首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
ABSTRACT.   Carotenoid pigments produce the red, orange, and yellow plumage of many birds. Carotenoid-containing feathers are typically rich in color and displayed by all adult members of the species. In many gulls and terns, however, an unusual light pink coloring (or flush) to the normally white plumage can be found in highly variable proportions within and across populations. The carotenoid basis of plumage flush was determined in an Elegant Tern ( Sterna elegans ; Hudon and Brush 1990 ), but it is not clear if all larids use this same mechanism for pink plumage coloration. We examined the carotenoid content of pink feathers in Franklin's ( Larus pipixcan ) and Ring-billed ( Larus delawarensis ) gulls and found that a single carotenoid—astaxanthin—was present. Astaxanthin was primarily responsible for the flush in Elegant Terns as well, but was accompanied by other carotenoids (e.g., canthaxanthin and zeaxanthin), as is typical of most astaxanthin-containing bird feathers. In both gull and tern species, carotenoids were contained within feathers and did not occur on the plumage surface in preen oil, as some have previously speculated. We hypothesize that some gulls turn pink because they acquire unusually high amounts of astaxanthin in their diets at the time of feather growth. It is tempting to link the increase in sightings of pink Ring-billed Gulls since the late 1990s with the introduction of pure, synthetic astaxanthin to the diets of hatchery-raised salmon.  相似文献   

2.
Recent analyses of the orange, red, and purple plumages of cotingas (Cotingidae) and broadbills (Eurylaimidae) revealed the presence of novel carotenoid molecules, suggesting that the diversity of pigments and the metabolic transformations they undergo are not yet fully understood. Two Old World orioles, the Black-and-Crimson Oriole Oriolus cruentus, and the Maroon Oriole Oriolus traillii, exhibit plumage colors that are similar to those of some cotingas and broadbills. To determine if these oriole plumage colors are produced by the same carotenoids or with other molecules, we used high-performance liquid chromatography (HPLC), mass spectrometry, and chemical analyses. The data show that the bright red feathers of O. cruentus contain a suite of keto-carotenoids commonly found in avian plumages, including canthaxanthin, adonirubin, astaxanthin, papilioerythrinone, and α-doradexanthin. The maroon feathers of O. traillii were found to contain canthaxanthin, α-doradexanthin, and one novel carotenoid, 3′,4-dihydroxy-ε,ε-carotene-3-one, which we have termed “4-hydroxy-canary xanthophyll A.” In this paper we propose the metabolic pathways by which these pigments are formed. This work advances our understanding of the evolution of carotenoid metabolism in birds and the mechanisms by which birds achieve their vivid plumage colorations.  相似文献   

3.
Over the past three decades, the red‐winged blackbird Agelaius phoeniceus has served as a model species for studies of sexual selection and the evolution of ornamental traits. Particular attention has been paid to the role of the colorful red‐and‐yellow epaulets that are striking in males but reduced in females and juveniles. It has been assumed that carotenoid pigments bestow the brilliant red and yellow colors on epaulet feathers, but this has never been tested biochemically. Here, we use high‐performance liquid chromatography (HPLC) to describe the pigments present in these colorful feathers. Two red ketocarotenoids (astaxanthin and canthaxanthin) are responsible for the bright red hue of epaulets. Two yellow dietary precursors pigments (lutein and zeaxanthin) are also present in moderately high concentrations in red feathers. After extracting carotenoids, however, red feathers remained deep brown in color. HPLC tests show that melanin pigments (primarily eumelanin) are also found in the red‐pigmented barbules of epaulet feathers, at an approximately equal concentration to carotenoids. This appears to be an uncommon feature of carotenoid‐based ornamental plumage in birds, as was shown by comparable analyses of melanin in the yellow feathers of male American goldfinches Carduelis tristis and the red feathers of northern cardinals Cardinalis cardinalis, in which we detected virtually no melanins. Furthermore, the yellow bordering feathers of male epaulets are devoid of carotenoids (except when tinged with a carotenoid‐derived pink coloration on occasion) and instead are comprised of a high concentration of primarily phaeomelanin pigments. The dual pigment composition of red epaulet feathers and the melanin‐only basis for yellow coloration may have important implications for the honesty‐reinforcing mechanisms underlying ornamental epaulets in red‐winged blackbirds, and shed light on the difficulties researchers have had to date in characterizing the signaling function of this trait. As in several other birds, the melanic nature of feathers may explain why epaulets are used largely to settle aggressive contests rather than to attract mates.  相似文献   

4.
Carotenoid pigments were extracted from 29 feather patches from 25 species of cotingas (Cotingidae) representing all lineages of the family with carotenoid plumage coloration. Using high-performance liquid chromatography (HPLC), mass spectrometry, chemical analysis, and 1H-NMR, 16 different carotenoid molecules were documented in the plumages of the cotinga family. These included common dietary xanthophylls (lutein and zeaxanthin), canary xanthophylls A and B, four well known and broadly distributed avian ketocarotenoids (canthaxanthin, astaxanthin, ??-doradexanthin, and adonixanthin), rhodoxanthin, and seven 4-methoxy-ketocarotenoids. Methoxy-ketocarotenoids were found in 12 species within seven cotinga genera, including a new, previously undescribed molecule isolated from the Andean Cock-of-the-Rock Rupicola peruviana, 3??-hydroxy-3-methoxy-??,??-carotene-4-one, which we name rupicolin. The diversity of cotinga plumage carotenoid pigments is hypothesized to be derived via four metabolic pathways from lutein, zeaxanthin, ??-cryptoxanthin, and ??-carotene. All metabolic transformations within the four pathways can be described by six or seven different enzymatic reactions. Three of these reactions are shared among three precursor pathways and are responsible for eight different metabolically derived carotenoid molecules. The function of cotinga plumage carotenoid diversity was analyzed with reflectance spectrophotometry of plumage patches and a tetrahedral model of avian color visual perception. The evolutionary history of the origin of this diversity is analyzed phylogenetically. The color space analyses document that the evolutionarily derived metabolic modifications of dietary xanthophylls have resulted in the creation of distinctive orange-red and purple visual colors.  相似文献   

5.
Energetic constraints on expression of carotenoid-based plumage coloration   总被引:12,自引:0,他引:12  
Carotenoid pigments are used by many bird species as feather colorants, creating brilliant yellow, orange, and red plumage displays. Such carotenoid-based plumage coloration has been shown to function as an honest signal that is used in female mate choice. Despite recent interest in carotenoid-based ornamental traits, the basis for individual variation in expression of carotenoid-based plumage coloration remains incompletely understood. I tested the hypothesis that, independent of carotenoid access, food stress during molt would cause reduced expression of carotenoid pigmentation. I fed molting male House Finches Carpodacus mexicanus seed diets supplemented with either the red carotenoid pigment canthaxanthin or the yellow/orange carotenoid pigment β-cryptoxanthin (in the form of tangerine juice). Within each diet treatment, one group of males was given restricted food access and the other group was given unrestricted food access. Carotenoid supplements were placed in water so carotenoid access was controlled independent of food access. The results indicated a strong effect of both carotenoid access and food access on color display. Some males in the β-cryptoxanthin-supplemented group grew red plumage, suggesting that they can metabolically modify yellow pigments into red pigments, but no bird supplemented with β-cryptoxanthin grew plumage as red as birds supplemented with canthaxanthin. Males in the unrestricted food groups grew redder and more intensely pigmented plumage than males in the restricted food groups. These observations provide the best evidence to date of an energetic cost of carotenoid utilization in the generation of colorful plumage.  相似文献   

6.
Monoalgal cultured Eutreptielia gymnastica contained chlorophyll a and b. The acetylenic carotenoids diatoxanthin and diadinoxanthin were among the main xanthophylls while their non-acetylenic analogues zeaxanthin and antheraxanthin were absent. The structurally most complex carotenoid was identical with neoxanthin. Three of the xanthophylls isolated could not be positively correlated with carotenoids previously reported from the Euglenophyceae. The ketocarotenoids astaxanthin, canthaxanthin and echinenone were absent.  相似文献   

7.
We investigated potential dietary and biochemical bases for carotenoid-based sexual dichromatism in American goldfinches (Carduelis tristis). Captive male and female finches were given access to the same type and amount of carotenoid pigments in the diet during their nuptial molt to assess differences in the degree to which the two sexes incorporated ingested pigments into their plumage. When birds were fed a uniform, plain-seed diet, or one that was supplemented with the red carotenoid canthaxanthin, we found that males grew more colorful plumage than females. HPLC analyses of feather pigments revealed that male finches incorporated a higher concentration of carotenoids into their pigmented feathers than females. Compared to females, males also deposited significantly more canary xanthophyll B into feathers when fed a plain-seed diet and a greater concentration and proportion of canthaxanthin when fed a carotenoid-supplemented diet. These results indicate that sex-specific expression of carotenoid pigmentation in American goldfinches may be affected by the means by which males and females physiologically utilize (e.g. absorb, transport, metabolize, deposit) carotenoid pigments available to them in the diet.  相似文献   

8.
Carotenoid‐based ornamental coloration has long been proposed to honestly signal quality due to its dependence on individual condition. Because migration can be one of the most stressful periods of an animal's annual cycle, developing colourful plumage may be particularly challenging for species in which migration and moult periods overlap or occur sequentially. The purpose of this study was to investigate pigmentary and condition‐dependent bases of carotenoid colour variation in a small migratory passerine, the golden‐crowned kinglet Regulus satrapa (Family Regulidae). We captured 186 male and female kinglets of various ages during fall migration in southwestern Ontario, Canada and recorded arrival date, body condition index, fat and pectoral muscle scores, wing mite infestation, and feather growth rate as measures of condition. We quantified crown coloration using reflectance spectrometry and analyzed feather carotenoids using high‐performance liquid chromatography. Yellow crown feathers of female kinglets contained only yellow hydroxycarotenoids, whereas orange feathers of males harboured a suite of eight carotenoid pigments. Males with longer wavelength orange crown hues deposited greater concentrations of ketocarotenoids, especially canthaxanthin. Female kinglets with longer wavelength crown hues and males with longer wavelength crown hues and more saturated crown coloration left for migration earlier in the year. Females with longer wavelength crown hues had fewer feather mites and tended to be in better condition. However, male kinglets with more saturated coloration possessed smaller pectoral muscles. This is the first study to identify plumage carotenoids in this North American bird family and to determine the pigmentary basis for both inter‐ and intrasexual colour variation. Our results provide further support for the condition‐dependence of carotenoid coloration and suggest that ornamental elaboration in both sexes may encode information about fall condition and migratory performance.  相似文献   

9.
Dietary carotenoids predict plumage coloration in wild house finches   总被引:10,自引:0,他引:10  
Carotenoid pigments are a widespread source of ornamental coloration in vertebrates and expression of carotenoid-based colour displays has been shown to serve as an important criterion in female mate choice in birds and fishes. Unlike other integumentary pigments, carotenoids cannot be synthesized; they must be ingested. Carotenoid-based coloration is condition-dependent and has been shown to be affected by both parasites and nutritional condition. A controversial hypothesis is that the expression of carotenoid-based coloration in wild vertebrates is also affected by the amount and types of carotenoid pigments that are ingested. We tested this carotenoid-limitation hypothesis by sampling the gut contents of moulting house finches and comparing the concentration of carotenoid pigments in their gut contents with the colour of growing feathers. We found a positive association: males that ingested food with a higher concentration of carotenoid pigments grew brighter ornamental plumage. We also compared the concentration of carotenoids in the gut contents of males from two subspecies of house finches with small and large patches of carotenoid-based coloration. Consistent with the hypothesis that carotenoid access drives the evolution of carotenoid-based colour displays, males from the population with limited ornamentation had much lower concentrations of carotenoids in their gut contents than males from the population with extensive ornamentation. These observations support the idea that carotenoid intake plays a part in determining the plumage brightness of male house finches.  相似文献   

10.
Previous analysis of carotenoids extracted from the burgundy plumage of the Pompadour Cotinga (Xipholena punicea) revealed six novel keto-carotenoid pigments with methoxyl groups in the C3-position of one or both β-rings. High performance liquid chromatography (HPLC), mass spectrometry, chemical analysis and, in some instances 1H NMR spectroscopy were employed to determine the structures of the molecules. Further analysis by NMR was precluded due to lack of material. The recent acquisition of multiple feathers from X. punicea specimens has made it possible to complete this work using correlated homonuclear spectroscopy (COSY), nuclear overhauser effect spectroscopy (NOESY) and 1H NMR. These new data conclusively confirm the structures of the six methoxy-carotenoids suggested by the earlier work. In addition, the resonance positions of the protons from the novel 3-methoxy-4-keto-β-ring and 2,3-didehydro-3-methoxy-4-keto-β-ring moieties are reported here for the first time.  相似文献   

11.
Rainbow trout were fed a diet supplemented with astaxanthin (89 mg/kg) or canthaxanthin (116 mg/kg) in two different experiments: experiment 1 was designed to measure the kinetics of the appearance and disappearance of carotenoids in the serum; experiment 2 was undertaken to establish the serum dose-response to synthetic astaxanthin and canthaxanthin for immature rainbow trout. The serum carotenoid concentrations of immature rainbow trout increased when fish were fed carotenoid supplemented feed and then reached a plateau after 1 day of intake for astaxanthin and after 2 days for canthaxanthin. Circulating astaxanthin represented a value 2.3 times that of canthaxanthin. After dietary supplementation was discontinued, the serum carotenoid concentrations decreased within 3 days for both carotenoids. The average decreasing slopes for the two carotenoid pigments were parallel, indicating a similarity in the rate of which astaxanthin and canthaxanthin are utilized by rainbow trout. The serum dose-response of trout that received dietary keto-carotenoids increased with increasing pigment levels. The hypothesis that absorption of dietary carotenoids in 12.5–200 mg/kg range of concentration across the gut wall may be by passive diffusion is proposed.  相似文献   

12.
To establish a model system for alteration of flower color by carotenoid pigments, we modified the carotenoid biosynthesis pathway of Lotus japonicus using overexpression of the crtW gene isolated from marine bacteria Agrobacterium aurantiacum and encoding β-carotene ketolase (4,4′-β-oxygenase) for the production of pink to red color ketocarotenoids. The crtW gene with the transit peptide sequence of the pea Rubisco small subunit under the regulation of the CaMV35S promoter was introduced to L. japonicus. In most of the resulting transgenic plants, the color of flower petals changed from original light yellow to deep yellow or orange while otherwise exhibiting normal phenotype. HPLC and TLC analyses revealed that leaves and flower petals of these plants accumulated novel carotenoids, believed to be ketocarotenoids consisting of including astaxanthin, adonixanthin, canthaxanthin and echinenone. Results indicated that modification of the carotenoid biosynthesis pathway is a means of altering flower color in ornamental crops.  相似文献   

13.
Birds display a tremendous variety of carotenoid-based colors in their plumage, but the mechanisms underlying interspecific variability in carotenoid pigmentation remain poorly understood. Because vertebrates cannot synthesize carotenoids de novo, access to pigments in the diet is one proximate factor that may shape species differences in carotenoid-based plumage coloration. However, some birds metabolize ingested carotenoids and deposit pigments that differ in color from their dietary precursors, indicating that metabolic capabilities may also contribute to the diversity of plumage colors we see in nature. In this study, we investigated how the acquisition and utilization of carotenoids influence the maintenance of species-typical plumage pigmentation in male American goldfinches (Carduelis tristis) and northern cardinals (Cardinalis cardinalis). We supplemented the diet of captive goldfinches with red carotenoids to determine whether males, which are typically yellow in color, were capable of growing red plumage. We also deprived cardinals of red dietary pigments to determine whether they could manufacture red carotenoids from yellow precursors to grow species-typical red plumage. We found that American goldfinches were able to deposit novel pigments in their plumage and develop a striking orange appearance. Thus, dietary access to pigments plays a role in determining the degree to which goldfinches express carotenoid-based plumage coloration. We also found that northern cardinals grew pale red feathers in the absence of red dietary pigments, indicating that their ability to metabolize yellow carotenoids in the diet contributes to the bright red plumage that they display.  相似文献   

14.
Yearling birds generally display duller colours than adults. This may be due to selection favouring birds with more intensely coloured plumage or to an increase in colour after the first complete moult. Most research to date on the topic has been carried out on species with structural plumage coloration or with carotenoid‐based coloration that is produced by the unmodified deposition of pigments. However, no study has been carried out on species whose carotenoids are metabolically modified before deposition. In this study, we assess age‐related changes in the carotenoid‐based coloration of European Serins, a species that metabolically processes carotenoids before they can be deposited into feathers. Birds were captured over consecutive years and we carried out both cross‐sectional and longitudinal analysis. Adults had significantly greater values of lightness and chroma than yearling birds. However, there were no changes in plumage colour when analysing the same individuals captured in subsequent seasons. Plumage lightness and chroma of adult males after moult were related to body mass, suggesting a role of body condition on plumage coloration. Our results suggest that changes in plumage coloration with age in European Serins are due to a selection process that favours more intensely coloured individuals.  相似文献   

15.
Pathogenic or parasitic infections pose numerous physiological challenges to organisms. Carotenoid pigments have often been used as biomarkers of disease state and impact because they integrate multiple aspects of an individual’s condition and nutritional and health state. Some diseases are known to influence carotenoid uptake from food (e.g. coccidiosis) and carotenoid use (e.g. as antioxidants/immunostimulants in the body, or for sexually attractive coloration), but there is relatively little information in animals about how different types of carotenoids from different tissue sources may be affected by disease. Here we tracked carotenoid accumulation in two body pools (retina and plasma) as a function of disease state in free-ranging house finches (Haemorhous mexicanus). House finches in eastern North America can contract mycoplasmal conjunctivitis (Mycoplasma gallisepticum, or MG), which can progress from eye swelling to eye closure and death. Previous work showed that systemic immune challenges in house finches lower carotenoid levels in retina, where they act as photoprotectors and visual filters. We assessed carotenoid levels during the molt period, a time of year when finches uniquely metabolize ketocarotenoids (e.g. 3-hydroxy-echinenone) for acquisition of sexually selected red plumage coloration, and found that males infected with MG circulated significantly lower levels of 3-hydroxy-echinenone, but no other plasma carotenoid types, than birds exhibiting no MG symptoms. This result uncovers a key biochemical mechanism for the documented detrimental effect of MG on plumage redness in H. mexicanus. In contrast, we failed to find a relationship between MG infection status and retinal carotenoid concentrations. Thus, we reveal differential effects of an infectious eye disease on carotenoid types and tissue pools in a wild songbird. At least compared to retinal sources (which appear somewhat more temporally stable than other body carotenoid pools, even to diseases of the eye evidently), our results point to either a high physiological cost of ketocarotenoid synthesis (as is argued in models of sexually selected carotenoid coloration) or high benefit of using this ketocarotenoid to combat infection.  相似文献   

16.
The pink or red ketocarotenoids, canthaxanthin and astaxanthin, are used as feed additives in the poultry and aquaculture industries as a source of egg yolk and flesh pigmentation, as farmed animals do not have access to the carotenoid sources of their wild counterparts. Because soybean is already an important component in animal feed, production of these carotenoids in soybean could be a cost-effective means of delivery. In order to characterize the ability of soybean seed to produce carotenoids, soybean cv. Jack was transformed with the crtB gene from Pantoea ananatis, which codes for phytoene synthase, an enzyme which catalyzes the first committed step in the carotenoid pathway. The crtB gene was engineered together in combinations with ketolase genes (crtW from Brevundimonas sp. strain SD212 and bkt1 from Haematococcus pluvialis) to produce ketocarotenoids; all genes were placed under the control of seed-specific promoters. HPLC results showed that canthaxanthin is present in the transgenic seeds at levels up to 52 μg/g dry weight. Transgenic seeds also accumulated other compounds in the carotenoid pathway, such as astaxanthin, lutein, β-carotene, phytoene, α-carotene, lycopene, and β-cryptoxanthin, whereas lutein was the only one of these detected in non-transgenic seeds. The accumulation of astaxanthin, which requires a β-carotene hydroxylase in addition to a β-carotene ketolase, in the transgenic seeds suggests that an endogenous soybean enzyme is able to work in combination with the ketolase transgene. Soybean seeds that accumulate ketocarotenoids could potentially be used in animal feed to reduce or eliminate the need for the costly addition of these compounds.  相似文献   

17.
Many animals use carotenoid pigments to produce yellow, orange, and red coloration. In birds, at least 10 carotenoid compounds have been documented in red feathers; most of these are produced through metabolic modification of dietary precursor compounds. However, it is poorly understood how lineages have evolved the biochemical mechanisms for producing red coloration. We used high‐performance liquid chromatography to identify the carotenoid compounds present in feathers from 15 species across two clades of blackbirds (the meadowlarks and allies, and the caciques and oropendolas; Icteridae), and mapped their presence or absence on a phylogeny. We found that the red plumage found in meadowlarks includes different carotenoid compounds than the red plumage found in caciques, indicating that these gains of red color are convergent. In contrast, we found that red coloration in two closely related lineages of caciques evolved twice by what appear to be similar biochemical mechanisms. The C4‐oxygenation of dietary carotenoids was responsible for each observed transition from yellow to red plumage coloration, and has been commonly reported by other researchers. This suggests that the C4‐oxygenation pathway may be a readily evolvable means to gain red coloration using carotenoids.  相似文献   

18.
For most species of birds, ornamental plumage coloration may result from two types of pigments: carotenoids and melanins. Despite the fact that melanin pigments can be synthesized by birds from basic, amino acid precursors, while carotenoids cannot be synthesized by birds and must be ingested, melanin-based plumage coloration and carotenoid-based plumage coloration have often been treated as a single trait in investigations of the function and evolution of plumage coloration. Expression of carotenoid-based coloration is known to be dependent on condition, while the effects of individual condition have not been well-tested for expression of melanin-based coloration. In this study, we experimentally tested the effect of coccidial infection of the intestinal tract of male house finches during moult on expression of melanin-based plumage coloration. Coccidial infection had a significant negative effect on carotenoid-based coloration, but it had no significant effect on melanin-based feather coloration. Unlike carotenoid-based coloration, melanin-based coloration may be cheap to produce, and honesty of melanin-based coloration my require social mediation.  相似文献   

19.
The fresh water green microalga Chlorella zofingiensisis known to accumulate ketocarotenoids – primarily astaxanthin but also canthaxanthin – when grown under stress conditions of high light irradiance and low nitrogen. We found that salt stress can replace light stress with respect to inducing carotenoid production: cells of C. zofingiensis grown under low light irradiance and subjected to salt and low nitrogen stress accumulated higher amounts of total secondary carotenoids than those growing under high light and low nitrogen stress. Furthermore, C. zofingiensis growing under conditions of salt stress and low light accumulated higher amounts of canthaxanthin than astaxanthin. It is suggested that for canthaxanthin accumulation under salt stress, light is not a limiting factor, but for astaxanthin accumulation high light irradiance is mandatory. These results may be applied in the future for the commercial production of canthaxanthin by C. zofingiensis in systems in which light availability is poor.  相似文献   

20.
  • 1.1. Eggs of wild cod, and of farmed cod fed (a) a diet supplemented with astaxanthin and (b) a diet supplemented with both astaxanthin and canthaxanthin, were analysed with respect to carotenoids.
  • 2.2. The total carotenoid contents in eggs were 0.7 ppm for wild cod and 0.5 ppm for farmed cod.
  • 3.3. Cod, having white flesh, deposit ketocarotenoids in the eggs, preferably astaxanthin.
  • 4.4. Canthaxanthin can replace astaxanthin in the eggs, but astaxanthin appears to be deposited preferentially when both carotenoids are present in the diet.
  • 5.5. The isomer distribution of (3S, 3′S):(3R, 3′S, meso):(3R, 3′R) astaxanthin in the eggs reflected the isomer composition of the diet.
  • 6.6. Echinenone, 4′-hydroxyechinenone, adonixanthin and zeaxanthin encountered in cod eggs may represent reductive metabolites of canthaxanthin and astaxanthin.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号