首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants are particularly prone to photo-oxidative damage caused by excess light. Photoprotection is essential for photosynthesis to proceed in oxygenic environments either by scavenging harmful reactive intermediates or preventing their accumulation to avoid photoinhibition. Carotenoids play a key role in protecting photosynthesis from the toxic effect of over-excitation; under excess light conditions, plants accumulate a specific carotenoid, zeaxanthin, that was shown to increase photoprotection. In this work we genetically dissected different components of zeaxanthin-dependent photoprotection. By using time-resolved differential spectroscopy in vivo, we identified a zeaxanthin-dependent optical signal characterized by a red shift in the carotenoid peak of the triplet-minus-singlet spectrum of leaves and pigment-binding proteins. By fractionating thylakoids into their component pigment binding complexes, the signal was found to originate from the monomeric Lhcb4–6 antenna components of Photosystem II and the Lhca1–4 subunits of Photosystem I. By analyzing mutants based on their sensitivity to excess light, the red-shifted triplet-minus-singlet signal was tightly correlated with photoprotection in the chloroplasts, suggesting the signal implies an increased efficiency of zeaxanthin in controlling chlorophyll triplet formation. Fluorescence-detected magnetic resonance analysis showed a decrease in the amplitude of signals assigned to chlorophyll triplets belonging to the monomeric antenna complexes of Photosystem II upon zeaxanthin binding; however, the amplitude of carotenoid triplet signal does not increase correspondingly. Results show that the high light-induced binding of zeaxanthin to specific proteins plays a major role in enhancing photoprotection by modulating the yield of potentially dangerous chlorophyll-excited states in vivo and preventing the production of singlet oxygen.  相似文献   

2.
Non-photochemical quenching (NPQ) of excess absorbed light energy is a fundamental process that regulates photosynthetic light harvesting in higher plants. Among several proposed NPQ mechanisms, aggregation-dependent quenching (ADQ) and charge transfer quenching have received the most attention. In vitro spectroscopic features of both mechanisms correlate with very similar signals detected in more intact systems and in vivo, where full NPQ can be observed. A major difference between the models is the proposed quenching site, which is predominantly the major trimeric light-harvesting complex II in ADQ and exclusively monomeric Lhcb proteins in charge transfer quenching. Here, we studied ADQ in both monomeric and trimeric Lhcb proteins, investigating the activities of each antenna subunit and their dependence on zeaxanthin, a major modulator of NPQ in vivo. We found that monomeric Lhcb proteins undergo stronger quenching than light-harvesting complex II during aggregation and that this is enhanced by binding to zeaxanthin, as occurs during NPQ in vivo. Finally, the analysis of Lhcb5 mutants showed that chlorophyll 612 and 613, in close contact with lutein bound at site L1, are important facilitators of ADQ.  相似文献   

3.
Plants protect themselves from excess absorbed light energy through thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). The major component of NPQ, qE, is induced by high transthylakoid ΔpH in excess light and depends on the xanthophyll cycle, in which violaxanthin and antheraxanthin are deepoxidized to form zeaxanthin. To investigate the xanthophyll dependence of qE, we identified suppressor of zeaxanthin-less1 (szl1) as a suppressor of the Arabidopsis thaliana npq1 mutant, which lacks zeaxanthin. szl1 npq1 plants have a partially restored qE but lack zeaxanthin and have low levels of violaxanthin, antheraxanthin, and neoxanthin. However, they accumulate more lutein and α-carotene than the wild type. szl1 contains a point mutation in the lycopene β-cyclase (LCYB) gene. Based on the pigment analysis, LCYB appears to be the major lycopene β-cyclase and is not involved in neoxanthin synthesis. The Lhcb4 (CP29) and Lhcb5 (CP26) protein levels are reduced by 50% in szl1 npq1 relative to the wild type, whereas other Lhcb proteins are present at wild-type levels. Analysis of carotenoid radical cation formation and leaf absorbance changes strongly suggest that the higher amount of lutein substitutes for zeaxanthin in qE, implying a direct role in qE, as well as a mechanism that is weakly sensitive to carotenoid structural properties.  相似文献   

4.
The regulation of light harvesting in higher plant photosynthesis, defined as stress-dependent modulation of the ratio of energy transfer to the reaction centers versus heat dissipation, was studied by means of carotenoid biosynthesis mutants and recombinant light harvesting complexes (LHCs) with modified chromophore binding. The npq2 mutant of Arabidopsis thaliana, blocked in the biosynthesis of violaxanthin and thus accumulating zeaxanthin, was shown to have a lower fluorescence yield of chlorophyll in vivo and, correspondingly, a higher level of energy dissipation, with respect to the wild-type strain and npq1 mutant, the latter of which is incapable of zeaxanthin accumulation. Experiments on purified thylakoid membranes from all three mutants showed that the major source of the difference between the npq2 and wild-type preparations was a change in pigment to protein interactions, which can explain the lower chlorophyll fluorescence yield in the npq2 samples. Analysis of the xanthophyll binding LHC proteins showed that the Lhcb5 photosystem II subunit (also called CP26) undergoes a change in its pI upon binding of zeaxanthin. The same effect was observed in wild-type CP26 upon treatment that leads to the accumulation of zeaxanthin in the membrane and was interpreted as the consequence of a conformational change. This hypothesis was confirmed by the analysis of two recombinant proteins obtained by overexpression of the Lhcb5 apoprotein in Escherichia coli and reconstitution in vitro with either violaxanthin or zeaxanthin. The V and Z containing pigment-protein complexes obtained by this procedure showed different pIs and high and low fluorescence yields, respectively. These results confirm that LHC proteins exist in multiple conformations, an idea suggested by previous spectroscopic measurements (Moya et al., 2001), and imply that the switch between the different LHC protein conformations is activated by the binding of zeaxanthin to the allosteric site L2. The results suggest that the quenching process induced by the accumulation of zeaxanthin contributes to qI, a component of NPQ whose origin was previously poorly understood.  相似文献   

5.
The conversion of violaxanthin to zeaxanthin is essentially required for the pH-regulated dissipation of excess light energy in the antenna of photosystem II. Violaxanthin is bound to each of the antenna proteins of both photosystems. Former studies with recombinant Lhcb1 and different Lhca proteins implied that each antenna protein contributes specifically to violaxanthin conversion related to protein-specific affinities of the different violaxanthin binding sites. We investigated the violaxanthin de-epoxidation in the minor antenna proteins of photosystem II, Lhcb4-6. Recombinant proteins were reconstituted with different xanthophyll mixtures to study the conversion of violaxanthin at different xanthophyll binding sites in these proteins. The extent and kinetics of violaxanthin de-epoxidation were found to be dependent on the respective protein and, for each protein, also on the binding site of violaxanthin. In particular, violaxanthin bound to Lhcb4 was nearly inconvertible for de-epoxidation, whereas violaxanthin bound to Lhcb5 was fully convertible but with slow kinetics. Lhcb6 exhibited heterogeneous violaxanthin conversion characteristics, which could be assigned to different populations of reconstituted Lhcb6 complexes with respect to violaxanthin binding sites. The results support the proposed different binding affinities of violaxanthin to the three putative violaxanthin binding sites (V1, N1, and L2) in antenna proteins. Under consideration of former studies with Lhcb1 and Lhca proteins, the data imply that violaxanthin bound to the V1 and N1 binding site of antenna proteins is easily accessible for de-epoxidation in all antenna proteins, whereas violaxanthin bound to L2 is either only slowly or not convertible to zeaxanthin, depending on the respective protein.  相似文献   

6.
Moya I  Silvestri M  Vallon O  Cinque G  Bassi R 《Biochemistry》2001,40(42):12552-12561
We have studied the time-resolved fluorescence properties of the light-harvesting complexes (Lhc) of photosystem II (Lhcb) in order to obtain information on the mechanism of energy dissipation (non-photochemical quenching) which is correlated to the conversion of violaxanthin to zeaxanthin in excess light conditions. The chlorophyll fluorescence decay of Lhcb proteins LHCII, CP29, CP26, and CP24 in detergent solution is mostly determined by two lifetime components of 1.2-1.5 and 3.6-4 ns while the contribution of the faster component is higher in CP29, CP26, and CP24 with respect to LHCII. The xanthophyll composition of Lhc proteins affects the ratio of the lifetime components: when zeaxanthin is bound into the site L2 of LHCII, the relative amplitude of the faster component is increased and, consequently, the chlorophyll fluorescence quenching is enhanced. Analysis of quenching in mutants of Arabidopsis thaliana, which incorporate either violaxanthin or zeaxanthin in their Lhc proteins, shows that the extent of quenching is enhanced in the presence of zeaxanthin. The origin of the two fluorescence lifetimes was analyzed by their temperature dependence: since lifetime heterogeneity was not affected by cooling to 77 K, it is concluded that each lifetime component corresponds to a distinct conformation of the Lhc proteins. Upon incorporation of Lhc proteins into liposomes, a quenching of chlorophyll fluorescence was observed due to shortening of all their lifetime components: this indicates that the equilibrium between the two conformations of Lhcb proteins is displaced toward the quenched conformation in lipid membranes or thylakoids with respect to detergent solution. By increasing the protein density in the liposomes, and therefore the probability of protein-protein interactions, a further decrease of fluorescence lifetimes takes place down to values typical of quenched leaves. We conclude that at least two major factors determine the quenching of chlorophyll fluorescence in Lhcb proteins, i.e., intrasubunit conformational change and intersubunit interactions within the lipid membranes, and that these processes are both important in the photoprotection mechanism of nonphotochemical quenching in vivo.  相似文献   

7.
Etiolated seedlings of wild type and the chlorina f2 mutant of barley (Hordeum vulgare) were exposed to greening at either 5°C or 20°C and continuous illumination varying from 50 to 800 μmol m−2 s−1. Exposure to either moderate temperature and high light or low temperature and moderate light inhibited chlorophyll a and b accumulation in the wild type and in the f2 mutant. Continuous illumination under these greening conditions resulted in transient accumulations of zeaxanthin, concomitant transient decreases in violaxanthin, and fluctuations in the epoxidation state of the xanthophyll pool. Photoinhibition-induced xanthophyll-cycle activity was detectable after only 3 h of greening at 20°C and 250 μmol m−2 s−1. Immunoblot analyses of the accumulation of the 14-kD early light-inducible protein but not the major (Lhcb2) or minor (Lhcb5) light-harvesting polypeptides demonstrated transient kinetics similar to those observed for zeaxanthin accumulation during greening at either 5°C or 20°C for both the wild type and the f2 mutant. Furthermore, greening of the f2 mutant at either 5°C or 20°C indicated that Lhcb2 is not essential for the regulation of the xanthophyll cycle in barley. These results are consistent with the thesis that early light-inducible proteins may bind zeaxanthin as well as other xanthophylls and dissipate excess light energy to protect the developing photosynthetic apparatus from excess excitation. We discuss the role of energy balance and photosystem II excitation pressure in the regulation of the xanthophyll cycle during chloroplast biogenesis in wild-type barley and the f2 mutant.  相似文献   

8.
The generation of nonphotochemical quenching of chlorophyll fluorescence (qN) in the antenna of photosystem II (PSII) is accompanied by the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin. The function of zeaxanthin in two mechanisms of qN, energy-dependent quenching (qE) and photoinhibitory quenching (qI), was investigated by measuring the de-epoxidation state in the antenna subcomplexes of PSII during the generation and relaxation of qN under varying conditions. Three different antenna subcomplexes were separated by isoelectric focusing: Lhcb1/2/3, Lhcb5/6, and the Lhcb4/PSII core. Under all conditions, the highest de-epoxidation state was detected in Lhcb1/2/3 and Lhcb5/6. The kinetics of de-epoxidation in these complexes were found to be similar to the formation of qE. The Lhcb4/PSII core showed the most pronounced differences in the de-epoxidation state when illumination with low and high light intensities was compared, correlating roughly with the differences in qI. Furthermore, the epoxidation kinetics in the Lhcb4/PSII core showed the most pronounced differences of all subcomplexes when comparing the epoxidation after either moderate or very strong photoinhibitory preillumination. Our data support the suggestion that zeaxanthin formation/epoxidation in Lhcb1-3 and Lhcb5/6 may be related to qE, and in Lhcb4 (and/or PSII core) to qI.  相似文献   

9.
Differential redox regulation of thylakoid phosphoproteins was studied in winter rye plants in vivo. The redox state of chloroplasts was modulated by growing plants under different light/temperature conditions and by transient shifts to different light/temperature regimes. Phosphorylation of PSII reaction centre proteins D1 and D2, the chlorophyll a binding protein CP43, the major chlorophyll a/b binding proteins Lhcb1 and Lhcb2 (LHCII) and the minor light‐harvesting antenna protein CP29 seem to belong to four distinct regulatory groups. Phosphorylation of D1 and D2 was directly dependent on the reduction state of the plastoquinone pool. CP43 protein phosphorylation generally followed the same pattern, but often remained phosphorylated even in darkness. Phosphorylation of CP29 occurred upon strong reduction of the plastoquinone pool, and was further enhanced by low temperatures. In vitro studies further demonstrated that CP29 phosphorylation is independent of the redox state of both the cytochrome b6/f complex and the thiol compounds. Complete phosphorylation of Lhcb1 and 2 proteins, on the contrary, required only modest reduction of the plastoquinone pool, and was subject to inhibition upon increase in the thiol redox state of the stroma. Furthermore, the reversible phosphorylation of Lhcb1 and 2 proteins appeared to be an extremely dynamic process, being rapidly modulated by short‐term fluctuations in chloroplast redox conditions.  相似文献   

10.
Yajie Zhang  Cheng Liu  Shuang Liu  Tingyun Kuang 《BBA》2008,1777(6):479-487
Three isoforms of the major light-harvesting chlorophyll (Chl) a/b complexs of photosystem II (LHCIIb) in the pea, namely, Lhcb1, Lhcb2, and Lhcb3, were obtained by overexpression of apoprotein in Escherichia coli and by successfully refolding these isoforms with thylakoid pigments in vitro. The sequences of the protein, pigment stoichiometries, spectroscopic characteristics, thermo- and photostabilities of different isoforms were analysed. Comparison of their spectroscopic properties and structural stabilities revealed that Lhcb3 differed strongly from Lhcb1 and Lhcb2 in both respects. It showed the lowest Qy transition energy, with its reddest absorption about 2 nm red-shifted, and the highest photostability under strong illuminations. Among the three isoforms, Lhcb 2 showed lowest thermal stability regarding energy transfer from Chl b to Chl a in the complexes, which implies that the main function of Lhcb 2 under high temperature stress is not the energy transfer.  相似文献   

11.
The light-harvesting chlorophyll a/b complex (LHCIIb) spontaneously assembles from its pigment and protein components in detergent solution. The formation of functional LHCIIb can be detected in time-resolved experiments by monitoring the establishment of excitation energy transfer from protein-bound chlorophyll b to chlorophyll a. To detect the possible initial steps of chlorophyll binding that may not yet give rise to chlorophyll b-to-a energy transfer, we have monitored LHCIIb assembly by measuring excitation energy transfer from a fluorescent dye, covalently bound to the protein, to the chlorophylls. In order to exclude interference of the dye with protein folding or pigment binding, the experiments were repeated with the dye bound to four different positions in the protein. Initial chlorophyll binding occurs at roughly the same rate as the establishment of chlorophyll b-to-a energy transfer, in the range of 10 s. However, under limiting chlorophyll concentrations, the binding of chlorophyll a clearly precedes that of chlorophyll b. The complex containing the apoprotein, carotenoids, and chlorophyll a but no chlorophyll b is biochemically unstable and therefore cannot be isolated. However, chlorophyll a binding into this weak complex is specific, as it does not occur with a C-terminal deletion mutant of Lhcb1 which still contains most chlorophyll-ligating amino acids but is unable to fold and assemble into functional LHCIIb. As a scenario for LHCIIb assembly in the thylakoid, we propose the initial formation of a labile Lhcb1-chlorophyll a-carotenoid complex that then becomes stabilized by the binding (or formation in situ) of chlorophyll b.  相似文献   

12.
Escherichia coli cells that express the full six carotenoid biosynthesis genes (crtE, crtB, crtI, crtY, crtZ, and crtX) of the bacterium Pantoea ananatis have been shown to biosynthesize zeaxanthin 3,3′-β-d-diglucoside. We found that this recombinant E. coli also produced a novel carotenoid glycoside that contained a rare carbohydrate moiety, quinovose (chinovose; 6-deoxy-d-glucose), which was identified as 3-β-glucosyl-3′-β-quinovosyl zeaxanthin by chromatographic and spectroscopic analyses. The chirality of the aglycone of these zeaxanthin glycosides had been shown to be 3R,3′R, in which the hydroxyl groups were formed with the CrtZ enzyme. It was here demonstrated that zeaxanthin synthesized from β-carotene with CrtR or CYP175A1, the other hydroxylase with similar catalytic function to CrtZ, possessed the same stereochemistry. It was also suggested that the singlet oxygen-quenching activity of zeaxanthin 3,3′-β-d-diglucoside, which has a chemical structure close to the new carotenoid glycoside, was superior to that of zeaxanthin.  相似文献   

13.
14.
Proteomics of Chlamydomonas reinhardtii light-harvesting proteins   总被引:1,自引:0,他引:1  
With the recent development of techniques for analyzing transmembrane thylakoid proteins by two-dimensional gel electrophoresis, systematic approaches for proteomic analyses of membrane proteins became feasible. In this study, we established detailed two-dimensional protein maps of Chlamydomonas reinhardtii light-harvesting proteins (Lhca and Lhcb) by extensive tandem mass spectrometric analysis. We predicted eight distinct Lhcb proteins. Although the major Lhcb proteins were highly similar, we identified peptides which were unique for specific lhcbm gene products. Interestingly, lhcbm6 gene products were resolved as multiple spots with different masses and isoelectric points. Gene tagging experiments confirmed the presence of differentially N-terminally processed Lhcbm6 proteins. The mass spectrometric data also revealed differentially N-terminally processed forms of Lhcbm3 and phosphorylation of a threonine residue in the N terminus. The N-terminal processing of Lhcbm3 leads to the removal of the phosphorylation site, indicating a potential novel regulatory mechanism. At least nine different lhca-related gene products were predicted by comparison of the mass spectrometric data against Chlamydomonas expressed sequence tag and genomic databases, demonstrating the extensive variability of the C. reinhardtii Lhca antenna system. Out of these nine, three were identified for the first time at the protein level. This proteomic study demonstrates the complexity of the light-harvesting proteins at the protein level in C. reinhardtii and will be an important basis of future functional studies addressing this diversity.  相似文献   

15.
The light-harvesting antenna of higher plant photosystem II (LHCII) has the intrinsic capacity to dissipate excess light energy as heat in a process termed nonphotochemical quenching (NPQ). Recent studies suggest that zeaxanthin and lutein both contribute to the rapidly relaxing component of NPQ, qE, possibly acting in the minor monomeric antenna complexes and the major trimeric LHCII, respectively. To distinguish whether zeaxanthin and lutein act independently as quenchers at separate sites, or alternatively whether zeaxanthin fulfills an allosteric role regulating lutein-mediated quenching, the kinetics of qE and the qE-related conformational changes (ΔA535) were compared in Arabidopsis (Arabidopsis thaliana) mutant/antisense plants with altered contents of minor antenna (kolhcb6, aslhcb4), trimeric LHCII (aslhcb2), lutein (lut2, lut2npq1, lut2npq2), and zeaxanthin (npq1, npq2). The kinetics of the two components of NPQ induction arising from zeaxanthin-independent and zeaxanthin-dependent qE were both sensitive to changes in the protein composition of the photosystem II antenna. The replacement of lutein by zeaxanthin or violaxanthin in the internal Lhcb protein-binding sites affected the kinetics and relative amplitude of each component as well as the absolute chlorophyll fluorescence lifetime. Both components of qE were characterized by a conformational change leading to nearly identical absorption changes in the Soret region that indicated the involvement of the LHCII lutein 1 domain. Based on these observations, we suggest that both components of qE arise from a common quenching mechanism based upon a conformational change within the photosystem II antenna, optimized by Lhcb subunit-subunit interactions and tuned by the synergistic effects of external and internally bound xanthophylls.The chlorophyll a/b-binding light-harvesting antenna of photosystem II (PSII of higher plants is responsible for the efficient collection and transfer of excitation energy to the reaction center. The PSII antenna comprises the main trimeric light-harvesting complex, LHCII, which is composed of the Lhcb1 to -3 polypeptides, and the minor light-harvesting complexes, CP29, CP26, and CP24, composed of Lhcb4, -5, and -6, respectively. In Arabidopsis (Arabidopsis thaliana), four LHCII trimers associate with two copies each of CP24, CP26, and CP29 and a core dimer of PSII (CP43/D1/D2/CP47) to form the C2S2M2 LHCII-PSII supercomplex (Dekker and Boekema, 2005). In addition, depending upon the growth conditions, two or three extra LHCII trimers per PSII may be present in LHCII-only regions of the grana, providing additional light-harvesting capacity.The PSII antenna is a highly dynamic system that is able to tune the amount of excitation delivered to the PSII reaction center to match physiological need (Horton et al., 1996). The regulation of energy flow occurs by control of the thermal dissipation of excess excitation within the PSII antenna, a process termed nonphotochemical quenching (NPQ). NPQ is heterogeneous, comprising a slowly reversible qI component and a rapidly reversible qE component (Horton et al., 1996). The trigger for qE is the buildup of the transmembrane proton gradient or ΔpH (Briantais et al., 1979). The ΔpH is sensed by the PsbS protein (Li et al., 2004), without which the rapidly reversible behavior of NPQ is lost (Li et al., 2000). Full expression of qE in vivo is associated with the enzymatic deepoxidation of the epoxy-xanthophyll violaxanthin to zeaxanthin, via the action of the xanthophyll cycle (Demmig-Adams, 1990). The majority of the photoconvertible xanthophyll cycle pool is associated with trimeric LHCII, bound at the external V1 binding site (Ruban et al., 1999, 2002a; Caffarri et al., 2001; Liu et al., 2004). Trimeric LHCII binds two other types of xanthophylls internally: two all-trans-luteins at the L1 and L2 sites associated with the central membrane-spanning α-helices; and a 9-cis-neoxanthin at the N1 site associated with the C-helix chlorophyll b domain (Liu et al., 2004). The minor monomeric complexes CP24, CP26, and CP29 all bind lutein at the L1 site. In addition, CP29 binds two xanthophyll cycle carotenoids and one-half to one neoxanthin, CP24 binds two xanthophyll cycle carotenoids, while CP26 binds one xanthophyll cycle carotenoid and one neoxanthin (Peter and Thornber, 1991; Bassi et al., 1993; Ruban et al., 1994, 1999; Morosinotto et al., 2002).Although there is strong evidence that qE occurs in the PSII antenna light-harvesting proteins and that xanthophylls are involved, the mechanism of energy dissipation remains unclear. There is evidence for two distinct quenching mechanisms, one involving zeaxanthin (type I) and the other lutein (type II). In the type I mechanism, it is proposed that qE obligatorily depends upon zeaxanthin acting as a quencher of excited chlorophyll via the formation of a charge transfer state. Evidence for type I is the formation of a carotenoid radical cation absorbing at approximately 1,000 nm that correlates with the extent of qE (Holt et al., 2005). Recently, evidence was obtained that formation of the zeaxanthin radical cation occurs exclusively at the L2 binding site of the minor antenna complexes (Ahn et al., 2008; Avenson et al., 2008), quenching therefore requiring reversible insertion of zeaxanthin into this internal site. Because the effect of this cation on the excited-state lifetime of the minor antenna complexes was found to be very small, it was suggested that in vivo, under the influence of the ΔpH, a large population of complexes would adopt a conformation in which this species could form (Avenson et al., 2008). Evidence was also obtained that a zeaxanthin radical cation may form in trimeric LHCII (Amarie et al., 2007). Again, the effect on the chlorophyll excited-state lifetime was very small, leading these authors to conclude that the type I mechanism could not be responsible for qE (Amarie et al., 2007; Dreuw and Wormit, 2008).In the type II mechanism, qE is an inbuilt property of LHCII proteins; a protein conformational change alters the configuration of bound pigments and results in the xanthophyll bound at the L1 site (normally lutein) becoming an effective quencher of chlorophyll excited states (Ruban et al., 2007; Ilioaia et al., 2008). Evidence for a type II mechanism came from studies of trimeric LHCII aggregates (Ruban et al., 2007). Here, it was concluded that energy dissipation occurs by energy transfer from chlorophyll a to the S1 state (2Ag1) of lutein bound at the L1 site. Notably, this quenching mechanism decreases the chlorophyll excited-state lifetime by a magnitude sufficient to fully account for qE in vivo. A change in the conformation of another LHCII-bound xanthophyll (neoxanthin) correlates with the extent of quenching. This conformational change takes place in vivo with an amplitude that correlates with the amount of qE. In the model for type II quenching proposed by Horton and coworkers (1991, 2005), zeaxanthin acts not as a quencher but as an allosteric modulator of the ΔpH sensitivity of this intrinsic LHCII quenching process.Although the type I and type II mechanisms involve different xanthophylls operating at different sites, there are similarities: in particular, both are proposed to involve a ΔpH-triggered, PsbS-mediated conformational change (Ruban et al., 2007; Ahn et al., 2008). Indeed, it is possible that both mechanisms contribute to in vivo qE, since the process occurs in both the presence and absence of zeaxanthin (Adams et al., 1990; Crouchman et al., 2006). The crucial question is whether zeaxanthin-dependent and zeaxanthin-independent qE arise from the same mechanism (type II) or from two different ones (types I and II, respectively). The kinetics of NPQ formation upon the illumination of dark-adapted leaves comprise two components: the first forms rapidly and is zeaxanthin independent; the second, slower component correlates with violaxanthin deepoxidation and therefore is described as zeaxanthin dependent (Adams et al., 1990; Ruban and Horton, 1999). The two components of NPQ formation are of the qE type: both relax rapidly upon darkening (Adams et al., 1990); both are dependent upon PsbS (Li et al., 2000); and both are enhanced by PsbS overexpression (Li et al., 2002; Crouchman et al., 2006). Investigation of these kinetics provides an opportunity to determine whether a single mechanism can account for qE and to give clues to which type of mechanism is involved. Here, we test the hypothesis that the two components arise from different mechanisms: the zeaxanthin-dependent component arising in the minor monomeric antenna by a type I mechanism (Gilmore et al., 1998; Ahn et al., 2008; Avenson et al., 2008), and the zeaxanthin-independent component arising in the major trimeric LHCII by the type II mechanism. An alternative explanation for zeaxanthin-independent qE, at least under low-light conditions, when qE forms transiently, is that it is caused by quenching in the PSII reaction center (Finazzi et al., 2004). Several predictions emerge from this hypothesis. First, the removal of certain Lhcb proteins by mutation would differentially affect the two components of qE. Second, because the two components would be additive and could not compensate for the loss of one another (Niyogi et al., 1998; Pogson et al., 1998), they should each contribute a discrete component to the kinetics of qE formation and relaxation. Third, in mutants lacking lutein, the capacity of the type II mechanism would be reduced, while the zeaxanthin-dependent component would be unaffected. Finally, the two components may be expected to be characterized by different absorption changes in the Soret region, which reflect changes in the absorption spectra of bound pigments brought about by conformational changes within the PSII antenna upon qE formation (Ruban et al., 1993a, 1993b, 2002b; Bilger and Björkman, 1994). We tested this hypothesis by analysis of qE kinetics, fluorescence lifetimes, and qE-related absorption difference spectra. Contrary to the above predictions, the data indicated that both steady-state and transient qE arise from a common mechanism within the PSII antenna, in both the presence and absence of zeaxanthin.  相似文献   

16.
In this article we report the characterization of the energy transfer process in the reconstituted isoforms of the plant light-harvesting complex II. Homotrimers of recombinant Lhcb1 and Lhcb2 and monomers of Lhcb3 were compared to native trimeric complexes. We used low-intensity femtosecond transient absorption (TA) and time-resolved fluorescence measurements at 77 K and at room temperature, respectively, to excite the complexes selectively in the chlorophyll b absorption band at 650 nm with 80 fs pulses and on the high-energy side of the chlorophyll a absorption band at 662 nm with 180 fs pulses. The subsequent kinetics was probed at 30–35 different wavelengths in the region from 635 to 700 nm. The rate constants for energy transfer were very similar, indicating that structurally the three isoforms are highly homologous and that probably none of them play a more significant role in light-harvesting and energy transfer. No signature has been found in the transient absorption measurements at 77 K for Lhcb3 which might suggest that this protein acts as a relative energy sink of the excitations in heterotrimers of Lhcb1/Lhcb2/Lhcb3. Minor differences in the amplitudes of some of the rate constants and in the absorption and fluorescence properties of some pigments were observed, which are ascribed to slight variations in the environment surrounding some of the chromophores depending on the isoform. The decay of the fluorescence was also similar for the three isoforms and multi-exponential, characterized by two major components in the ns regime and a minor one in the ps regime. In agreement with previous transient absorption measurements on native LHC II complexes, Chl b → Chl a energy transfer exhibited very fast channels but at the same time a slow component (ps). The Chls absorbing at around 660 nm exhibited both fast energy transfer which we ascribe to transfer from ‘red’ Chl b towards ‘red’ Chl a and slow transfer from ‘blue’ Chl a towards ‘red’ Chl a. The results are discussed in the context of the new available atomic models for LHC II.  相似文献   

17.
Chloroplastic heterocomplex consisting of AtFtsH1, 2, 5 and 8 proteases, integrally bound to thylakoid membrane was shown to play a critical role in degradation of photodamaged PsbA molecules, inherent to photosystem II (PSII) repair cycle and in plastid development. As no one thylakoid bound apoproteins besides PsbA has been identified as target for the heterocomplex-mediated degradation we investigated the significance of this protease complex in degradation of apoproteins of the major light harvesting complex of photosystem II (LHCII) in response to various stressing conditions and in stress-related changes in overall composition of LHCII trimers of PSII-enriched membranes (BBY particles). To reach this goal a combination of approaches was applied based on immunoblotting, in vitro degradation and non-denaturing isoelectrofocusing. Exposure of Arabidopsis thaliana leaves to desiccation, cold and high irradiance led to a step-wise disappearance of Lhcb1 and Lhcb2, while Lhcb3 level remained unchanged, except for high irradiance which caused significant Lhcb3 decrease. Furthermore, it was demonstrated that stress-dependent disappearance of Lhcb1–3 is a proteolytic phenomenon for which a metalloprotease is responsible. No changes in Lhcb1–3 level were observed due to exposition of var1-1 mutant leaves to the three stresses clearly pointing to the involvement of AtFtsH heterocomplex in the desiccation, cold and high irradiance-dependent degradation of Lhcb1 and Lhcb2 and in high irradiance-dependent degradation of Lhcb3. Non-denaturing isoelectrofocusing analyses revealed that AtFtsH heterocomplex-dependent differential Lhcb1–3 disappearance behaviour following desiccation stress was accompanied by modulations in abundances of individual LHCII trimers of BBY particles and that LHCII of var1-1 resisted the modulations.  相似文献   

18.
Dithiothreitol, which completely inhibits the de-epoxidation of violaxanthin to zeaxanthin, was used to obtain evidence for a causal relationship between zeaxanthin and the dissipation of excess excitation energy in the photochemical apparatus in Spinicia oleracea L. In both leaves and chloroplasts, inhibition of zeaxanthin formation by dithiothreitol was accompanied by inhibition of a component of nonphotochemical fluorescence quenching. This component was characterized by a quenching of instantaneous fluorescence (Fo) and a linear relationship between the calculated rate constant for radiationless energy dissipation in the antenna chlorophyll and the zeaxanthin content. In leaves, this zeaxanthin-associated quenching, which relaxed within a few minutes upon darkening, was the major component of nonphotochemical fluorescence quenching determined in the light, i.e. it represented the `high-energy-state' quenching. In isolated chloroplasts, the zeaxanthin-associated quenching was a smaller component of total nonphotochemical quenching and there was a second, rapidly reversible high-energy-state component of fluorescence quenching which occurred in the absence of zeaxanthin and was not accompanied by Fo quenching. Leaves, but not chloroplasts, were capable of maintaining the electron acceptor, Q, of photosystem II in a low reduction state up to high degrees of excessive light and thus high degrees of nonphotochemical fluorescence quenching. When ascorbate, which serves as the reductant for violaxanthin de-epoxidation, was added to chloroplast suspensions, zeaxanthin formation at low photon flux densities was stimulated and the relationship between nonphotochemical fluorescence quenching and the reduction state in chloroplasts then became more similar to that found in leaves. We conclude that the inhibition of zeaxanthin-associated fluorescence quenching by dithiothreitol provides further evidence that there exists a close relationship between zeaxanthin and potentially photoprotective dissipation of excess excitation energy in the antenna chlorophyll.  相似文献   

19.
CP24 is a minor antenna complex of Photosystem II, which is specific for land plants. It has been proposed that this complex is involved in the process of excess energy dissipation, which protects plants from photodamage in high light conditions. Here, we have investigated the functional architecture of the complex, integrating mutation analysis with time-resolved spectroscopy. A comprehensive picture is obtained about the nature, the spectroscopic properties, and the role in the quenching in solution of the pigments in the individual binding sites. The lowest energy absorption band in the chlorophyll a region corresponds to chlorophylls 611/612, and it is not the site of quenching in CP24. Chlorophylls 613 and 614, which are present in the major light-harvesting complex of Photosystem appear to be absent in CP24. In contrast to all other light-harvesting complexes, CP24 is stable when the L1 carotenoid binding site is empty and upon mutations in the third helix, whereas mutations in the first helix strongly affect the folding/stability of the pigment-protein complex. The absence of lutein in L1 site does not have any effect on the quenching, whereas substitution of violaxanthin in the L2 site with lutein or zeaxanthin results in a complex with enhanced quenched fluorescence. Triplet-minus-singlet measurements indicate that zeaxanthin and lutein in site L2 are located closer to chlorophylls than violaxanthin, thus suggesting that they can act as direct quenchers via a strong interaction with a neighboring chlorophyll. The results provide the molecular basis for the zeaxanthin-dependent quenching in isolated CP24.Under limiting light conditions, plants need to harvest all of the available light to drive the photosynthetic process. To this aim, they are provided with a large antenna system composed of members of the Lhc2 (light-harvesting complex) family (1), which coordinate chlorophylls (Chls) and carotenoids and increase the absorption cross-section of the system. Under high light conditions, the amount of photons harvested by the photosynthetic complexes exceeds the need of the chloroplast, and to avoid major damage (2), the excess energy is dissipated as heat in a process called nonphotochemical quenching (NPQ) (3, 4). Although the molecular mechanism of this process has not been fully clarified yet, it is clear that Lhcb proteins are involved (58). These complexes have thus a double and opposite role of harvesting light under low light conditions and of dissipating the excess energy in high light. Six Chl-binding proteins compose the antenna system of Photosystem II (PSII) of higher plants. The main complex, LHCII, which is the product of Lhcb1–3 genes (9), is present in trimeric form in the membrane. The trimers are located at the periphery of the PSII supercomplex and are connected to the core (which contains the reaction center, where the charge separation occurs) via three other Lhcb members, the so called minor antenna complexes, the products of the genes Lhcb4 (also called CP29), Lhcb5 (CP26), and Lhcb6 (CP24) (10). These proteins are present as monomers in the membrane (11).Only the structure of LHCII has been obtained at nearly atomic resolution (12, 13), showing the presence of three transmembrane helices, four carotenoids, and 14 Chl molecules per monomeric subunit. Sequence comparison suggests a very similar folding for the other members of the family (1), although biochemical data indicate that the minor antenna complexes bind a smaller number of pigments (14).CP24 is with Lhcb3 the most recent member of the Lhc family, and it has evolved after the splitting between land plants and algae (15). It is also smaller than the other antenna complexes, lacking the amphipathic helix at the C-terminal domain and having a shorter luminal loop (see Fig. 1). At present, little information is available about this protein because of difficulties in purifying it in its native state (14, 16, 17). This complex was obtained by in vitro reconstitution showing that it coordinates 10 Chl molecules and two xanthophylls (18, 19). The recombinant complex was shown to have properties identical to those of the native one (18).Open in a separate windowFIGURE 1.Sequence alignment of predicted Lhcb proteins of Arabidopsis. In the figure, conserved features are highlighted: red, the N terminus (N-term); violet, transmembrane helices; green, Chl binding sites (nomenclature from reference 12); blue, Arg residues involved in ion pairs between helices B and A; and yellow, the stromal loop.The analysis of the CP24 knock-out mutant of Arabidopsis thaliana has indicated that the absence of this protein strongly influences the packing of PSII in the membrane and thus the efficiency of photosynthesis (20, 21). Moreover, plants lacking CP24 are strongly affected in their photoprotection efficiency. Indeed, among all mutants lacking individual Lhcb subunits, CP24ko and CP26/CP24ko double mutant (which has restored photosynthetic efficiency) are the ones showing the strongest effect on the kinetics of NPQ, suggesting that CP24 is a site of zeaxanthin-dependent quenching (21). Recently, it has been proposed that CP24, together with the other minor antenna complexes, is the site of formation of a zeaxanthin radical cation, and thus it is directly involved in NPQ (22, 23). It was also shown that during NPQ a complex consisting of CP29, CP24, and an LHCII trimer dissociates from the Photosystem II supercomplex (24). It was proposed that this dissociation allows PsbS, one of the major players in NPQ (25), to interact directly with CP29 and CP24, switching them to the dissipative conformation. Interestingly, green algae, which lack CP24 (26), have evolved different mechanisms of NPQ (2729), thus suggesting a correlation between the presence of CP24 (and Lhcb3) and the development of NPQ in land plants.In this work we have analyzed in detail the properties of the individual chromophores associated with CP24 with particular attention to their role in light harvesting and photoprotection. The data indicate that CP24 differs from the other members of the Lhc family, supporting the hypothesis of a different role for this subunit.  相似文献   

20.
The chlorina-f2 mutant of barley (Hordeum vulgare L.) contains no chlorophyll b in its light-harvesting antenna, whereas the chlorina-103 mutant contains approximately 10% of the chlorophyll b found in wild-type. The absolute chlorophyll antenna size for Photosystem-II in wild-type, chlorina-103 and chlorina-f2 mutant was 250, 58 and 50 chlorophyll molecules, respectively. The absolute chlorophyll antenna size for Photosystem-I in wild-type, chlorina-103 and chlorina-f2 mutant was 210, 137 and 150 chlorophyll molecules, respoectively. In spite of the smaller PS I antenna size in the chlorina mutants, immunochemical analysis showed the presence of polypeptide components of the LHC-I auxiliary antenna with molecular masses of 25, 19.5 and 19 kDa. The chlorophyll a-b-binding LHC-II auxiliary antenna of PS II contained five polypeptide subunits in wild-type barley, termed a, b, c, d and e, with molecular masses of 30, 28, 27, 24 and 21 kDa, respectively. The polypeptide composition of the LHC-II auxiliary antenna of PS II was found to be identical in the two mutants, with only the 24 kDa subunit d present at an equal copy number per PS II in each of the mutants and in the wild-type barley. This d subunit assembles stably in the thylakoid membrane even in the absence of chlorophyll b and exhibits flexibility in its complement of bound chlorophylls. We suggest that polypeptide subunit d binds most of the chlorophyll associated with the residual PS II antenna in the chlorina mutants and that is proximal to the PS II-core complex.Abbreviations CP chlorophyll-protein - LHC the chlorophyll a-b binding light-harvesting complex - LHC-II subunit a the Lhcb4/5 gene product - subunit b the Lhcb1 gene product - subunit c Lhcb2 the gene product - subunit d the Lhcb3 gene product - subunit e the Lhcb6 gene product - PMSF phenylmethane sulphonyl fluoride - RC reaction center - QA the primary quinone electron acceptor of Photosystem-II - P700 the reaction center of PS I  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号