首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial matrix enzyme, ornithine aminotransferase, is induced in rat liver by the administration of a diet high in protein and by glucagon. The rate of synthesis of the enzyme is increased 100-fold in the livers of rats maintained on a 60% relative to a 0% protein diet, whereas the levels of functional and hybridizable mRNA measured by in vitro translation and through the use of a cloned cDNA probe increased by only 2- to 6-fold and 2- to 3-fold, respectively. Under conditions of glucagon induction that resulted in a 10- to 12-fold increase in the rate of enzyme synthesis, the relative level of functional ornithine aminotransferase mRNA increased by only 2-fold, and the level of hybridizable mRNA actually decreased. The rate of polypeptide chain elongation and the relative number of ornithine aminotransferase nascent chains on polysomes were 2-fold and 23-fold greater, respectively, in hepatocytes derived from 60% relative to 0% protein-fed rats. Using these data, a 23-fold increase in the translational efficiency of the mRNA was calculated. This increase, along with a 2-fold increase in the mRNA level, completely account for the 40-fold increase in the rate of ornithine aminotransferase synthesis observed in hepatocytes derived from 60% protein-fed rats. We conclude that ornithine aminotransferase synthesis is regulated at both a translational and a pretranslational level in rat liver.  相似文献   

2.
The regulation of the mitochondrial matrix enzyme, ornithine aminotransferase, by estrogen and triiodothyronine (T3) in rat kidney was examined using a cloned cDNA probe and in vitro translation of poly(A+) RNA. After a single, acute dose of either 17 beta-estradiol or T3, the rate of enzyme synthesis and the levels of translatable and hybridizable ornithine aminotransferase mRNA all increase in parallel. Levels of hybridizable mRNA were estimated by hybridization of randomly 32P-labeled RNA to filter-bound plasmid DNA. Maximal levels of induction by estrogen and T3 were about 15- and 3-fold, respectively. Lag times of at least 5 h and less than 3 h were observed for induction by T3 and estrogen. T3 and estrogen exert a synergistic effect in increasing ornithine aminotransferase mRNA levels. 16 h after T3 administration and 24 h after estrogen administration, a 1.6- and 13-fold increase in mRNA levels were observed. Both of these treatments in combination for the indicated time periods resulted in a 21-fold increase in ornithine aminotransferase mRNA. From the mRNA accumulation curves, half-lives of 10 to 14 h and 12 to 16 h were estimated for the mRNA after estrogen and T3 induction, respectively. These similar half-lives suggest that an increase in the rate of mRNA production is primarily responsible for the induction observed after estrogen administration.  相似文献   

3.
4.
M J Ernest 《Biochemistry》1982,21(26):6761-6767
Tyrosine aminotransferase messenger ribonucleic acid (mRNA) activity in rat liver was rapidly increased 3-6-fold following in vivo administration of hydrocortisone acetate, dibutyryladenosine cyclic 3',5'-phosphate, or the protein synthesis inhibitor cycloheximide. Treatment with the steroid hormone or cyclic nucleotide in combination with cycloheximide resulted in levels of tyrosine aminotransferase mRNA 10-20-fold greater than control values. These changes in mRNA activity were not accompanied by changes in albumin mRNA or total liver template activity. The rapid decline in tyrosine aminotransferase mRNA activity following cordycepin inhibition of de novo RNA synthesis was prevented by cycloheximide treatment. This protection was not observed when pactamycin was substituted for cycloheximide, demonstrating that the inhibition of protein synthesis per se was not responsible for the stabilization of tyrosine aminotransferase mRNA. Based upon the effects of cycloheximide and pactamycin on rat liver polysome structure, it is concluded that the cycloheximide-mediated increase in tyrosine aminotransferase mRNA activity is the result of stabilization of the mRNA molecule which renders the message less susceptible to inactivation and degradation in the cytoplasm. The action of cycloheximide is very specific for tyrosine aminotransferase, phosphoenolpyruvate carboxykinase, and probably several other mRNAs that code for minor liver proteins that turn over rapidly in response to hormonal or metabolic stimuli.  相似文献   

5.
The effect of testosterone on precursor mitochondrial aspartate aminotransferase (pmAAT) mRNA was studied in rat ventral prostate and primary cell cultures of mini-pig prostate. Testosterone induced a 2-3-fold increase in pmAAT mRNA level in both rat ventral prostate and mini-pig prostate cultures. The pmAAT mRNA induction occurred 30 min after testosterone treatment and was maximal by 1.5 h. Prostatic mAAT activity was also induced by testosterone with a 1-2 h lag period. The time-course of induction of pmAAT mRNA, pmAAT activity and mAAT activity was consistent with stimulation of mRNA synthesis followed by increased synthesis and import of pmAAT into mitochondria. The effect of testosterone on pmAAT mRNA was specific because the increase in pmAAT mRNA was at least 2-fold greater than the increase in poly (A+) RNA. These results suggest that testosterone stimulated mAAT activity by induction of pmAAT mRNA. This continues to support our proposal that a major physiological effect of testosterone is increased pmAAT mRNA steady-state levels which result in increased pmAAT synthesis and increased mAAT activity. These changes ultimately result in increased citrate production by prostate epithelial cells.  相似文献   

6.
In primary cultures of adult rat hepatocytes maintained in a salts/glucose medium, a more than 100-fold increase in ornithine decarboxylase (EC 4.1.1.17) activity was caused by asparagine and glucagon in a synergistic manner. The synthesis rate of ornithine decarboxylase was determined by [35S]methionine incorporation into the enzyme protein, and the amount of ornithine decarboxylase-mRNA was measured by hybridization with a cloned rat liver ornithine decarboxylase-cDNA. The synthesis rate of ornithine decarboxylase was stimulated more than 20-fold by asparagine and glucagon together, but the amount of ornithine decarboxylase-mRNA was increased only 3-4-fold, indicating that translational stimulation was involved in the induction process. Asparagine alone stimulated the synthesis of ornithine decarboxylase without substantial effect on the amount of ornithine decarboxylase-mRNA, whereas glucagon alone increased the amount of ornithine decarboxylase-mRNA about 3-fold without a detectable change in either enzyme activity or enzyme synthesis. Asparagine, at least in part, also suppressed degradation of ornithine decarboxylase.  相似文献   

7.
8.
9.
The actions of polycyclic aromatic hydrocarbons and glucocorticoids to regulate the synthesis of cytochrome P-450c (the major isozyme induced by polycyclic aromatic hydrocarbons) were investigated in fetal rat hepatocytes maintained in primary monolayer culture. Treatment of hepatocytes in culture with 1,2-benzanthracene resulted in a 50-fold increase in 7-ethoxycoumarin O-deethylase activity. The level of P-450c increased in the cells in a time-dependent fashion as determined by immunoelectrophoretic analysis. The inductive effect of BA was potentiated approximately 1.6- to 2.3-fold when 1 microM dexamethasone was included in the culture medium. However, dexamethasone alone had little or no effect on the induction of P-450c. The rate of synthesis of P-450c was examined by immunoisolation of the specific isozyme from total cellular proteins radiolabeled with [35S]methionine and from the protein products formed during in vitro translation of the isolated mRNA. In addition, the amount of mRNA specific for cytochrome P-450c was determined by Northern blot analysis of RNA extracted from cultured cells. The changes in the rates of synthesis and mRNA levels were found to parallel the changes in enzyme activity. The concentration of dexamethasone required to cause a half-maximal increase in P-450c content in the presence of 1,2-benzanthracene was between 10(-8) and 10(-7) M. It is concluded that glucocorticoids act synergistically with polycyclic aromatic hydrocarbons to increase the levels of P-450c expressed in the fetal rat liver, and that this action is likely mediated by the classical type II glucocorticoid receptor.  相似文献   

10.
11.
Phorbol ester tumor promoters and growth factors rapidly stimulate ornithine decarboxylase activity in the transformed hamster fibroblast line HE68BP. We report here a close correspondence between the time courses and magnitudes of induction of ornithine decarboxylase activity and immunoreactive ornithine decarboxylase protein following treatment of HE68BP cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) and/or refeeding with fresh medium. Cycloheximide addition to induced cells caused a rapid fall in the levels of both ornithine decarboxylase activity and ornithine decarboxylase protein. Northern blot analysis of RNA isolated from HE68BP cells indicated that treatment with TPA and fresh medium increased the amount of two species of mRNA of lengths 2.4 and 2.1 kilobase. This increased accumulation of ornithine decarboxylase mRNA corresponded temporally to that observed at the protein level, with a 15-fold maximal induction 7 h after treatment followed by a rapid decline in hybridizable RNA. These data indicate that stimulation of ornithine decarboxylase activity by TPA or refeeding involves changes in levels of ornithine decarboxylase mRNA as well as changes in the rate of synthesis of ornithine decarboxylase protein.  相似文献   

12.
Hepatic ornithine aminotransferase (EC 2.6.1.13) (OAT) is a mitochondrial matrix enzyme that plays a role in amino acid catabolism and in gluconeogenesis. In rats, the synthesis of hepatic OAT is regulated by glucagon, dietary protein, and glucose. Serum-free primary cultures of adult rat hepatocytes were used to demonstrate that glucagon, cyclic AMP, and glucose are able to alter OAT synthesis by a direct action on hepatocytes. The rates of OAT synthesis were measured by immunoprecipitation of pulse-labeled OAT with an affinity-purified monospecific antibody. Ten hours after cyclic AMP addition to the culture medium, the relative rate of OAT synthesis reached a peak value that was six- to eightfold above the control rate. OAT activity accumulated more slowly, reaching a level that was approximately threefold above the control by 24 h. The inclusion of glucose in the culture medium inhibited the increases in OAT synthesis and activity in a dose-dependent manner. Although synthesized as a precursor (pOAT), no pOAT was detected under control, induced, or carbohydrate-inhibited conditions; this suggests that pOAT processing may not be a regulatory site of OAT expression. By following the loss of labeled OAT, a half-life of 34 h in these cultures under all of the above conditions was observed. Regulation of OAT levels in cultured hepatocytes appears to be achieved primarily through changes in the rate of OAT synthesis.  相似文献   

13.
In adult rat liver, amounts of the urea cycle enzymes are regulated by diet, glucocorticoids, and cAMP. Rat hepatocytes cultured in chemically defined medium were used to precisely define the roles of glucocorticoids and cAMP in regulation of these enzymes at the pretranslational level. With the exception of ornithine transcarbamylase mRNA, cultured rat hepatocytes retain the capacity to express mRNAs for the urea cycle enzymes at the same level observed for liver of intact rats. In the absence of added hormones, mRNAs for argininosuccinate synthetase and argininosuccinate lyase remained at or above normal in vivo levels, while mRNAs for the other three enzymes declined to very low levels. Messenger RNAs for carbamyl phosphate synthetase I, argininosuccinate synthetase, argininosuccinate lyase, and arginase increased in response to either dexamethasone or 8-(4-chlorophenylthio) cAMP (CPT-cAMP). Half-maximal responses occurred at 2-3 nM dexamethasone and at 2-7 microM CPT-cAMP. Cycloheximide abolished the response to dexamethasone but not to CPT-cAMP, suggesting that dexamethasone induced expression of an intermediate gene product required for induction of these mRNAs. The effects of a combination of both hormones were additive for argininosuccinate lyase mRNA and synergistic for carbamyl phosphate synthetase I, argininosuccinate synthetase, and arginase mRNAs. Messenger RNA for ornithine transcarbamylase showed little or no response to any condition tested. Depending on the particular mRNA and hormonal condition tested, increases in mRNA levels ranged from 1.4- to 70-fold above control values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
Monolayer cultures of hepatocytes isolated from cholestyramine-fed rats and incubated in serum-free medium converted exogenous [4-14C]cholesterol into bile acids at a 3-fold greater rate than did cultures of hepatocytes prepared from untreated rats. Cholic acid and beta-muricholic acid identified and quantitated by gas-liquid chromatography and thin-layer chromatography were synthesized by cultured cells for at least 96 h following plating. The calculated synthesis rate of total bile acids by hepatocytes prepared from cholestyramine-fed animals was approximately 0.058 micrograms/mg protein/h. beta-Muricholic acid was synthesized at approximately a 3-fold greater rate than cholic acid in these cultures. Cultured hepatocytes rapidly converted the following intermediates of the bile acid pathway; 7 alpha-hydroxy[7 beta-3H]cholesterol, 7 alpha-hydroxy-4-[6 beta-3H] cholesten-3-one, and 5 beta-[7 beta-3H]cholestane-3 alpha, 7 alpha, 12 alpha-triol into bile acids. [24-14C]Chenodeoxycholic acid and [3H]ursodeoxycholic acid were rapidly biotransformed to beta-muricholic acid. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase activity measured in microsomes of cultured hepatocytes decreased during the initial 48 h following plating, but remained relatively constant for the next 72 h. In contrast, cholesterol 7 alpha-hydroxylase activity appeared to decrease during the first 48 h, followed by an increase over the next 48 h. Despite the apparent changes in enzyme activity in vitro, the rate of bile acid synthesis by whole cells during this time period remained constant. It is concluded that primary monolayer cultures of rat hepatocytes can serve as a useful model for studying the interrelationship between cholesterol and bile acid metabolism.  相似文献   

16.
Although the precise intracellular function(s) of the polyamines remain incompletely defined, a myraid of evidence now shows that the polyamines must accumulate or be maintained at a specific intracellular concentration in order for all mammalian cells to grow or divide. The initial step in polyamine biosynthesis normally involves the decarboxylation of ornithine by the enzyme ornithine decarboxylase (ODCase E.C. 4.1.1.17) to yield putrescine. Increases in the steady-state level of intracellular ornithine have been reported to markedly alter the accumulation of the polyamines following stimulation of Reuber H35 Hepatoma cells with 12-O-tetradecanoylphorbol-beta-acetate (TPA) in the presence of serum (Wu and Byus: (Biochem. Biophys. Acta 804:89-99, 1984); Wu et al.: (Cancer Res. 41:3384-3391, 1981). We wished to determine whether or not incubation of H35 hepatoma cells with exogenous ornithine would result in a stimulation of DNA synthesis following treatment with the mitogens TPA and insulin. For these studies, H35 cells were maintained under serum-free conditions for 2-3 days in order to obtain synchronous cultures suitable for analysis of the level of DNA synthesis. Cultures treated in this manner were highly viable, maintained similar growth rates, and possessed the equivalent levels of intracellular ornithine and polyamines as the serum-containing cultures. Arginine levels, however, were approximately twofold higher following culture under serum-restricted conditions for 3 days. The addition of exogenous ornithine (0.5 mM) was accompanied by a 4-5-fold increase in intracellular steady-state ornithine levels and by a 6-8-fold increase in the presence of TPA and ornithine. In a manner identical to the serum-containing cultures (Wu and Byus (1984] the addition of TPA and exogenous ornithine to the serum-free cells caused a dose-dependent increase in intracellular putrescine (up to 5-fold) and a concomitant decrease in ODC activity in comparison to stimulation with TPA alone. The addition of TPA led to a 3-5-fold increase in the incorporation of tritiated thymidine into DNA. In the presence of exogenous ornithine, TPA-induced DNA synthesis was further stimulated more than twofold in a dose-dependent manner. Insulin (10(-10)-10(-8) M) proved to be more efficacious as a mitogen in the H35 cells and led to greater stimulation of DNA synthesis than TPA. Insulin alone also resulted in a higher steady-state level of ornithine and putrescine in comparison with TPA alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Several protein synthesis inhibitors were as effective as the inducers hydrocortisone or cyclic AMP in elevating rat liver tyrosine aminotransferase mRNA levels when assayed in the wheat germ cell-free translational system. Cycloheximide, emetine, or puromycin increased this mRNA activity 6- to 7-fold within 4 h after in vivo administration. No increase in total hepatic mRNA levels or tryptophan oxygenase mRNA was found after treatment with these protein synthesis inhibitors. Furthermesults suggest that a short lived protein may specifically regulate the level of functional hepatic tyrosine aminotransferase mRNA or that ongoing translation of this mRNA is required for its degradation.  相似文献   

18.
The administration of N6,O2-dibutyryl cyclic AMP and theophylline to adrenalectomized rats results in an increase in the amount of functional mRNA coding for tyrosine aminotransferase that can be isolated from liver. The induction of this specific mRNA, as quantitated in a mRNA-dependent reticulocyte lysate system, and using poly(A)+ mRNA extracted from total tissue and polysomes, is very rapid. Within an hour after the intraperitoneal injection of the cyclic AMP derivative there is a 5- to 7-fold elevation of functional mRNA coding for tyrosine aminotransferase (mRNATAT), and by 3 h this has returned to basal levels. In contrast, the 4- to 5-fold induction of tyrosine aminotransferase catalytic activity is maximal at 2 h and is still significantly greater than the basal level at 5 h. In the basal state, tyrosine aminotransferase mRNA codes for 0.019 +/- 0.003% of the protein synthesized in the in vitro system, whereas after cyclic nucleotide treatment this value 0.115 +/- 0.015%, hence the increase in mRNATAT activity is relatively specific. Cordycepin, at a concentration which prevents the accumulation in cytoplasm of poly(A)+ mRNA, completely blocks the increase in both the catalytic and mRNA activity of this enzyme. The marked increase in functional mRNA, the requirement for continued synthesis of poly(A)+ RNA, and the rapid induction and deinduction suggest that the cyclic nucleotide is enhancing specific mRNA synthesis and/or, processing, however an effect on mRNA degradation cannot be excluded.  相似文献   

19.
20.
Ornithine decarboxylase activity can be rapidly elevated 50- to 100-fold by the administration of methylxanthine derivatives such as methylisobutylxanthine. This elevation occurs just prior to the increase in RNA polymerase I activity. Inhibitors of RNA synthesis and of protein synthesis suggest that any alteration in the ornithine decarboxylase response results in a similar alteration in the level of α-amanitin-insensitive RNA polymerase. Addition of a partially purified ornithine decarboxylase preparation to the RNA polymerase assay increased both the initial rate of 3H-UTP incorporation and the length of time that the polymerase assay was linear. It is suggested that ornithine decarboxylase is the labile protein that modulates the level of RNA polymerase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号