首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human erythrocytes were fused by incubation with 0.5-2 mM-chlorpromazine hydrochloride at pH 6.8-7.6. Fusogenic preparations of chlorpromazine were cloudy suspensions of microdroplets, and below pH 6.8 chlorpromazine gave clear solutions that were inactive. Unlike control cells, the lateral mobility of the intramembranous particles of the PF-fracture face of chlorpromazine-treated cells was relatively unrestricted, since the particles were partly clustered at 37 degrees C and they exhibited extensive cold-induced clustering. Ca2+ stimulated fusion, but fusion was only very weakly inhibited by EGTA (10 mM) and by N-ethylmaleimide (50 mM); pretreatment of the cells with Tos-Lys-CH2Cl (7-amino-1-chloro-3-L-tosylamidoheptan-2-one) (7.5 mM) markedly inhibited fusion. Changes in the membrane proteins of erythrocytes fused by chlorpromazine, before and after treatment with chymotrypsin to remove band 3 protein, were investigated. The several observations made indicate that the Ca2+-insensitive component of fusion is associated with degradation of ankyrin (band 2.1 protein) to band 2.3-2.6 proteins and to smaller polypeptides by a serine proteinase that is inhibited by Tos-Lys-CH2Cl, and that the component of fusion inhibited by EGTA and N-ethylmaleimide is associated with degradation of band 3 protein to band 4.5 protein by a Ca2+-activated cysteine proteinase. Proteolysis of ankyrin appeared to be sufficient to permit the chlorpromazine-induced fusion of human erythrocytes, but fusion occurred more rapidly when band 3 protein was also degraded in the presence of Ca2+. Since other cells have structures comparable with the spectrin-actin skeleton of the erythrocyte membrane, the observations reported may be relevant to the initiation of naturally occurring fusion reactions in biomembranes. It is also suggested that, should polypeptides with fusogenic properties be produced from integral and skeletal membrane proteins by endogenous proteolysis, their formation would provide a general mechanism for the fusion of lipid bilayers in biomembrane fusion reactions.  相似文献   

2.
A BAL17 B lymphoma cell line bearing mu and delta chains on its surface behaves in a similar manner to normal mature B cells in terms of initial biochemical transmembrane signalling [Mizuguchi, Beaven, Ohara & Paul (1986) J. Immunol. 137, 2162-2167; Mizuguchi, Yong-Yong, Nakabayashi, Huang, Beaven, Chused & Paul (1987) J. Immunol. 139, 1054-1059]. Therefore the effects of protease inhibitors on increases in inositol phospholipid metabolism and intracellular free calcium concentration ([Ca2+]i) were examined. We show that the serine protease inhibitors Tos-Phe-CH2Cl (1-chloro-4-phenyl-3-L-tosylamidobutan-2-one-, TPCK) and Tos-Lys-CH2Cl (7-amino-1-chloro-3-L-tosylamidoheptan-2-one; TLCK) inhibit anti-IgM-mediated accumulation of inositol phosphates in a dose-dependent manner. InsP3 production induced by anti-IgM is also inhibited by pretreatment with Tos-Lys-CH2Cl or Tos-Phe-CH2Cl. Tos-Lys-CH2Cl- Tos-Phe-CH2Cl-mediated inhibition is not overcome by high concentrations of anti-IgM. Moreover, anti-IgM-mediated increases in [Ca2+]i are inhibited by pretreatment of the cells with these inhibitors. However, increases in inositol phospholipid metabolism caused by NaF, an activator of guanine-nucleotide-binding proteins (G-proteins), are approx. 10-fold more resistant to Tos-Lys-CH2Cl and Tos-Phe-CH2Cl inhibition compared with anti-IgM-induced changes. Furthermore, NaF-induced increases in [Ca2+]i are not inhibited by Tos-Lys-CH2Cl or Tos-Phe-CH2Cl pretreatment, suggesting that the inhibitors act at a step proximal to phospholipase C activation. The Tos-Lys-CH2Cl or Tos-Phe-CH2Cl treatment does not change the membrane IgM density as measured by flow cytometry, indicating that the active site of the inhibitors is distal to the membrane IgM molecule. These results indicate that serine proteases may be involved in coupling the receptor cross-linkage to G-protein.  相似文献   

3.
The apparent Km and maximum velocity values of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus were determined for a range of alcohols and aldehydes and the corresponding turnover numbers and specificity constants were calculated. Benzyl alcohol was the most effective alcohol substrate for benzyl alcohol dehydrogenase. Perillyl alcohol was the second most effective substrate, and was the only non-aromatic alcohol oxidized. The other substrates of benzyl alcohol dehydrogenase were all aromatic in nature, with para-substituted derivatives of benzyl alcohol being better substrates than other derivatives. Coniferyl alcohol and cinnamyl alcohol were also substrates. Benzaldehyde was much the most effective substrate for benzaldehyde dehydrogenase II. Benzaldehydes with a single small substituent group in the meta or para position were better substrates than any other benzaldehyde derivatives. Benzaldehyde dehydrogenase II could also oxidize the aliphatic aldehydes hexan-1-al and octan-1-al, although poorly. Benzaldehyde dehydrogenase II was substrate-inhibited by benzaldehyde when the assay concentration exceeded approx. 10 microM. Benzaldehyde dehydrogenase II, but not benzyl alcohol dehydrogenase, exhibited esterase activity with 4-nitrophenyl acetate as substrate. Both benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II were inhibited by the thiol-blocking reagents iodoacetate, iodoacetamide, 4-chloromercuribenzoate and N-ethylmaleimide. Benzyl alcohol or benzaldehyde respectively protected against these inhibitions. NAD+ also gave some protection. Neither benzyl alcohol dehydrogenase nor benzaldehyde dehydrogenase II was inhibited by the metal-ion-chelating agents EDTA, 2,2'-bipyridyl, pyrazole or 2-phenanthroline. Neither enzyme was inhibited by a range of plausible metabolic inhibitors such as mandelate, phenylglyoxylate, benzoate, succinate, acetyl-CoA, ATP or ADP. Benzaldehyde dehydrogenase II was sensitive to inhibition by several aromatic aldehydes; in particular, ortho-substituted benzaldehydes such as 2-bromo-, 2-chloro- and 2-fluoro-benzaldehydes were potent inhibitors of the enzyme.  相似文献   

4.
The present investigation was carried out to examine the mechanism(s) whereby salivary molecules interact with human buccal epithelial cells. By utilizing antiserum against human parotid saliva, selected salivary components were detected by electrophoretic-transfer analysis of 1.5% SDS extracts of epithelial cells. Incubation of the cells and their aqueous cell-free extracts with 125I-labelled parotid saliva resulted in the formation of an iodinated high-molecular-mass complex which was not present in 125I-labelled saline alone. Formation of this complex was time-dependent and was inhibited by treating the buccal epithelial cells or their cell-free extracts with EGTA, iodoacetamide, N-ethylmaleimide or by heating at 100 degrees C for 15 min. The epithelial cells also promoted incorporation of [14C]putrescine into high-molecular-mass complexes whose formation was inhibited by iodoacetamide, unlabelled putrescine and EGTA. Cell extracts mediated cross-linking of monodansylcadaverine into alpha-casein, and this interaction was inhibited by iodoacetamide. Significant amounts of radioactivity were recovered with the epithelial-cell envelopes after exhaustive extraction of 125I-saliva- or [14C]putrescine-treated epithelial cells with 4% (w/v) SDS/10% (v/v) beta-mercaptoethanol. The incorporation of radioactivity into epithelial-cell envelopes was inhibited by pretreatment of the cells with putrescine, EGTA, iodoacetamide, or heating at 100 degrees C for 15 min. These data suggest that: (1) oral mucosal pellicle is formed by the selective adsorption of saliva to the epithelial-cell plasma membrane and its associated cytoskeleton; and (2) the adsorbed salivary components may be cross-linked to each other or the epithelial cytoskeleton by epithelial transglutaminases.  相似文献   

5.
Some of the ultrastructural (freeze-etching technique), morphological, and biochemical effects of Sendai virus interaction with chicken erythrocytes have been studied under fusogenic (in the presence of CaCl2) and nonfusogenic (in the presence of ethyleneglycol-bis-N,N'-tetraacetic acid, [EGTA]) conditions. The following phenomena occur, irrespective of the presence of CaCl2 or EGTA: (a) binding of iodinated virus particles to chicken erythrocytes at 4 degrees C and their partial release from the cells at 37 degrees C; (b) gradual incorporation of the viral envelope and viral M-protein into plasma membrane, as visualized in the protoplasmic and exoplasmic fracture (P and E, respectively) faces of the membrane; and (c) virus-dependent transient clustering of intramembrane particles at 4 degrees C, which is reversible after transferring the cells back to 37 degrees C. The following virus-induced phenomena occur only in the presence of CaCl2: (a) rounding of cells followed by their fusion; (b) transient decrease in the density of intramembrane particles; and (c) the virus induces uptake of 45CaCl2 by chicken erythrocytes. The uptake is specific as it is inhibited by LaCl3, and no accumulation of [14C]glucose-1-phosphate ([14C]G-1-P) could be observed under the 45 CaCl2 uptake conditions. The data show that fusion of virus with plasma membrane is a Ca++-independent process and, as such, it should be distinguished from the virus-induced membrane-membrane and cell fusion processes. The latter is absolutely dependent on the rise of intracellular Ca++, as reflected by the fact that Ca++-induced rounding of chicken erythrocytes always precedes fusion (Volsky, D. and A. Loyter. 1977.Biochim. Biophys. Acta 471:253--259).  相似文献   

6.
In order to determine the capacity of sickle cells to undergo transglutaminase-catalyzed cross-linking of membrane proteins, human normal and sickle erythrocytes were incubated with [ring-2-14C]histamine in the presence of Ca2+ and ionophore A23187. The [14C]histamine incorporation into membrane components was observed in freshly prepared erythrocytes. Incorporation of radioactivity into spectrin and Band 3 membrane components was significantly (P less than 0.001) less in sickle erythrocytes than in normal cells. Transglutaminase deficiency was excluded by the finding of increased activity of this enzyme in sickle cells from patients with reticulocytosis. The incorporation of [3H]spermine into red cell membranes was also less in sickle erythrocytes than in normal cells under the same conditions of incubation used for [ring-2-14C]histamine. Sickle erythrocytes were more permeable to these amines than normal cells. It is proposed that the gamma-glutamyl sites of membrane proteins in sickle erythrocytes are less accessible for transglutaminase-catalyzed cross-linking to histamine and polyamines in vitro, perhaps due to prior in vivo activation of this enzyme by the increased calcium in sickle cells and/or shielding secondary to altered membrane organization.  相似文献   

7.
Chicken erythrocytes were fused either by Sendai virus or by the combination of Ca2+ and ionophore A23187. Intramembrane particles and external anionic sites of cells undergoing fusion were found to acquire the ability to undergo a process of cold-induced clustering (thermotropic separation). Cationized ferritin (200 microgram/ml 5% (v/v) cell suspension) inhibited both the fusion process and the thermotropic separation of intramembrane particles and external anionic sites. The correlation between the mobility of membrane proteins and the fusion process is discussed. It is suggest that an increase in the lateral mobility of membrane proteins is a prerequisite for initiation of membrane fusion.  相似文献   

8.
Ruthenium red and/or EGTA prevent cyclic uptake and release of Ca2+ in mitochondria. These compounds inhibit but do not prevent the swelling of liver mitochondria induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. Ruthenium red and/or EGTA have complex effects on the release rate of Ca2+ and other cations induced by t-butyl hydroperoxide or N-ethylmaleimide. To determine the relationship between permeability changes and Ca2+ release in the absence of Ca2+ cycling, a novel method of data collection and analysis is developed which allows the relative time courses of Ca2+ release and Mg2+ release or swelling to be accurately and quantitatively compared. This method eliminates errors in time course comparisons which arise from the aging of mitochondrial preparations and allows data from different preparations to be directly contrasted. Using the method, it is shown that permeability changes caused by Ca2+-releasing agents are not secondary effects arising from Ca2+ cycling between uptake and release carriers. In the absence of Ca2+-cycling inhibitors, Ca2+ release induced by t-butyl hydroperoxide or N-ethylmaleimide is, in part, carrier-mediated. In the presence of EGTA and ruthenium red, Ca2+ release induced by either agent is mediated solely by the permeability pathway. No differences are apparent in the solute selectivity of the inner membrane permeability defect induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. A novel type of Ca2+ release from energized liver mitochondria is reported. This release is induced by EGTA, occurs in the absence of other releasing agents or nonspecific permeability changes, and is rapid (greater than or equal to 50 nmol/min/mg protein).  相似文献   

9.
The membrane mobility agent, 2-(methoxyethoxy)ethyl-cis-8-(2-octylcyclopropyl)octanoate (A2C) promotes the fusion of rat, rabbit, and human erythrocytes in the presence of exogenous Ca2+. Under these conditions, the high sensitivity form of calcium-activated neutral protease (mu-calpain) in erythrocytes is activated autolytically. mu-Calpain is activated in accordance with fusion; that is, both erythrocyte fusion and autolytic activation of mu-calpain are induced in rat erythrocytes at 30 min, in rabbit erythrocytes at 150 min, and in human erythrocytes at 240 min after the addition of A2C and Ca2+. When erythrocytes are preincubated with the Ca2+ ionophore A23187, both fusion and autolytic activation start earlier. A leupeptin analogue, Cbz-Leu-Leu-Leu-aldehyde (ZLLLal), inhibits both the autolytic activation of mu-calpain and fusion induced by A2C and Ca2+. These results indicate that treatment of erythrocytes with A2C and Ca2+, results in first an influx of Ca2+ into the cells, followed by autolytic activation of mu-calpain, proteolysis of membrane proteins, exposure of fusion-sites, and, finally, fusion of erythrocytes.  相似文献   

10.
In contrast to rat and human erythrocytes, nucleated erythrocytes from two fish species (Cyprinus carpio and Salmo trutta) underwent almost complete haemolysis in 20 min of EDTA addition. Using Ca2+/Mg2+ EGTA-citrate buffer, we observed that half-maximal haemolysis of fish erythrocytes occurs at [Ca2+]o approximately 10 microM independently of extracellular Mg2+ concentration. Attenuation of [Ca2+]o with EGTA also decreased stability of the plasma membrane of vascular smooth muscle cells (VSMC) and HeLa cells, indicated by a three- to five-fold elevation of lactate dehydrogenase release and passive permeability of plasma membrane for Na+. In VSMC, EGTA lowered [Ca2+]i by approximately 20%. This effect was absent in VSMC-loaded with the intracellular Ca2+ chelator BAPTA. In contrast to EGTA, BAPTA did not affect haemoglobin release from fish erythrocytes and passive permeability for Na+ in VSMC. Viewed collectively, our data show that in nucleated cells, extracellular Ca2+ plays a crucial role in the maintenance of plasma membrane integrity.  相似文献   

11.
Mast cells play a pivotal role in allergic responses. Antigen stimulation causes elevation of the intracellular Ca(2+) concentration, which triggers the exocytotic release of inflammatory mediators such as histamine. Recent research, including our own, has revealed that SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins such as syntaxin-3, -4, SNAP-23, and VAMP-8 are involved in exocytosis. Although exocytosis in mast cells is Ca(2+) dependent, the target molecule that interacts with Ca(2+) is not clear. Synaptotagmin is a Ca(2+) sensor and regulates exocytosis in neuronal cells. However, the role of synaptotagmin 2, a member of the synaptotagmin family, in exocytosis in mast cells remains controversial. In this study, we investigated the role of synaptotagmin 2 by a liposome-based fusion assay. SNARE proteins (SNAP-23, syntaxin-3, VAMP-8) and synaptotagmin 2 were expressed in Escherichia coli and purified as GST-tagged or His-tagged fusion proteins. These SNARE proteins were incorporated by a detergent dialysis method. Membrane fusion between liposomes was monitored by fluorescence resonance energy transfer between fluorescent-labeled phospholipids. In the presence of Ca(2+), low synaptotagmin 2 concentration inhibited membrane fusion between SNARE-containing liposomes, while high synaptotagmin 2 concentration enhanced membrane fusion. This enhancement required phosphatidylserine as a membrane component. These results suggest that synaptotagmin 2 regulates membrane fusion of SNARE-containing liposomes involved in exocytosis in mast cells, and that this regulation is dependent on synaptotagmin 2 concentration, Ca(2+), and phosphatidylserine.  相似文献   

12.
We have investigated the requirement for Ca(2+) in the fusion and content mixing of rat hepatocyte late endosomes and lysosomes in a cell-free system. Fusion to form hybrid organelles was inhibited by 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA), but not by EGTA, and this inhibition was reversed by adding additional Ca(2+). Fusion was also inhibited by methyl ester of EGTA (EGTA-AM), a membrane permeable, hydrolyzable ester of EGTA, and pretreatment of organelles with EGTA-AM showed that the chelation of lumenal Ca(2+) reduced the amount of fusion. The requirement for Ca(2+) for fusion was a later event than the requirement for a rab protein since the system became resistant to inhibition by GDP dissociation inhibitor at earlier times than it became resistant to BAPTA. We have developed a cell-free assay to study the reformation of lysosomes from late endosome-lysosome hybrid organelles that were isolated from the rat liver. The recovery of electron dense lysosomes was shown to require ATP and was inhibited by bafilomycin and EGTA-AM. The data support a model in which endocytosed Ca(2+) plays a role in the fusion of late endosomes and lysosomes, the reformation of lysosomes, and the dynamic equilibrium of organelles in the late endocytic pathway.  相似文献   

13.
The major nuclease from Mycoplasma penetrans has been purified to homogeneity. The enzyme seems to be present as a membrane-associated precursor of 50 kDa and as a peripheral membrane monomeric polypeptide of 40 kDa that is easily removed by washing of cells with isotonic buffers and in the aqueous phase upon Triton partitioning of Triton X-114-solubilized protein. The 40-kDa nuclease was extracted from M. penetrans cells by Triton X-114 and phase fractionation and was further purified by chromatography on Superdex 75 and chelating Sepharose (Zn2+ form) columns. By gel filtration, the apparent molecular mass was 40 kDa. The purified enzyme exhibits both a nicking activity on superhelical and linear double-stranded DNA and a nuclease activity on RNA and single-stranded DNA. No exonuclease activity was found for this enzyme. This nuclease required both Mg2+ (optimum, 5 mM) and Ca2+ (optimum, 2 mM) for activity and exhibited a pH optimum between pH 7 and 8 for DNase activity. It was inhibited by Zn2+, Mn2+, heparin, sodium dodecyl sulfate, and chelator agents such EDTA and EGTA, but no effect was observed with ATP, 2-mercaptoethanol, N-ethylmaleimide, dithiothreitol, nonionic detergents, phenylmethylsulfonyl fluoride, and iodoacetamide. Nuclease activity was inhibited by diethylpyrocarbonate at both pH 6 and 8 and by pepstatin, suggesting the involvement of a histidine and an aspartate in the active site. When added to human lymphoblast nuclei, the purified M. penetrans endonuclease induced internucleosomal fragmentation of the chomatin into oligonucleosomal fragments. On the basis of this result, and taking into account the fact that M. penetrans has the capacity to invade eucaryotic cells, one can suggest, but not assert, that produced Ca2+/Mg2+-dependent endonuclease may alter the nucleic acid metabolism of host cells by DNA and/or RNA degradation and may act as a potential pathogenic determinant.  相似文献   

14.
We studied calcium-triggered fusion of sea urchin egg secretory granules to test whether membrane bound fusion proteins are required in both fusing membranes. Using both light scattering assays and video microscopy, we found that native granules fused to granules that had been inactivated with either trypsin or N-ethylmaleimide. Granules also fused with liposomes prepared from lipids extracted from egg cortices and with liposomes made from synthetic phospholipids and cholesterol. Granule-liposome fusion required no cytoplasmic proteins and was inhibited by N-ethylmaleimide. Thus, membrane fusion of exocytotic granules can be promoted by proteins residing on only one of the two membranes.  相似文献   

15.
The properties of a Ca2+ activated adenosine triphosphatase shown to be present in homogenates of purified rat peritoneal mast cells were investigated. The enzyme was activated by Ca2+, Mg2+, and to a lesser extent by Mn2+ and Co2+. Ca2+ alone was necessary for full activity and the further addition of Mg2+ did not have any effect. The chelating agents EGTA (ethanedioxybis(ethylamine)tetra-acetate) and EDTA completely inhibited the reaction. The pH optimum was 7.8. Reduced glutathione, cysteine, dithiothreitol, N-ethylmaleimide, urea, ADP, NaF, increasing ionic strength and Triton X-100 all inhibited the reaction. On subcellular fractionation of mast-cell homogenates by density-gradient centrifugation, the distribution of Ca2+ activated adenosine triphosphatase resembled that of 5'-nucleotidase, but differed from that of the other markers used, suggesting localization in the plasma membrane. Further experiments indicated that the enzyme is present on the external surface of the plasma membrane.  相似文献   

16.
Dinitrophenyl S-glutathione is accumulated by inside-out vesicles made from human erythrocytes in a process totally dependent on ATP and Mg2+. The vesicles were shown to accumulate dinitrophenyl S-glutathione against a concentration gradient. The vesicles were able to concentrate this glutathione derivative even in the absence of membrane potential. This indicated that the ATP-dependent uptake of dinitrophenyl S-glutathione by inside-out vesicles represented an active transport process. Neither extravesicular EGTA nor intravesicular ouabain inhibited the transport process, indicating that neither the Ca2+-ATPase nor the Na+, K+-ATPase were involved. These results indicated that dinitrophenyl S-glutathione uptake by inside-out vesicles probably represented primary active transport. The uptake of dinitrophenyl S-glutathione was a linear function of time (up to 5 h) and vesicle protein. The rate of uptake was optimal between pH 7.0 and 8.0 and at 37 degrees C. The Km values determined for dinitrophenyl S-glutathione and ATP were 0.29 mM and 1 mM, respectively. The transport process was completely inhibited by vanadate and by p-hydroxymercuribenzene sulphonate and inhibited to a lesser extent by N-ethylmaleimide. GTP could efficiently substitute for ATP as an energy source for the transport process, but CTP and UTP were comparatively much less effective.  相似文献   

17.
18.
Tag team action at the synapse   总被引:1,自引:0,他引:1  
Carr CM  Munson M 《EMBO reports》2007,8(9):834-838
Communication between neurons relies on chemical synapses and the release of neurotransmitters into the synaptic cleft. Neurotransmitter release is an exquisitely regulated membrane fusion event that requires the linking of an electrical nerve stimulus to Ca(2+) influx, which leads to the fusion of neurotransmitter-filled vesicles with the cell membrane. The timing of neurotransmitter release is controlled through the regulation of the soluble N-ethylmaleimide sensitive factor attachment receptor (SNARE) proteins-the core of the membrane fusion machinery. Assembly of the fusion-competent SNARE complex is regulated by several neuronal proteins, including complexin and the Ca(2+)-sensor synaptotagmin. Both complexin and synaptotagmin bind directly to SNAREs, but their mechanism of action has so far remained unclear. Recent studies revealed that synaptotagmin-Ca(2+) and complexin collaborate to regulate membrane fusion. These compelling new results provide a molecular mechanistic insight into the functions of both proteins: complexin 'clamps' the SNARE complex in a pre-fusion intermediate, which is then released by the action of Ca(2+)-bound synaptotagmin to trigger rapid fusion.  相似文献   

19.
Infusion of cystamine into the isolated, perfused rat liver resulted in tissue damage preceded by the formation of cystamine-protein mixed disulfides which were mainly detected in the plasma membrane fraction. Hepatotoxicity was prevented when dithiothreitol was infused after cystamine or when the calcium antagonist, verapamil, was co-infused with the disulfide. In isolated hepatocytes, the formation of cystamine-protein mixed disulfides was associated with an inhibition of plasma membrane Ca2+-ATPase activity and a decreased rate of Ca2+ efflux from the cells. This resulted in intracellular Ca2+ accumulation which was followed by a stimulation of both phospholipid hydrolysis and proteolysis, as indicated by enhanced rates of release of radioactivity from hepatocytes prelabeled with [14C]arachidonate and [14C]valine, respectively. Preincubation of hepatocytes with the calmodulin inhibitor, calmidazolium, or with the phospholipase inhibitors, chlorpromazine and dibucaine, inhibited the stimulation of [14C]arachidonate release by cystamine. However, none of these agents prevented the onset of cystamine toxicity in hepatocytes. In contrast, pretreatment of the cells with antipain or leupeptin, two inhibitors of Ca2+-activated proteases, abolished the stimulation of proteolysis by cystamine and also protected the cells from cystamine toxicity. Our results suggest that the perturbation of intracellular Ca2+ homeostasis by cystamine is caused by the inhibition of Ca2+ efflux associated with the formation of cystamine-protein mixed disulfides in the plasma membrane and that subsequent cytotoxicity results from Ca2+-activation of a nonlysosomal proteolytic system.  相似文献   

20.
A rise in the intracellular concentration of Ca2+-ions in human erythrocytes causes the formation of high-molecular-weight membrane protein polymers, cross-linked by γ-glutamyl-?-lysine side chain bridges. Cross-linking involves proteins at the cytoplasmic side of the membrane (band 4.1, spectrin, and band 3 materials) and the reaction is catalyzed by the intrinsic transglutaminase. This enzyme is regulated by Ca2+-ions and it exists in a latent form in normal cells. The protein polymer, isolated from the membranes of Ca2+-loaded intact human red cells, is heterogeneous in size and may contain as many as 6 moles of γ-glutamyl-?-lysine cross-links per 100,000 gm of protein. Synthetic compounds, which either compete against the ?-lysine cross-linking functionalities of the protein substrates (eg, histamine, aminoacetonitrile, cystamine) or directly inactivate the transamidase (eg, cystamine), inhibit the membrane polymerization reaction in intact human erythrocytes. They also interfere with the Ca2+-induced irreversible shape change from discocyte to echinocyte and inhibit the irreversible loss of membrane deformability. Thus, the transamidase-catalyzed production of γ-glutamyl-?-lysine cross-links in the membrane may be a common denominator in these cellular manifestations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号