首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Variation in thorax length, wing length and sternopleural bristle number was examined in Drosophila melanogaster reared in stressful and nonstressful environments using paternal half-sib design. Low concentration of yeast in the medium was used as a stress factor. Phenotypic variation of thorax length and wing length was higher under poor nutrition than in the control; in bristle number, phenotypic variation was relatively stable regardless of the environment. Heritability of all the traits analyzed was generally lower under nutritional stress. Heritability changes in thorax length and wing length were mainly due to an increase in the environmental variance under stress, whereas in bristle number, stress resulted in a decrease in genetic variation. Genetic variance in thorax length was higher under poor nutrition; in wing length, no difference in genetic variance between environments was found.  相似文献   

2.
Bubliy OA  Loeschcke V 《Heredity》2002,89(1):70-75
A half-sib analysis was used to investigate genetic variation for three morphological traits (thorax length, wing length and sternopleural bristle number) and two life-history traits (developmental time and larva-to-adult viability) in Drosophila melanogaster reared at a standard (25 degrees C) and a low stressful (13 degrees C) temperature. Both phenotypic and environmental variation showed a significant increase under stressful conditions in all traits. For estimates of genetic variation, no statistically significant differences were found between the two environments. Narrow heritabilities tended to be higher at 13 degrees C for sternopleural bristle number and viability and at 25 degrees C for wing length and developmental time, whereas thorax length did not show any trend. However, the pattern of genetic variances and evolvability indices (coefficient of genetic variation and evolvability), considered in the context of literature evidence, indicated the possibility of an increase in additive genetic variation for the morphological traits and viability and in nonadditive genetic variation for developmental time. The data suggest that the effect of stressful temperature may be trait-specific and this warns against generalizations about the behaviour of genetic variation under extreme conditions.  相似文献   

3.
The effect of temperature, nutrition, and density stresses on phenotypic and genetic variation in morphological traits (thorax length, wing length, number of sternopleural and abdominal bristles, and number of arista branches) was examined in Drosophila melanogaster. In addition, the effect of stress on developmental stability measured as fluctuation asymmetry of bilateral traits was analyzed. All of the stresses were shown to increase phenotypic variation and fluctuating asymmetry of bilateral traits. Genetic variation of morphometric traits estimated using the isofemale line technique was higher under stressful than under normal conditions. Biotic and abiotic stresses were similar in their effect on phenotypic and genetic variation. The effect of stress on variability of morphometric traits was generally higher than on that of meristic traits. Possible causes of the increase of genetic variation under stress are discussed.  相似文献   

4.
We examined the relationship of three aspects of development, phenotypic plasticity, genetic correlations among traits, and developmental noise, for thorax length, wing length, and number of sternopleural bristles in Drosophila melanogaster. We used 14 lines which had previously been selected on either thorax length or plasticity of thorax length in response to temperature. A half-sib mating design was used and offspring were raised at 19° C or 25° C. We found that genetic correlations were stable across temperatures despite the large levels of plasticity of these traits. Plasticities were correlated among developmentally related traits, thorax and wing length, but not among unrelated traits, lengths and bristle counts. Amount of developmental noise, measured as fluctuating asymmetry and within-environmental variation, was positively correlated with amount of plasticity only for some traits, thorax length and bristle number, and only at one temperature, 25° C.  相似文献   

5.
Antipin MI  Imasheva AG 《Genetika》2001,37(3):325-331
The effects of chlorine-organic insecticide endosulfane (thiodan) on phenotypic and genetic variation in four morphological traits of Drosophila melanogaster (wing length, thorax length, the number of orbital bristles and the number of sternopleural bristles) were examined. In addition, the effect of this pesticide on stability of development measured as fluctuating asymmetry of bilateral traits was estimated. On the medium with endosulfane, phenotypic variation of morphometric traits was significantly higher. No difference in fluctuating asymmetry between the stressed and the control samples was found. The among-line variance of morphometric traits of flies reared on the endosulfane-containing medium was significantly higher as compared to the corresponding variance under control conditions. The efficiency of using fluctuating asymmetry and phenotypic variation of morphometric and meristic traits as indicators of environmental stress in insect populations is discussed.  相似文献   

6.
Bubliy OA  Loeschcke V 《Genetica》2000,110(1):79-85
Variation of five quantitative traits (thorax length, wing length, sternopleural bristle number, developmental time and larva-to-adult viability) was studied in Drosophila melanogaster reared at standard (25°C) and high stressful (32°C) temperatures using half-sib analysis. In all traits, both phenotypic and environmental variances increased at 32°C. For genetic variances, only two statistically significant differences between temperature treatments were found: the among-sire variance of viability and the among-dam variance of developmental time were higher under stress. Among-sire genetic variances and evolvabilities were generally higher at 32°C but narrow sense heritabilities were not. The results of the present work considered in the context of other studies in D. melanogaster indicate different patterns of genetic variation between stressful and nonstressful environments for the traits examined. Data on thorax length and viability agree with the hypothesis that genetic variance can be increased under extreme environmental conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Replicated divergent artificial selection for abdominal and sternopleural bristle number from a highly inbred strain of Drosophila melanogaster resulted in an average divergence after 125 generations of selection of 12.0 abdominal and 8.2 sternopleural bristles from the accumulation of new mutations affecting bristle number. Responses to selection were highly asymmetrical, with greater responses for low abdominal and high sternopleural bristle numbers. Estimates of V(M), the mutational variance arising per generation, based on the infinitesimal model and averaged over the responses to the first 25 generations of selection, were 4.32 X 10(-3) V(E) for abdominal bristle number and 3.66 X 10(-3) V(E) for sternopleural bristle number, where V(E) is the environmental variance. Based on 10 generations of divergent selection within lines from generation 93, V(M) for abdominal bristle number was 6.75 X 10(-3) V(E) and for sternopleural bristle number was 5.31 X 10(-3) V(E). However, estimates of V(M) using the entire 125 generations of response to selection were lower and generally did not fit the infinitesimal model largely because the observed decelerating responses were not compatible with the predicted increasing genetic variance over time. These decelerating responses, periods of response in the opposite direction to artificial selection, and rapid responses to reverse selection all suggest new mutations affecting bristle number on average have deleterious effects on fitness. Commonly observed periods of accelerated responses followed by long periods of stasis suggest a leptokurtic distribution of mutational effects for bristles.  相似文献   

8.
'Evolution Canyon' on Mount Carmel, Israel, displays highly contrasting physical and biotic environments on a micro-geographic scale, and is a natural laboratory for investigating genetic responses to variable and extreme environments across species. Samples of Drosophila melanogaster and D. simulans were collected from three sites each on the north- and south-facing slopes of the canyon along altitudinal transects, and one site on the valley floor. Numbers of abdominal and sternopleural sensory bristles were recorded for each of these subpopulations in three thermal environments. In D. simulans, sternopleural bristle number exhibited micro-geographic differentiation between the north- and south-facing slopes, while abdominal bristle number was stable across subpopulations. In D. melanogaster, the magnitudes of the difference in mean sternopleural bristle number between the north- and south-facing slopes and of mean abdominal bristle number along the altitudinal gradients were both conditional on rearing temperature. Thus, the pattern of genetic variation between sites was consistent with underlying heterogeneity of genetic mechanisms for response to the same environmental gradients between traits and sibling species. In contrast, the genetic architecture of bristle number at the level of variation within populations was very similar between species for the same bristle trait, although the two traits differed in the relative contribution of genotype by temperature and genotype by sex interaction.  相似文献   

9.
Spontaneous mutations were allowed to accumulate over 209 generations in more than 100 lines, all of them independently derived from a completely homozygous population of Drosophila melanogaster and subsequently maintained under strong inbreeding (equivalent to full-sib mating). Traits scored were: abdominal (AB) and sternopleural (ST) bristle number, wing length (WL) and egg-to-adult viability (V). On two occasions--early (generations 93-122) and late (generations 169-209)--ANOVA estimates of the mutational variance and the mutational line x generation interaction variance were obtained. Mutational heritabilities of morphological traits ranged from 2 x 10(-4) to 2 x 10(-3) and the mutational coefficient of variation of viability was 0.01. For AB, WL and V, temporal uniformity of the mutational variance was observed. However, a fluctuation of the mutational heritability of ST was detected and could be ascribed to random genotype x environment interaction.  相似文献   

10.
Genetic variability of quantitative traits was investigated in aMoroccan population of Drosophila melanogaster, with an isofemale line design. Results were compared with data previously obtained from French populations. Although the environmental and thermal conditions are very different in France and Morocco, only two significant differences were observed: a shorter wing and a lighter abdomen pigmentation in Morocco. It is, therefore, concluded that Moroccan D. melanogaster are quite typical temperate flies, belonging to the Palaearctic region, and very different from the ancestral Afrotropical populations. Almost all traits were genetically variable, as shown by significant intraclass correlations among lines. Genetic correlations were highly significant among three size-related traits, while much lower between size and bristle numbers. Fluctuating asymmetry was greater for abdominal bristles than for sternopleural bristles. Sex dimorphism, analysed as a female/male ratio, was identical in French and Moroccan populations. Examination of the thorax length/thorax width ratio showed that the thorax is more elongated in females. Sexual dimorphism of wing length was significantly more correlated to thorax width than to thorax length. The results illustrate the value of measuring numerous quantitative traits on the same flies for characterizing the genetic architecture of a natural population. In several cases, and especially for genetic correlations, some interesting suggestions could be made, which should be confirmed, or invalidated, by more extensive investigations.  相似文献   

11.
Zaprionus indianus is a cosmopolitan drosophilid, of Afrotropical origin, which has recently colonized South America. The sexual dimorphism (SD) of body size is low, males being almost as big as females. We investigated 10 natural populations, 5 from America and 5 from Africa, using the isofemale line technique. Three traits were measured on each fly: wing and thorax length and sternopleural bristle number. Two indices of SD were compared, and found to be highly correlated (r > 0.99). For the sake of simplicity, only the female/male (F/M) ratio was further considered. A significant genetic variability of SD was found in all cases, although with a low heritability (intra-class correlation of 0.13), about half the value found for the traits themselves. For size SD, we did not find any variation among continents or any latitudinal trend, and average values were 1.02 for wing length and 1.01 for thorax length. Bristle number SD was much greater (1.07). Among mass laboratory strains, SD was genetically much more variable than in recently collected populations, a likely consequence of laboratory drift. Altogether, SD, although genetically variable and prone to laboratory drift, is independent of size variations and presumably submitted to a stabilizing selection in nature.  相似文献   

12.
Restricted maximum likelihood was used to estimate genetic parameters of male and female wing and thorax length in isofemale lines ofDrosophila melanogaster, and results compared to estimates obtained earlier with the classical analysis of variance approach. As parents within an isofemale line were unknown, a total of 500 parental pedigrees were simulated and mean estimates computed. Full and half sibs were distinguished, in contrast to usual isofemale studies in which animals were all treated as half sibs and hence heritability was overestimated. Heritability was thus estimated at 0.33, 0.38, 0.30 and 0.33 for male and female wing length and male and female thorax length, respectively, whereas corresponding estimates obtained using analysis of variance were 0.46, 0.54, 0.35 and 0.38. Genetic correlations between male and female traits were 0.85 and 0.62 for wing and thorax length, respectively. Sexual dimorphism and the ratio of female to male traits were moderately heritable (0.30 and 0.23 for wing length, 0.38 and 0.23 for thorax length). Both were moderately and positively correlated with female traits, and weakly and negatively correlated with male traits. Such heritabilities confirmed that sexual dimorphism might be a fast evolving trait inDrosophila. An erratum to this article is available at .  相似文献   

13.
Numbers of Drosophila sensory bristles present an ideal model system to elucidate the genetic basis of variation for quantitative traits. Here, we review recent evidence that the genetic architecture of variation for bristle numbers is surprisingly complex. A substantial fraction of the Drosophila genome affects bristle number, indicating pervasive pleiotropy of genes that affect quantitative traits. Further, a large number of loci, often with sex- and environment-specific effects that are also conditional on background genotype, affect natural variation in bristle number. Despite this complexity, an understanding of the molecular basis of natural variation in bristle number is emerging from linkage disequilibrium mapping studies of individual candidate genes that affect the development of sensory bristles. We show that there is naturally segregating genetic variance for environmental plasticity of abdominal and sternopleural bristle number. For abdominal bristle number this variance can be attributed in part to an abnormal abdomen-like phenotype that resembles the phenotype of mutants defective in catecholamine biosynthesis. Dopa decarboxylase (Ddc) encodes the enzyme that catalyses the final step in the synthesis of dopamine, a major Drosophila catecholamine and neurotransmitter. We found that molecular polymorphisms at Ddc are indeed associated with variation in environmental plasticity of abdominal bristle number.  相似文献   

14.
Summary Phenotypic variance for each of several bristle number characters (abdominal, sternopleural, second and third coxal) was partitioned using both hierarchal and dialled designs. Heritabilities and genetic correlations were estimated from parent-offspring regressions and correlations and half-sib correlations.A high proportion of the genetic variance for abdominal bristle number was due to epistatic and sex-linked gene action, but most of the genetic variance for the other characters was additive autosomal.The genetic correlations among sternopleural, and second and third coxal bristle numbers were all high, but that between abdominals and sternopleurals was low, while those between abdominals and either second or third coxals were virtually zero. An appreciable proportion of the covariance between abdominal and sternopleural bristle numbers was non-additive genetic.The diallel method gave more reliable estimates of genetic parameters when non-additive or sex-linked genetic variation was present.
Zusammenfassung Für eine Anzahl verschiedener Borstenzahl-Charaktere (abdominales, sternopleurales, 2. und 3. coxales Segment) wurde die phänotypische Varianz unter Verwendung hierarchischer und dialleler Versuchsanlagen unterteilt. Anhand von Elter-Nachkommen-Regressionen und-Korrelationen und von Halbgeschwister-Korrelationen wurden Heritabilitäten und genetische Korrelation geschätzt.Ein hoher Anteil der genetischen Varianz für die Zahl abdominaler Borsten wurde durch epistatische Effekte und die Wirkung geschlechtsgekoppelter Gene bedingt. Bei den anderen Charakteren war der größte Anteil der genetischen Varianz additiv autosomal.Die genetische Korrelation zwischen der Zahl der Borsten sternopleural und 2. und 3. Segment coxal war durchweg hoch, zwischen abdominal und sternopleural niedrig und zwischen abdominal und sowohl 2. und 3. coxal praktisch gleich null.Ein bemerkenswerter Anteil der Covarianz zwischen der Zahl abdominaler und sternopleuraler Borsten war nicht-additiv genetisch.Die Diallel-Methode ergab zuverlässigere Schätzungen der genetischen Parameter, wenn nicht-additive oder geschlechtsgebundene genetische Variation vorlag.
  相似文献   

15.
Drosophila kikkawai, which has colonized the Indian subcontinent in the recent past, exhibits geographical variations for five quantitative traits among eight Indian populations (8.29–32.7°N). Body weight, wing length, thorax length, abdominal bristles and ovariole number exhibit significant clinal variation with increase in latitude, while sternopleural bristles do not demonstrate such a trend. For the female sex, the slope values for body weight (2.25) and wing length (2.40) are higher but they are lower for thorax length (0.64) and ovariole number (0.51 per degree latitude). There is significant sexual dimorphism for the slope values only for body weight and thorax length suggesting simultaneous action of latitudinal selection pressure on these traits. However, the two sexes do not differ statistically in the latitudinal slope values for the wing length. A regression analysis of different traits on body weight implies correlated selection response on wing length and wing/thorax ratio while thorax length corresponds to changes in body size and does not differ in the two sexes. Regression analysis, on the basis of temperature-related climatic variables, evidence significantly higher association between all the five size-related traits and coefficient of variation of mean annual temperature (seasonal thermal amplitude; T cv), T min and relative humidity. Thus, genetic differentiation for quantitative traits in D. kikkawai are due to selective pressure from variable climatic conditions occurring on the Indian subcontinent.  相似文献   

16.
TFC. Mackay  R. F. Lyman    W. G. Hill 《Genetics》1995,139(2):849-859
A highly inbred strain of Drosophila melanogaster was subdivided into 20 replicate sublines that were maintained independently with 10 pairs of randomly sampled parents per generation for 180 generations. The variance between lines in abdominal and sternopleural bristle number increased little after 100 generations, in contrast to the neutral expectation of a linear increase; and the covariances of line means between different generations declined with increasing number of generations apart, in contrast to the neutral expectation of constant covariance. Thus, under a neutral model, the estimates of mutational variance were lower than for previous estimates from the first 100 generations of subline divergence. An autoregressive model was fitted to the variance of line means that indicated strong natural selection. There is no single unequivocal explanation for the results. Possible and nonexclusive alternatives include stabilizing selection on bristle number and deleterious effects on fitness of bristle mutations. The inferred strengths of selection on both traits are too high for stabilizing selection alone, and the between-line variance did not continue to increase sufficiently for pleiotropy alone to account for the observations. A third potential explanation that does not invoke selection is duplicate epistasis between mutations affecting bristle number.  相似文献   

17.
The genetic architecture of Drosophila sensory bristle number   总被引:2,自引:0,他引:2  
Dilda CL  Mackay TF 《Genetics》2002,162(4):1655-1674
We have mapped quantitative trait loci (QTL) for Drosophila mechanosensory bristle number in six recombinant isogenic line (RIL) mapping populations, each of which was derived from an isogenic chromosome extracted from a line selected for high or low, sternopleural or abdominal bristle number and an isogenic wild-type chromosome. All RILs were evaluated as male and female F(1) progeny of crosses to both the selected and the wild-type parental chromosomes at three developmental temperatures (18 degrees, 25 degrees, and 28 degrees ). QTL for bristle number were mapped separately for each chromosome, trait, and environment by linkage to roo transposable element marker loci, using composite interval mapping. A total of 53 QTL were detected, of which 33 affected sternopleural bristle number, 31 affected abdominal bristle number, and 11 affected both traits. The effects of most QTL were conditional on sex (27%), temperature (14%), or both sex and temperature (30%). Epistatic interactions between QTL were also common. While many QTL mapped to the same location as candidate bristle development loci, several QTL regions did not encompass obvious candidate genes. These features are germane to evolutionary models for the maintenance of genetic variation for quantitative traits, but complicate efforts to understand the molecular genetic basis of variation for complex traits.  相似文献   

18.
The effects of chlorine-organic insecticide endosulfane (thiodan) on phenotypic and genetic variation in four morphological traits of Drosophila melanogaster(wing length, thorax length, the number of orbital bristles and the number of sternopleural bristles) were examined. In addition, the effect of this pesticide on stability of development measured as fluctuating asymmetry of bilateral traits was estimated. On the medium with endosulfane, phenotypic variation of morphometric traits was significantly higher. No difference in fluctuating asymmetry between the stressed and the control samples was found. The among-line variance of morphometric traits of flies reared on the endosulfane-containing medium was significantly higher as compared to the corresponding variance under control conditions. The efficiency of using fluctuating asymmetry and phenotypic variation of morphometric and meristic traits as indicators of environmental stress in insect populations is discussed.  相似文献   

19.
The effects of inbreeding on the phenotypic variance within populations were measured in a set of 30 bottlenecked lines derived from a single source population of Drosophila melanogaster. Inbred lines had significant variance among lines in the amount of phenotypic variance within lines, for thorax length, and sternopleural bristle scores. When significance levels were corrected on an experimentwide basis, no line had significant increases in phenotypic variance for sternopleural bristle counts, although two lines had significant increases in thorax length variance. These results demonstrate that inbred lines cannot be treated as necessarily more uniform than outbred lines and that results on changes in variance due to inbreeding should be treated with caution unless there has been sufficient replication. These results also demonstrate the validity of an important assumption of models of evolution by variance-mediated mechanisms, such as the variance-induced peak-shift model.  相似文献   

20.
Haerty W  Gibert P  Capy P  Moreteau B  David JR 《Heredity》2003,91(5):440-447
Two genetically distinct habitat races of Drosophila melanogaster coexist in Brazzaville (Congo). One is the typical field type of Afrotropical populations, the other mainly breeds in beer residues in breweries. These two populations differ in their ethanol tolerance, in their allelic frequencies at several enzyme and microsatellite loci and in the composition of their cuticular hydrocarbons. The brewery population is quite similar to European temperate populations with regard to all these traits. Previous investigations of two morphological traits (ovariole number and sternopleural bristle number) failed to detect any difference between the two habitat races. Here we investigated other morphological traits (wing and thorax length, thorax pigmentation and female abdomen pigmentation). The reaction norms of these traits according to growth temperature were compared in the two Afrotropical habitat races and in a French temperate population. As expected, the French population was very different from the field African population: as a general rule, the brewery population (Kronenbourg) was intermediate in several aspects between the other two. We conclude that the strong selective forces that maintain the genetic divergence between the two habitat races also act on morphometrical traits, and the possible selective mechanisms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号