共查询到20条相似文献,搜索用时 15 毫秒
1.
In a synthetic route that varies from the standard procedure requiring irradiation, the (η6-C6H5Cl)Cr(CO)2PPh3 complex is obtained upon reacting (η6-C6H5Cl)Cr(CO)3 with tetrakis(triphenylphosphine)palladium(0), CuI, and trimethylsilylphenylacetylene in triethylamine. The X-ray crystal structure of the yellow–orange crystals of (η6-C6H5Cl)Cr(CO)2PPh3 allows structural comparisons to related (arene)Cr(CO)2PR3 complexes. 相似文献
2.
Ta-i Shimura Akira Ohkubo Kunitsugu Aramaki Hidehiro Uekusa Toyoaki Fujita Shigeru Ohba Hiroshi Nishihara 《Inorganica chimica acta》1995,230(1-2)
Reactions of [CpCo(PPh3)2](Cp=η5-cyclopentadienyl) with conjugated diacetylenes were investigated in terms of the synthesis of π-conjugated organometallic polymers. The reaction of an α,β-diyne, PhCC---CCPh, gave three geometric isomers of dialkynylcobaltacyclopentadienes, 1a-c, and an insoluble polymeric product, 1d. A 2,4-dialkynyl complex, 2, and a 2,5-dialkynyl complex, 3, were obtained solely from Me3SiCC---CCSiMe3 and MeCC---CCMe, respectively. 1,1′-Bis(trimethylsilylethynyl)-4,4′-biphenyl afforded two isomers of 1,3-dialkynylcyclobutadiene complexes, 4a and 4b. The stability of the one-electron oxidized forms of the cobalacyclopentadiene and cyclobutadiene complexes was examined by cyclic voltammetry. 相似文献
3.
Barbara del Klerk-Engels Jos G. P. Delis Jan-Meine Ernsting Cornelis J. Elsevier Hans-Werner Frü hauf Derk J. Stufkens Kees Vrieze Kees Goubitz Jan Fraanje 《Inorganica chimica acta》1995,240(1-2):273-284
Reaction of RuCl(η5-C5H5(pTol-DAB) with AgOTf (OTf = CF3SO3) in CH2Cl2 or THF and subsequent addition of L′ (L′ = ethene (a), dimethyl fumarate (b), fumaronitrile (c) or CO (d) led to the ionic complexes [Ru(η5-C5H5)(pTol-DAB)(L′)][OTf] 2a, 2b and 2d and [Ru(η5-C5H5)(pTol-DAB)(fumarontrile-N)][OTf] 5c. With the use of resonance Raman spectroscopy, the intense absorption bands of the complexes have been assigned to MLCT transitions to the iPr-DAB ligand. The X-ray structure determination of [Ru(η5-C5H5)(pTol-DAB)(η2-ethene)][CF3SO3] (2a) has been carried out. Crystal data for 2a: monoclinic, space group P21/n with A = 10.840(1), b = 16.639(1), C = 14.463(2) Å, β = 109.6(1)°, V = 2465.6(5) Å3, Z = 4. Complex 2a has a piano stool structure, with the Cp ring η5-bonded, the pTol-DAB ligand σN, σN′ bonded (Ru-N distances 2.052(4) and 2.055(4) Å), and the ethene η2-bonded to the ruthenium center (Ru-C distances 2.217(9) and 2.206(8) Å). The C = C bond of the ethene is almost coplanar with the plane of the Cp ring, and the angle between the plane of the Cp ring and the double of the ethene is 1.8(0.2)°. The reaction of [RuCl(η5-C5H5)(PPh)3 with AgOTf and ligands L′ = a and d led to [Ru(η5-C5H5)(PPh3)2(L′)]OTf] (3a) and (3d), respectively. By variable temperature NMR spectroscopy the rottional barrier of ethene (a), dimethyl fumarate (b and fumaronitrile (c) in complexes [Ru(η5-C5H5)(L2)(η2-alkene][OTf] with L2 = iPr-DAB (a, 1b, 1c), pTol-DAB (2a, 2b) and L = PPh3 (3a) was determined. For 1a, 1b and 2b the barrier is 41.5±0.5, 62±1 and 59±1 kJ mol−1, respectively. The intermediate exchange could not be reached for 1c, and the ΔG# was estimated to be at least 61 kJ mol−. For 2a and 3a the slow exchange could not be reached. The rotational barrier for 2a was estimated to be 40 kJ mol−. The rotational barier for methyl propiolate (HC≡CC(O)OCH3) (k) in complex [Ru(η5-C5H5)(iPr-DAB) η2-HC≡CC(O)OCH3)][OTf] (1k) is 45.3±0.2 kJ mol−1. The collected data show that the barrier of rotational of the alkene in complexes 1a, 2a, 1b, 2b and 1c does not correlate with the strength of the metal-alkene interaction in the ground state. 相似文献
4.
A. M. Cano J. Cano T. Cuenca P. Gmez-Sal A. Manzanero P. Royo 《Inorganica chimica acta》1998,280(1-2):1
The reaction of TiCl4 with Li2[(SiMe2)2(η5-C5H3)2] in toluene at room temperature afforded a mixture of cis- and trans-[(TiCl3)2{(SiMe2)2(η5-C5H3)2}] in a molar ratio of 1/2 after recrystallization. The complex trans-[(TiCl3)2{(SiMe2)2(η5-C5H3)2}] was hydrolyzed immediately by the addition of water to THF solutions to give trans-[(TiCl2)2(μ-O){(SiMe2)2(η5-C5H3)2}] as a solid insoluble in all organic solvents, whereas hydrolysis of cis-[(TiCl3)2{(SiMe2)2(η5-C5H3)2}] under different conditions led to the dinuclear μ-oxo complex cis-[(TiCl2)2)(μ-O){(SiMe2)2(η5-C5H3)2}] and two oxo complexes of the same stoichiometry [(TiCl)2(μ-O){(SiMe2)2(η5-C5H3)2}]2(μ-O)2 as crystalline solids. Alkylation of cis- and trans-[(TiCl3)2{(SiMe2)2(η5-C5H3)2}] with MgCIMe led respectively to the partially alkylated cis-[(TiMe2Cl)2{(SiMe2)2(η5-C5H3)2}] and the totally alkylated trans-[(TiMe3)2{(SiMe2)2(η5-C5H3)2}] compounds. The crystal and molecular structure of the tetranuclear oxo complex [(TiCl)2(μ-O){(SiMe2)2(η5-C5H3)2}]2(μ-O)2 was determined by X-ray diffraction. 相似文献
5.
Jean-Fran ois Capon Nathalie Le Berre-Cosquer Fran oise Chuburu Ren Kergoat Jean-Yves Saillard 《Inorganica chimica acta》1996,250(1-2):119-127
The reactivity, towards nucleophiles and electrophiles, of dimolybdenum allenylidene complexes of the type [Cp2Mo2(CO)4(μ,η2(4e)-C=C=CR1R2)] (Cp=η5-C5H5) has been investigated. The nucleophilic attacks occur at the Cγ carbon atom, while electrophiles affec the C atom. Variable temperature solution 1H NMR studies show a dynamic behavior of these complexes consisting of an equilibrium between two enantiomers with a symmetrical [Cp2Mo2(CO)4(μ-σ,σ(2e)-C=C=CR1R2)] transition state. Extended Hückel MO calculations have been carried out on the model [Cp2Mo2(CO)4(μ,η2-C=C=CH2]. The calculated charges of the allenylidene carbon atoms suggest that the electrophilic attacks are under charge control, while the nucleophilic attacks are rather under orbital control. 相似文献
6.
Marcel Hoogenraad Kevita Ramkisoensing Willem L. Driessen Huub Kooijman Anthony L. Spek Elisabeth Bouwman Jaap G. Haasnoot Jan Reedijk 《Inorganica chimica acta》2001,320(1-2):117-126
New manganese(III) complexes of Hphox (2-(2′-hydroxyphenyl)-oxazoline) and HClphox (2-(5′-chloro-2′-hydroxyphenyl)-oxazoline) have been synthesised. The X-ray structures of [Mn(phox)2(MeOH)2][Mn(phox)2(ClO4)2](H2O)2 and [Mn(Clphox)2(MeOH)2](ClO4) show the manganese(III) ions to be octahedrally coordinated with methanol or perchlorate at the axial coordination sites. The cyclic voltammograms of the complexes, with the exception of [Mn(phox)2(acac)] (Hacac=2,4-pentanedione), show an irreversible reduction wave of manganese(III) to manganese(II). After addition of an excess of 1-methylimidazole (1-Meim), the reduction process shifts towards lower potentials and becomes (quasi-) reversible, indicating that the presence of 1-Meim affects the catalytic efficiency of the complexes. The complexes catalyse the epoxidation of styrene by dihydrogen peroxide. The cumulative turnover numbers towards styrene oxide obtained after 15 min. vary from 16 for [Mn(Clphox)2(MeOH)2](ClO4) to 26 for [Mn(phox)2(acac)]. Ligand degradation appears to be the limiting factor for obtaining higher turnover numbers. 相似文献
7.
S. P. Gubin A. P. Klyagina I. F. Golovaneva T. V. Galuzina O. A. Belyakova Ya. V. Zubavichus Yu. L. Slovokhotov 《Inorganica chimica acta》1998,280(1-2):275-281
HRu2Fe2PdC(CO)12 (η3-ß-C10H15) cluster was prepared in the reaction of (Et4N) [HFe2Ru2C(CO)12] with [Pd(η3-ß-C10H15)Cl]2. X-ray structural study of HRu2Fe2PdC(CO)12 (η3-ß-C10H15) (where ß-C10H15 is ß-pinenyl) revealed a wing-tip butterfly geometry of the metal core and (1R, 2S, 3S, 5R) absolute configuration for both crystallography independent molecules in the crystal. Chiroptical properties of this cluster are compared with other clusters containing a Pd(η3-ß-C10H15) fragment and discussed. 相似文献
8.
Analogy with the isolable oxo cluster [Fe3(CO)9(μ3-O)]2−, which is structurally interesting and synthetically useful, prompted the present attempt to synthesize its ruthenium analog. Although the high reactivity of [Ru3(CO)9(μ3-O)]2− (I) prevented its isolation, the reaction of this species with [M(CO)3(NCCH3)]+, where M = Mn or Re, yields [PPN][MRu3(CO)12(η2-μ3-NC(μ-O)CH3]−. The high nucleophilicity of the oxo ligand in [Ru3(CO)9(μ3-O)]2− (I) appears to be responsible for the conversion of acetonitrile to an acetamidediato ligand and for the instability of I. The crystal structure of [PPN][MnRu3(CO)12(η2-μ3-NC(μ-O)CH3)]] reveals a hinged butterfly array of metal atoms in which the acetamidediato ligand bridges the two wings with μ3-N bonding to an Mn and two Ru atoms, and μ-O bonding to an Ru atom. 相似文献
9.
D. P. Krut'ko M. V. Borzov L. G. Kuz'mina A. V. Churakov D. A. Lemenovskii O. A. Reutov 《Inorganica chimica acta》1998,280(1-2):257-263
A reduction of previously reported 2-methoxyethyl and 2-methylthioethyl functionalized zirconocenedichlorides (η5-C5Me4CH2CH2EMe)(η5-C5Me5)(ZrCl2 (E = O, S) and (η5-C5Me4CH2CH2EMe)(η5-C5Me4CH2CH2E′Me)ZrCl2 (E = O, S; E′ = O, S) with Mg/Hg in THF leads unexpectedly to the products of O---Me and S---Me bond cleavage (η5,σ-C5Me4CH2CH2E)(η5-C5Me5)ZrMe (E = O, S), (η5,σ-C5Me4CH2CH2E)(η5-C5Me4CH2CH2E′Me)ZrMe (E = O, S; E′ = O), and (η5,σ-C5Me4CH2CH2S)2Zr respectively. The crystal structure of (η5,σ-C5Me4CH2CH2S)2Zr was established by X-ray analysis. At that same time the reduction of (ηsu5-C5Me4CH2CH2EMe)(η5-C5Me5)ZrCl2 (E> = O, S) under 1 atm of CO gives either only the dicarbonyl derivative (η5-C5Me4CH2CH2EMe) (η5-C6Me5)Zr(CO)2 (E = O) or a complex mixture of products (E = S). 相似文献
10.
11.
Michael T. Ashby Susan Stanislav Alguindigue Masood A. Khan 《Inorganica chimica acta》1998,270(1-2):227-237
Rotational barriers about the M-S bonds of 16-electron bent metallocene monothiolates (η5-C5H5)2Zr(Cl) (SR) (R = −CH3, −CH2CH3, −CH(CH3)2, −C(CH3)3) (1a–d) have been measured by dynamic 1H NMR methods: 32, 33, 35 and 26 kJ mol−1, respectively. The ground-state orientation about the Zr-S bonds of 1 that maximizes Spπ → Mdπ bonding (Cl-Zr-S-R ≈ 90°) also maximizes CpR steric interaction, whereas the rotational transition-state orientation (Cl-Zr-S-R ≈ 0°) is one that minimizes Spπ → Mdπ bonding and maximizes ClR steric interaction. Deviation from a ground-state orientation that is ideal for Spπ → Mdπ bonding might be expected as the size of the R group and CpR steric interaction increases. Thus, the aberrant trend for the R = −C(CH3)3 derivative could be attributed to a ground-state steric effect where the sterically demanding −C(CH3)3 group forces an unfavorable (misdirected) orientation for Mdπ-Spπ bonding, but a favorable orientation with respect to CpR and ClR steric interactions. However, the solid-state structures of (η5-C5H5)2Zr(SR)2 (R = −CH3, −CH2CH3, −CH(CH3)2, −C(CH3)3) (2a–d) exhibit regular variation of their metric parameters as evidenced by their Zr-S-C bond angles of 108, 109, 113, and 124° and S-Zr-S′ bond angles of 97, 99, 100 and 106°, respectively. Neither the S′-Zr-S-R torsion angles nor the dihedral angles that describe the relationship between the S/Zr/S′ and Cp(centroid)/Zr/Cp′ (centroid) planes (both indicators of the relative orientation of the Zr dπ acceptor orbital and the thiolate S pπ donor orbital) reflect the steric demand of the R group. Thus, the size of the R group imposes a measured effect on the geometry of 2 and the tert-butyl group is not extraordinary. Although the enthalpic and entropic effects could not be deconvoluted for rotation about the Zr-S bond of 1 in the present study, literature precedents suggest that both enthalpic and entropic effects may play a role in determining the irregular trend that is observed. 相似文献
12.
The preparation and structural characterization of {Ru3(CO)11}2(1,4-bis(diphenylphosphino)benzene), a modified synthesis of 1,4-bis(diphenylphosphino)benzene, and the structural characterization of {Ru3(CO)11}2(bis(diphenylphosphino)ethane) are reported. In both compounds two metal cluster units are connected through ditertiary-phosphine ligands. Both molecules consist of centrosymmetric units in which the diphosphine ligands are largely covered by the triangular ruthenium clusters. No direct interaction between the two cluster units occurs within individual molecules. Molecular packing in the solid state is dominated by interactions between sets of carbon monoxide ligands in motifs that were previously identified in the solid state structure of the parent cluster, Ru3(CO)12. 相似文献
13.
Reactions of Cr(CO)3(η6-BT), in which the Cr is π-coordinated to the benzene ring of benzo[b]thiophene (BT), with Cp′(CO)2Re(THF), where Cp′ = η5-C5H5 or η5-C5Me5, give the products Cp′(CO)2Re(η2:η6-μ2-BT)Cr(CO)3 in which the Cr remains coordinated to the benzene ring and Re is bound to the C(2)=C(3) double bond. An X-ray diffraction study of Cp(CO)2Re(η2:η6-μ2-BT)Cr(CO)3 (3) provides details of the geometry. This structure contrasts with that of the Cp′(CO)2Re(BT) complexes that exist as mixtures of isomers in which the BT is coordinated to the Re through either the double bond (2,3-η2) or the sulfur (η1(S)). Thus, the electron-withdrawing Cr(CO)3 group in 3 stabilizes the 2,3-η2 mode of BT coordination to the Cp′(CO)2Re fragment. Implications of these results for catalytic hydrodesulfurization of BT are discussed. Crystal data for 3: triclinic, space group . 相似文献
14.
15.
M.S. Ameerunisha Begum Oliver Seewald Ulrich Flrke Gerald Henkel 《Inorganica chimica acta》2008,361(7):1868-1874
Copper(I) complexes with {Cu(μ2-S)N}4 and {Cu(μ3-S)N}12 core portions of butterfly-shaped or double wheel architectures have been isolated in the reaction of Cu(I) with the Schiff base ligand C6H4(CHNC6H4S)2, “iso-abt”, under different conditions. containing the tetranuclear electroneutral complex is formed by the reaction of CuI in acetonitrilic solution and recrystallization from DMF, whereas containing dodecanuclear wheels is accessible starting from CuBF4. Complexes 2 and 4 represent the first examples of cyclic complexes with the same overall stoichiometry but different ring sizes. The ligand induces two different coordination environments around copper(I) by switching between μ2- and μ3-sulfur bridging modes. 相似文献
16.
Oleg V. Gusev Mikhail A. Ievlev Konstantin A. Lyssenko Pavel V. Petrovskii Nikolai A. Ustynyuk Peter M. Maitlis 《Inorganica chimica acta》1998,280(1-2):249-256
The reaction of RuCl3(H2O), with C5Me4CF3J in refluxing EtOH gives [Ru2(η5-C5Me1CF2)2 (μ-Cl2] (20 in 44% yield. Dimer 2 antiferromagnetic (−2J=200 cm1). The crystal structures of 2 (rhombohedral system, R3 space group, Z=9, R=0.0589) and [Rh2(η5-C5Me4CF3(2Cl2(μ-Cl)2] (3) (rhombohedral system.
space group, Z = 9, R = 0.0641) were solved; both complexes have dimeric structures with a trans arrangement of the η5-C5Me4CF4 rings. Comparison of the geometry of 2 and 3 with those of the corresponding η5-C5Me5 complexes shows that lowering the ring symmetry causes significant distortion of the M2(μ-Cl)2 moiety. The analysis of the MCl3 fragment conformations in 2 and 3 and in the η5-C5ME5 analogues shows that they are correlated with the M---M distances. The Cl atoms are displaced by Br on reaction of 2 with KBr in MeOH to give the diamagnetic dimer [Ru2(η5-C5Me4CF3)2Br2 (μ-Br2] (4). Complex 2 reacts with O2 in CH2Cl2 solution at ambient temperature to form a mixture of isomeric η6-fulvene dimers [Ru2(η6-C5Me3CF3 = CH2)2Cl2(μ-Cl)2] (5). Reactions of 5 with CO and allyl chloride give Ru(η5-C5Me3CF3CH2Cl)(CO)2Cl (6) and Ru(η5-C5Me3CF3CF3CH2Cl)(η3-C3H5)Cl2 (7) respectively. 相似文献
17.
Claudia Graiff Andrea Ienco Chiara Massera Carlo Mealli Giovanni Predieri Antonio Tiripicchio Franco Ugozzoli 《Inorganica chimica acta》2002,330(1):95-102
The reaction between the linear trinuclear complex [Pt{Fe(CO)3(NO)}2(PhCN)2] and Ph2(2-C5H4N)PSe led to the isolation and characterization of the 46-electron cluster [(CO)3Fe(μ3-Se){Pt(CO)P(2-C5H4N)Ph2}2] (1), whose structure has been determined by X-ray diffraction methods. The cluster typology, which consists of an open triangle Pt---Fe---Pt capped by a μ3-Se atom, is rather rare. The chemical bonding in 1 and in similar systems has been analyzed through density functional theory (DFT) and qualitative MO approaches. A strict analogy with the well understood L2M(μ-acetylene)ML2 systems is invoked by considering 1 as formed by the (CO)3FeSe tetrahedral unit stabilized by sidewise interactions of the triple bond with two d10-L2M fragments. Otherwise, the 18-electron (CO)3FeSe monomer is unstable as an isolate molecule. This is confirmed by our DFT calculations that indicate how the well characterized dimer (CO)3Fe(μ-Se2)Fe(CO)3 lies as much as, approximately, 58 kcal mol−1 deeper in energy. Finally, by considering an analogy with [L2M(μ-dichalcogen)ML2]0, +2 redox systems (M=Pd, Pt), reduction of 1 to a dianion has been hypothesized and the structure of the latter has been tentatively explored by DFT calculations. 相似文献
18.
Li-Cheng Song Lu-Yan Zhang Qing-Mei Hu Xiao-Ying Huang 《Inorganica chimica acta》1995,230(1-2):127-131
An improved synthetic procedure for pentabenzylcyclopentadiene Bz5C5H was developed. Six new organomolybdenum and organotungsten halides η5-Bz5C5M(CO)3X(M = Mo, W; X = Cl, Br, I) were syntesized through the reaction of η5-Bz5C5M(CO)3Li (derived from Bz5C5H, n-BuLi and M(CO)6) with PCl3, PBr3 or I2 and characterized by elemental analysis, IR and 1H NMR spectroscopy. The structure of η5-Bz5C5Mo(CO)3I was determined by single-crystal X-ray diffraction techniques. It crystallized in the monoclinic space groupp P2/c with cell parameters a = 13.294(4), B = 15.147(4), C = 19.027(3) Å, β = 108.32(2)°, V = 3637(2) Å3, Z = 4 and Dx = 1.50 g cm−3. The final R value was 0.035 for 4564 observed reflections. 相似文献
19.
Pierre D. Harvey Karine Hierso Pierre Braunstein Xavier Morise 《Inorganica chimica acta》1996,250(1-2):337-343
The trinuclear clusters [Pd3(μ-dppm)3(CO)]2+ and [PtPdCo(μ-dppm)2(CO)3(CNtBu)]+ exhibit a large and a small cavity, respectively, formed by the phenyl rings of the bridging diphosphine ligands. Their binding constants (K11) with halide ions (X−) were obtained by UV-Vis spectroscopy. The binding ability varies as I− > Br− > Cl−, and [Pd3(μ-dppm)3(CO)]2+ > [ptPdCo(μ-dppm)2-(CO)3(CNtBu)]+. The MO diagram for the related cluster [Pd2Co(μ-dppm)2(CO)4]+ has been addressed theoretically in order to predict the nature of the lowest energy electronic bands. For this class of compounds, the lowest energy bands are assigned to charge transfers from the Co center to the Pd2 centers. 相似文献
20.
The reaction between the redox-active diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) and the dirhenium compound Re2(CO)8(μ-H)(μ-η1,η2-C CPh) in CH2Cl2 at room temperature proceeds by CO loss to give the dirhenium complex Re2(CO)7(bpcd)(μ-H)(η1-C CPh) (1). This new complex was characterized in solution by IR and NMR (1H and 31P) spectroscopy and in the solid state by X-ray diffraction analysis. Re2(CO)7(bpcd)(μ-H)(η1-C CPh) crystallizes in the triclinic space group
γ = 69.240(6)°, V = 2024.9(3) Å3, Z = 2, dcalc = 1.862 g cm−3 R = 0.0221, Rw = 0.243 for 4066 observed reflections. The bpcd ligand in 1 adopts a chelating mode with a linear phenylacetylide ligand being located on the adjacent rhenium center cis to the bpcd ligand. This complex represents the first structurally characterized example of a hydrido-bridged dirhenium complex possessing both a linear acetylide ligand and a chelating diphosphine ligand. 相似文献
Full-size image