首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adipocyte size plays a key role in the development of insulin resistance. We examined longitudinal changes in adipocyte size and distribution in visceral (VIS) and subcutaneous (SQ) fat during obesity‐induced insulin resistance and after treatment with CB‐1 receptor antagonist, rimonabant (RIM) in canines. We also examined whether adipocyte size and/or distribution is predictive of insulin resistance. Adipocyte morphology was assessed by direct microscopy and analysis of digital images in previously studied animals 6 weeks after high‐fat diet (HFD) and 16 weeks of HFD + placebo (PL; n = 8) or HFD + RIM (1.25 mg/kg/day; n = 11). At 6 weeks, mean adipocyte diameter increased in both depots with a bimodal pattern only in VIS. Sixteen weeks of HFD+PL resulted in four normally distributed cell populations in VIS and a bimodal pattern in SQ. Multilevel mixed‐effects linear regression with random‐effects model of repeated measures showed that size combined with share of adipocytes >75 µm in VIS only was related to hepatic insulin resistance. VIS adipocytes >75 µm were predictive of whole body and hepatic insulin resistance. In contrast, there was no predictive power of SQ adipocytes >75 µm regarding insulin resistance. RIM prevented the formation of large cells, normalizing to pre‐fat status in both depots. The appearance of hypertrophic adipocytes in VIS is a critical predictor of insulin resistance, supporting the deleterious effects of increased VIS adiposity in the pathogenesis of insulin resistance.  相似文献   

2.
Overactivity of the endocannabinoid system (ECS) has been linked to abdominal obesity and other risk factors for cardiovascular disease and type 2 diabetes. Conversely, administration of cannabinoid receptor type 1 (CB1) antagonists reduces adiposity in obese animals and humans. This effect is only in part secondary to the anorectic action of CB1 agonists. In order to assess the actions of CB1 antagonism on glucose homeostasis, diet‐induced obese (DIO) rats received the CB1 antagonist rimonabant (10 mg/kg, intraperitoneally (IP)) or its vehicle for 4 weeks, or were pair‐fed to the rimonabant‐treated group for the same length of time. Rimonabant treatment transiently reduced food intake, while inducing body weight loss throughout the study. Rats receiving rimonabant had significantly less body fat and circulating leptin compared to both vehicle and pair‐fed groups. Rimonabant, but not pair‐feeding, also significantly decreased circulating nonesterified fatty acid (NEFA) and triacylglycerol (TG) levels, and reduced TG content in oxidative skeletal muscle. Although no effects were observed during a glucose tolerance test (GTT), rimonabant restored insulin sensitivity to that of chow‐fed, lean controls during an insulin tolerance test (ITT). Conversely, a single dose of rimonabant to DIO rats had no acute effect on insulin sensitivity. These findings suggest that in diet‐induced obesity, chronic CB1 antagonism causes weight loss and improves insulin sensitivity by diverting lipids from storage toward utilization. These effects are independent of the anorectic action of the drug.  相似文献   

3.
The endocannabinoid system can modulate energy homeostasis by regulating feeding behaviour as well as peripheral energy storage and utilization. Importantly, many of its metabolic actions are mediated through the cannabinoid type 1 receptor (CB1R), whose hyperactivation is associated with obesity and impaired metabolic function. Herein, we explored the effects of administering rimonabant, a selective CB1R inverse agonist, upon key metabolic parameters in young (4 month old) and aged (17 month old) adult male C57BL/6 mice. Daily treatment with rimonabant for 14 days transiently reduced food intake in young and aged mice; however, the anorectic response was more profound in aged animals, coinciding with a substantive loss in body fat mass. Notably, reduced insulin sensitivity in aged skeletal muscle and liver concurred with increased CB1R mRNA abundance. Strikingly, rimonabant was shown to improve glucose tolerance and enhance skeletal muscle and liver insulin sensitivity in aged, but not young, adult mice. Moreover, rimonabant‐mediated insulin sensitization in aged adipose tissue coincided with amelioration of low‐grade inflammation and repressed lipogenic gene expression. Collectively, our findings indicate a key role for CB1R in aging‐related insulin resistance and metabolic dysfunction and highlight CB1R blockade as a potential strategy for combating metabolic disorders associated with aging.  相似文献   

4.
In this study, we investigated the metabolic phenotype of PKCtheta knockout mice (C57BL/6J) on chow diet and high-fat diet (HFD). The knockout (KO) mice are normal in growth and reproduction. On the chow diet, body weight and food intake were not changed in the KO mice; however, body fat content was increased with a corresponding decrease in body lean mass. Energy expenditure and spontaneous physical activity were decreased in the KO mice. On HFD, energy expenditure and physical activity remained low in the KO mice. The body weight and fat content were increased rapidly in the KO mice. At 8 wk on HFD, severe insulin resistance was detected in the KO mice with hyperinsulinemic euglycemic clamp and insulin tolerance test. Insulin action in both hepatic and peripheral tissues was reduced in the KO mice. Plamsa free fatty acid was increased, and expression of adiponectin in the adipose tissue was decreased, in the KO mice on HFD. This study suggests that loss of PKCtheta reduces energy expenditure and increases the risk of dietary obesity and insulin resistance in mice.  相似文献   

5.
The ECS (endocannabinoid system) plays an important role in the onset of obesity and metabolic disorders, implicating central and peripheral mechanisms predominantly via CB1 (cannabinoid type 1) receptors. CB1 receptor antagonist/inverse agonist treatment improves cardiometabolic risk factors and insulin resistance. However, the relative contribution of peripheral organs to the net beneficial metabolic effects remains unclear. In the present study, we have identified the presence of the endocannabinoid signalling machinery in skeletal muscle and also investigated the impact of an HFD (high-fat diet) on lipid-metabolism-related genes and endocannabinoid-related proteins. Finally, we tested whether administration of the CB1 inverse agonist AM251 restored the alterations induced by the HFD. Rats were fed on either an STD (standard/low-fat diet) or an HFD for 10 weeks and then treated with AM251 (3 mg/kg of body weight per day) for 14 days. The accumulated caloric intake was progressively higher in rats fed on the HFD than the STD, resulting in a divergence in body weight gain. AM251 treatment reduced accumulated food/caloric intake and body weight gain, being more marked in rats fed on the HFD. CB2 (cannabinoid type 2) receptor and PPARα (peroxisome-proliferator-activated receptor α) gene expression was decreased in HFD-fed rats, whereas MAGL (monoglyceride lipase) gene expression was up-regulated. These data suggest an altered endocannabinoid signalling as a result of the HFD. AM251 treatment reduced CB2 receptor, PPARγ and AdipoR1 (adiponectin receptor 1) gene expression in STD-fed rats, but only partially normalized the CB2 receptor in HFD-fed rats. Protein levels corroborated gene expression results, but also showed a decrease in DAGL (diacylglycerol) β and DAGLα after AM251 treatment in STD- and HFD-fed rats respectively. In conclusion, the results of the present study indicate a diet-sensitive ECS in skeletal muscle, suggesting that blockade of CB1 receptors could work towards restoration of the metabolic adaption imposed by diet.  相似文献   

6.
Objective: To investigate the involvement of hypoadiponectinemia and inflammation in coupling obesity to insulin resistance in melanocortin‐3 receptor and melanocortin‐4 receptor knockout (KO) mice (Mc3/4rKO). Research Methods and Procedures: Sera and tissue were collected from 6‐month‐old Mc3rKO, Mc4rKO, and wild‐type C57BL6J litter mates maintained on low‐fat diet or exposed to high‐fat diet (HFD) for 1 or 3 months. Inflammation was assessed by both real‐time polymerase chain reaction analysis of macrophage‐specific gene expression and immunohistochemistry. Results: Mc4rKO exhibited hypoadiponectinemia, exacerbated by HFD and obesity, previously reported in murine models of obesity. Mc4r deficiency was also associated with high levels of macrophage infiltration of adipose tissue, again exacerbated by HFD. In contrast, Mc3rKO exhibited normal serum adiponectin levels, irrespective of diet or obesity, and a delayed inflammatory response to HFD relative to Mc4rKO. Discussion: Our findings suggest that severe insulin resistance of Mc4rKO fed a HFD, as reported in other models of obesity such as leptin‐deficient (Lepob/Lepob) and KK‐Ay mice, is linked to reduced serum adiponectin and high levels of inflammation in adipose tissue. Conversely, maintenance of normal serum adiponectin may be a factor in the relatively mild insulin‐resistant phenotype of severely obese Mc3rKO. Mc3rKO are, thus, a unique mouse model where obesity is not associated with reduced serum adiponectin levels. A delay in macrophage infiltration of adipose tissue of Mc3rKO during exposure to HFD may also be a factor contributing to the mild insulin resistance in this model.  相似文献   

7.
Adiponectin and its receptors play an important role in energy homeostasis and insulin resistance, but their regulation remains to be fully elucidated. We hypothesized that high-fat diet would decrease adiponectin but increase adiponectin receptor (AdipoR1 and AdipoR2) expression in diet-induced obesity (DIO)-prone C57BL/6J and DIO-resistant A/J mice. We found that circulating adiponectin and adiponectin expression in white adipose tissue are higher at baseline in C57BL/6J mice compared with A/J mice. Circulating adiponectin increases at 10 wk but decreases at 18 wk in response to advancing age and high-fat feeding. However, adiponectin levels corrected for visceral fat mass and adiponectin mRNA expression in WAT are affected by high-fat feeding only, with both being decreased after 10 wk in C57BL/6J mice. Muscle AdipoR1 expression in both C57BL/6J and A/J mice and liver adipoR1 expression in C57BL/6J mice increase at 18 wk of age. High-fat feeding increases both AdipoR1 and AdipoR2 expression in liver in both strains of mice and increases muscle AdipoR1 expression in C57BL/6J mice after 18 wk. Thus advanced age and high-fat feeding, both of which are factors that predispose humans to obesity and insulin resistance, are associated with decreasing adiponectin and increasing AdipoR1 and/or AdipoR2 levels.  相似文献   

8.
9.
Growth hormone (GH) signaling stimulates the production of IGF‐1; however, increased GH signaling may induce insulin resistance and can reduce life expectancy in both mice and humans. Interestingly, disruption of GH signaling by reducing plasma GH levels significantly improves health span and extends lifespan in mice, as observed in Ames dwarf mice. In addition, these mice have increased adiposity, yet are more insulin sensitive compared to control mice. Metabolic stressors such as high‐fat diet (HFD) promote obesity and may alter longevity through the GH signaling pathway. Therefore, our objective was to investigate the effects of a HFD (metabolic stressor) on genetic mechanisms that regulate metabolism during aging. We show that Ames dwarf mice fed HFD for 12 weeks had an increase in subcutaneous and visceral adiposity as a result of diet‐induced obesity, yet are more insulin sensitive and have higher levels of adiponectin compared to control mice fed HFD. Furthermore, energy expenditure was higher in Ames dwarf mice fed HFD than in control mice fed HFD. Additionally, we show that transplant of epididymal white adipose tissue (eWAT) from Ames dwarf mice fed HFD into control mice fed HFD improves their insulin sensitivity. We conclude that Ames dwarf mice are resistant to the detrimental metabolic effects of HFD and that visceral adipose tissue of Ames dwarf mice improves insulin sensitivity in control mice fed HFD.  相似文献   

10.
11.
During insulin resistance, glucose homeostasis is maintained by an increase in plasma insulin via increased secretion and/or decreased first-pass hepatic insulin extraction. However, the relative importance of insulin secretion vs. clearance to compensate for insulin resistance in obesity has yet to be determined. This study utilizes the fat-fed dog model to examine longitudinal changes in insulin secretion and first-pass hepatic insulin extraction during development of obesity and insulin resistance. Six dogs were fed an isocaloric diet with an approximately 8% increase in fat calories for 12 wk and evaluated at weeks 0, 6, and 12 for changes in 1) insulin sensitivity by euglycemic-hyperinsulinemic clamp, 2) first-pass hepatic insulin extraction by direct assessment, and 3) glucose-stimulated insulin secretory response by hyperglycemic clamp. We found that 12 wk of a fat diet increased subcutaneous and visceral fat as assessed by MR imaging. Consistent with increased body fat, the dogs exhibited a approximately 30% decrease in insulin sensitivity and fasting hyperinsulinemia. Although insulin secretion was substantially increased at week 6, beta-cell sensitivity returned to prediet levels by week 12. However, peripheral hyperinsulinemia was maintained because of a significant decrease in first-pass hepatic insulin extraction, thus maintaining hyperinsulinemia, despite changes in insulin release. Our results indicate that when obesity and insulin resistance are induced by an isocaloric, increased-fat diet, an initial increase in insulin secretion by the beta-cells is followed by a decrease in first-pass hepatic insulin extraction. This may provide a secondary physiological mechanism to preserve pancreatic beta-cell function during insulin resistance.  相似文献   

12.
Insulin resistance plays a central role in type 2 diabetes and obesity, which develop as a consequence of genetic and environmental factors. Dietary changes including high fat diet (HFD) feeding promotes insulin resistance in rodent models which present useful systems for studying interactions between genetic background and environmental influences contributing to disease susceptibility and progression. We applied a combination of classical physiological, biochemical and hormonal studies and plasma (1)H NMR spectroscopy-based metabonomics to characterize the phenotypic and metabotypic consequences of HFD (40%) feeding in inbred mouse strains (C57BL/6, 129S6, BALB/c, DBA/2, C3H) frequently used in genetic studies. We showed the wide range of phenotypic and metabonomic adaptations to HFD across the five strains and the increased nutrigenomic predisposition of 129S6 and C57BL/6 to insulin resistance and obesity relative to the other strains. In contrast mice of the BALB/c and DBA/2 strains showed relative resistance to HFD-induced glucose intolerance and obesity. Hierarchical metabonomic clustering derived from (1)H NMR spectral data of the strains provided a phylometabonomic classification of strain-specific metabolic features and differential responses to HFD which closely match SNP-based phylogenetic relationships between strains. Our results support the concept of genomic clustering of functionally related genes and provide important information for defining biological markers predicting spontaneous susceptibility to insulin resistance and pathological adaptations to fat feeding.  相似文献   

13.
Cannabinoid receptor CB1 is expressed abundantly in the brain and presumably in the peripheral tissues responsible for energy metabolism. It is unclear if the antiobesity effects of rimonabant, a CB1 antagonist, are mediated through the central or the peripheral CB1 receptors. To address this question, we generated transgenic mice with central nervous system (CNS)-specific knockdown (KD) of CB1, by expressing an artificial microRNA (AMIR) under the control of the neuronal Thy1.2 promoter. In the mutant mice, CB1 expression was reduced in the brain and spinal cord, whereas no change was observed in the superior cervical ganglia (SCG), sympathetic trunk, enteric nervous system, and pancreatic ganglia. In contrast to the neuronal tissues, CB1 was undetectable in the brown adipose tissue (BAT) or the liver. Consistent with the selective loss of central CB1, agonist-induced hypothermia was attenuated in the mutant mice, but the agonist-induced delay of gastrointestinal transit (GIT), a primarily peripheral nervous system-mediated effect, was not. Compared to wild-type (WT) littermates, the mutant mice displayed reduced body weight (BW), adiposity, and feeding efficiency, and when fed a high-fat diet (HFD), showed decreased plasma insulin, leptin, cholesterol, and triglyceride levels, and elevated adiponectin levels. Furthermore, the therapeutic effects of rimonabant on food intake (FI), BW, and serum parameters were markedly reduced and correlated with the degree of CB1 KD. Thus, KD of CB1 in the CNS recapitulates the metabolic phenotype of CB1 knockout (KO) mice and diminishes rimonabant's efficacy, indicating that blockade of central CB1 is required for rimonabant's antiobesity actions.  相似文献   

14.
Intrahepatic or intramuscular lipid (IHL/IML) content has been reported to be correlated with insulin resistance. Visceral fat has also been shown to be associated with insulin resistance. Thus, we investigated whether IHL/IML or visceral fat content is more closely associated with insulin resistance. Twenty Sprague-Dawley rats were divided into two groups based on regular chow diet (RCD) or high-fat diet (HFD; 40% fat). The insulin-sensitivity index (ISI) was determined by euglycemic glucose clamp study, the amount of visceral fat by computed tomography (CT), and the IHL/IML content by magnetic resonance spectroscopy (MRS). Weight, food, and water intake, physical activity, energy expenditure, lipid profile, adiponectin, and high-sensitivity C-reactive protein (hsCRP) levels were measured. At the study end point, visceral fat, and the IHL/IML content were higher in the HFD group than in the RCD group. The IHL/IML content was more highly correlated with ISI than was visceral fat amount. Stronger correlations were also found between adiponectin or hsCRP level and IML/IHL content than visceral fat, especially in the HFD group. Furthermore, the IHL/IML content was significantly associated with the ISI in the multiple regression models but visceral fat was not. There was clear discrimination between RCD and HFD groups in scatter plots of IML/IHL against the ISI, but substantial overlap in that of visceral fat against the ISI. This result suggests that IHL/IML contents are closely related with insulin resistance or atherosclerosis and is a better metabolic index of insulin sensitivity than the visceral fat.  相似文献   

15.
Adiponectin is an adipocytokine that is hypothesized to be involved in the regulation of insulin action. The purpose of the present investigation was to determine whether plasma adiponectin is altered in conjunction with enhanced insulin action with exercise training. An insulin sensitivity index (S(I)) and fasting levels of glucose, insulin, and adiponectin were assessed before and after 6 mo of exercise training (4 days/wk for approximately 45 min at 65-80% peak O(2) consumption) with no loss of body mass (PRE, 91.9 +/- 3.8 kg vs. POST, 91.6 +/- 3.9 kg) or fat mass (PRE, 26.5 +/- 1.8 kg vs. POST, 26.7 +/- 2.2 kg). Insulin action significantly (P < 0.05) improved with exercise training (S(I) +98%); however, plasma adiponectin concentration did not change (PRE, 6.3 +/- 1.5 microg/ml vs. POST, 6.6 +/- 1.8 microg/ml). In contrast, in a separate group of subjects examined before and after weight loss, there was a substantial increase in adiponectin (+281%), which was accompanied by enhanced insulin action (S(I), +432%). These data suggest that adiponectin is not a contributory factor to the exercise-related improvements in insulin sensitivity.  相似文献   

16.
Adiponectin is downregulated in obesity negatively impacting the thermogenesis and impairing white fat browning. Despite the notable effects of green tea (GT) extract in the enhancement of thermogenesis, if its effects are being mediated by adiponectin has been scarcely explored. For this purpose, we investigated the role of adiponectin in the thermogenic actions of GT extract by using an adiponectin-knockout mice model. Male wild-type (WT) and knockout (AdipoKO) C57Bl/6 mice (3 months) were divided into 6 groups: mice fed a standard diet+gavage with water (SD WT, and SD AdipoKO), high-fat diet (HFD)+gavage with water (HFD WT, and HFD AdipoKO), and HFD + gavage with 500 mg/kg of body weight (BW) of GT extract (HFD + GT WT, and HFD + GT AdipoKO). After 20 weeks of experimentation, mice were euthanized and adipose tissue was properly removed. Our findings indicate that treatment with GT extract reversed complications of obesity in WT mice by decreasing final BW gain, adiposity index, adipocyte size and insulin resistance (IR). However, the action of the GT extract was not effective in reversing those markers in the AdipoKO mice, although GT acts independently in the reversal of IR. GT-treatment induced enhancement in energy expenditure (EE), BAT thermogenesis, and promoted browning phenotype in the subcutaneous WAT (scWAT) of WT mice. On the other hand, the thermogenic program was markedly impaired in BAT and scWAT of AdipoKO mice. Our outcomes unveiled adiponectin as a key direct signal for GT extract inducing adaptive thermogenesis and browning in scWAT.  相似文献   

17.
Exercise promotes weight loss and improves insulin sensitivity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Obesity correlates with increased production of inflammatory cytokines, which in turn, contributes to systemic insulin resistance. To test the hypothesis that exercise mitigates this inflammatory response, thereby improving insulin sensitivity, we developed a model of voluntary exercise in mice made obese by feeding of a high fat/high sucrose diet (HFD). Over four wk, mice fed chow gained 2.3 +/- 0.3 g, while HFD mice gained 6.8 +/- 0.5 g. After 4 wk, mice were subdivided into four groups: chow-no exercise, chow-exercise, HFD-no exercise, HFD-exercise and monitored for an additional 6 wk. Chow-no exercise and HFD-no exercise mice gained an additional 1.2 +/- 0.3 g and 3.3 +/- 0.5 g respectively. Exercising mice had higher food consumption, but did not gain additional weight. As expected, GTT and ITT showed impaired glucose tolerance and insulin resistance in HFD-no exercise mice. However, glucose tolerance improved significantly and insulin sensitivity was completely normalized in HFD-exercise animals. Furthermore, expression of TNF-alpha, MCP-1, PAI-1 and IKKbeta was increased in adipose tissue from HFD mice compared with chow mice, whereas exercise reversed the increased expression of these inflammatory cytokines. In contrast, expression of these cytokines in liver was unchanged among the four groups. These results suggest that exercise partially reduces adiposity, reverses insulin resistance and decreases adipose tissue inflammation in diet-induced obese mice, despite continued consumption of HFD.  相似文献   

18.
Tian J  Dang HN  Yong J  Chui WS  Dizon MP  Yaw CK  Kaufman DL 《PloS one》2011,6(9):e25338
Adipocyte and β-cell dysfunction and macrophage-related chronic inflammation are critical for the development of obesity-related insulin resistance and type 2 diabetes mellitus (T2DM), which can be negatively regulated by Tregs. Our previous studies and those of others have shown that activation of γ-aminobutyric acid (GABA) receptors inhibits inflammation in mice. However, whether GABA could modulate high fat diet (HFD)-induced obesity, glucose intolerance and insulin resistance has not been explored. Here, we show that although oral treatment with GABA does not affect water and food consumption it inhibits the HFD-induced gain in body weights in C57BL/6 mice. Furthermore, oral treatment with GABA significantly reduced the concentrations of fasting blood glucose, and improved glucose tolerance and insulin sensitivity in the HFD-fed mice. More importantly, after the onset of obesity and T2DM, oral treatment with GABA inhibited the continual HFD-induced gain in body weights, reduced the concentrations of fasting blood glucose and improved glucose tolerance and insulin sensitivity in mice. In addition, oral treatment with GABA reduced the epididymal fat mass, adipocyte size, and the frequency of macrophage infiltrates in the adipose tissues of HFD-fed mice. Notably, oral treatment with GABA significantly increased the frequency of CD4(+)Foxp3(+) Tregs in mice. Collectively, our data indicated that activation of peripheral GABA receptors inhibited the HFD-induced glucose intolerance, insulin resistance, and obesity by inhibiting obesity-related inflammation and up-regulating Treg responses in vivo. Given that GABA is safe for human consumption, activators of GABA receptors may be valuable for the prevention of obesity and intervention of T2DM in the clinic.  相似文献   

19.
Adipose tissue secretes adipokines that mediate insulin resistance, a characteristic feature of obesity and type 2 diabetes. By differential proteome analysis of cellular models of insulin resistance, we identified progranulin (PGRN) as an adipokine induced by TNF-α and dexamethasone. PGRN in blood and adipose tissues was markedly increased in obese mouse models and was normalized with treatment of pioglitazone, an insulin-sensitizing agent. Ablation of PGRN (Grn(-/-)) prevented mice from high fat diet (HFD)-induced insulin resistance, adipocyte hypertrophy, and obesity. Grn deficiency blocked elevation of IL-6, an inflammatory cytokine, induced by HFD in blood and adipose tissues. Insulin resistance induced by chronic administration of PGRN was suppressed by neutralizing IL-6 in vivo. Thus, PGRN is a key adipokine that mediates HFD-induced insulin resistance and obesity through production of IL-6 in adipose tissue, and may be a promising therapeutic target for obesity.  相似文献   

20.
The adiponectin high molecular weight isoform (HMW-adp) and its relation with the other adiponectin isoforms (adiponectin index, S(A)), have been identified as essential for the adiponectin insulin sensitizing effects. The objective of this study is to gain further insight on the effect of the insulin sensitizing agents, PPAR-γ agonists, on the distribution of the adiponectin isoforms and the adiponectin receptors, adipoR1 and adipoR2 in an animal model of obesity and insulin resistance. To achieve the objective, Zucker fatty rats were treated with pioglitazone, rosiglitazone or placebo for six weeks. At the end of the treatment, total adiponectin, adiponectin isoforms and adiponectin receptors expression were measured. In order to see the possible relation with insulin sensitivity parameters, HOMA-IR, muscle insulin-stimulated glucose transport, muscle GLUT4 and plasma free fatty acids were also measured. The two glitazones improved insulin sensitivity and both muscle insulin-stimulated glucose transport and GLUT4 total content. Total plasma adiponectin and visceral fat HMW-adp were increased only by pioglitazone. On the other hand, both glitazones changed the distribution of adiponectin isoforms in plasma, leading to an increase in the S(A) of 21% by pioglitazone and 31% by rosiglitazone. Muscle adipoR1 expression was increased by both glitazones whereas liver adipoR2 expression was increased by rosiglitazone and tended to increase in the pioglitazone group. The insulin sensitizing action of glitazones is mediated, at least in part, by their effect on muscle insulin-stimulated glucose transport and by their direct influence on the adiponectin index and the adiponectin receptors expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号