution and regulation of androgen and estrogen receptors within the CNS suggest possible sites and mechanisms by which gonadal steroid hormones can influence stress responses. In the case of androgens, data suggest that the control of the hypothalamic paraventricular nucleus is mediated trans-synaptically. For estrogen, modulation of the HPA axis may be due to changes in glucocorticoid receptor-mediated negative feedback mechanisms. The results of a variety of studies suggest that gonadal steroid hormones, particularly testosterone, modulate HPA activity in an attempt to prevent the deleterious effects of HPA activation on reproductive function.  相似文献   

20.
Socially controlled sex change in teleosts is a dramatic example of adaptive reproductive plasticity. In many cases, the occurrence of sex change is triggered by a change in the social context, such as the disappearance of the dominant individual. The orange-spotted grouper Epinephelus coioides is a typical protogynous hermaphrodite fish that changes sex from female to male and remains male throughout its life span. In this study, male-to-female sex reversal in male Epinephelus coioides was successfully induced by social isolation. The body length and mass, gonadal change, serum sex steroid hormone levels and sex-related gene expression patterns during the process of socially controlled male-to-female sex reversal in E. coioides were systematically examined. This report investigates the physiological mechanisms of the socially controlled male-to-female sex reversal process in a protogynous hermaphrodite grouper species. The results enable us to study the physiological control of sex change, not only from female to male, but also from male to female.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号