首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
In this study, a three-dimensional analysis of the non-Newtonian blood flow was carried out in the left coronary bifurcation. The Casson model and hyperelastic and rigid models were used as the constitutive equation for blood flow and vessel wall model, respectively. Physiological conditions were considered first normal and then compliant with hypertension disease with the aim of evaluating hemodynamic parameters and a better understanding of the onset and progression of atherosclerosis plaques in the coronary artery bifurcation. Two-way fluid–structure interaction method applying a fully implicit second-order backward Euler differencing scheme has been used which is performed in the commercial code ANSYS and ANSYS CFX (version 15.0). When artery deformations and blood pressure are associated, arbitrary Lagrangian–Eulerian formulation is employed to calculate the artery domain response using the temporal blood response. As a result of bifurcation, noticeable velocity reduction and backflow formation decrease shear stress and made it oscillatory at the starting point of the LCx branch which caused the shear stress to be less than 1 and 2 Pa in the LCx and the LAD branches, respectively. Oscillatory shear index (OSI) as a hemodynamic parameter represents the increase in residence time and oscillatory wall shear stress. Because of using the ideal 3D geometry and realistic physiological conditions, the values obtained for shear stress are more accurate than the previous studies. Comparing the results of this study with previous clinical investigations shows that the regions with low wall shear stress less than 1.20 Pa and with high OSI value more than 0.3 are in more potential risk to the atherosclerosis plaque development, especially in the posterior after the bifurcation.  相似文献   

2.
Myocardial bridging (MB) is associated with endothelial dysfunction in patients with angina and non-obstructive coronary artery disease. This study aims to determine if there is a link between abnormal blood flow patterns and endothelial dysfunction in patients with MB. Ten patients with MB in their left anterior descending (LAD) artery were selected, 5 of whom had endothelial dysfunction and 5 had no endothelial dysfunction based on their response to acetylcholine. Similarly, 10 patients without MB in their LAD, 5 of whom had endothelial dysfunction and 5 of whom had no endothelial dysfunction, were studied as a control group. Transient computational fluid dynamics simulations were performed to derive wall shear stress (WSS) over the entire vessel including proximal, middle and distal segments. Patients with MB and endothelial dysfunction had lower WSS in the proximal LAD and greater WSS in the mid-LAD than patients with MB but without endothelial dysfunction. When comparing patients with endothelial dysfunction, those with MB had significantly lower shear stress in the proximal LAD (0.32 ± 0.14 Pa (with MB) vs 0.71 ± 0.38 Pa (without MB), p = 0.01) and greater shear stress in the mid-LAD (2.81 ± 1.20 Pa (with MB) vs 1.66 ± 0.31 Pa (without MB), p = 0.014) than patients without MB. Our findings demonstrated that the presence of MB significantly contributes to low WSS and endothelial dysfunction relationship.  相似文献   

3.
In this study, we investigate plaques located at the left coronary bifurcation. We focus on the effect that the resulting changes in wall shear stress (WSS) and wall pressure stress gradient (WPSG) have on atherosclerotic progress in coronary artery disease. Coronary plaques were simulated and placed at the left main stem and the left anterior descending to produce >50% narrowing of the coronary lumen. Computational fluid dynamics analysis was carried out, simulating realistic physiological conditions that show the in vivo cardiac haemodynamic. WSS and WPSG in the left coronary artery were calculated and compared in the left coronary models, with and without the presence of plaques during cardiac cycles. Our results showed that WSS decreased while WPSG was increased in coronary side branches due to the presence of plaques. There is a direct correlation between coronary plaques and subsequent WSS and WPSG variations based on the bifurcation plaques simulated in the realistic coronary models.  相似文献   

4.
Coronary artery bypass graft (CABG) is a routine surgical treatment for ischemic and infarcted myocardium. A large number of CABG fail postoperatively because of intimal hyperplasia within months or years. The cause of this failure is thought to be partly related to the flow patterns and shear stresses acting on the endothelial cells. An accurate representation of the flow field and associated wall shear stress (WSS) requires a detailed three-dimensional (3D) model of the CABG. The purpose of this study is to present a detailed analysis of blood flow in a 3D aorto/left CABG, bypassing the occluded left anterior descending coronary (LAD) artery. The analysis takes into account the influence of the out-of-plane geometry of the graft. The finite volume technique was employed to model the 3D blood flow pattern to determine the velocity and WSS distributions. This study presents the flow field distributions of the velocity and WSS at four instances of the cardiac cycle, two in systole and two in diastole. Our results reveal that the CABG geometry has a significant effect on the velocity distribution. The axial velocity profiles at different instances of the cardiac cycle exhibit strong skewing; significant secondary flow and vortex structures are seen in the in-plane velocity patterns. The maximum WSS on the bed of the occluded LAD artery opposite to the graft junction is 14 Pa in middiastole, whereas there is a significantly lower and more uniform distribution of WSS on the bed of the anastomosis. The present results indicate that nonplanarity of the blood vessel along with the inflow conditions has a substantial effect on the fluid mechanics of CABG that contribute to the patency of graft.  相似文献   

5.
Wall shear stress in normal left coronary artery tree   总被引:1,自引:0,他引:1  
Despite the fact that the role of wall shear stress (WSS) as a local mechanical factor in atherogenesis is well established, its distribution over the entire normal human left coronary artery (LCA) tree has not yet been studied. A three-dimensional computer generated model of the epicardial LCA tree, based on averaged human data set extracted from angiographies, was adopted for finite-element analysis of the Navier-Stokes flow equations treating blood as non-Newtonian fluid. The LCA tree includes the left main coronary artery (LMCA), the left anterior descending (LAD), the left circumflex artery (LCxA) and their major branches. In proximal LCA tree regions where atherosclerosis frequently occurs, low WSS appears. Low WSS regions occur at bifurcations in regions opposite the flow dividers, which are anatomic sites predisposed for atherosclerotic development. On the LMCA bifurcation, at regions opposite to the flow divider, dominant low WSS values occur ranging from 0.75 to 2.25 N/m2. High WSS values are encountered at all flow dividers. This work determines, probably for the first time, the topography of the WSS in the entire normal human LCA epicardial tree. It is also the first work determining the spatial WSS differentiation between proximal and distal normal human LCA parts. The haemodynamic analysis of the entire epicardial LCA tree further verifies the implications of the WSS in atherosclerosis mechanisms.  相似文献   

6.
The aim of this study is to investigate the blood flow pattern in carotid bifurcation with a high degree of luminal stenosis, combining in vivo magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). A newly developed two-equation transitional model was employed to evaluate wall shear stress (WSS) distribution and pressure drop across the stenosis, which are closely related to plaque vulnerability. A patient with an 80% left carotid stenosis was imaged using high resolution MRI, from which a patient-specific geometry was reconstructed and flow boundary conditions were acquired for CFD simulation. A transitional model was implemented to investigate the flow velocity and WSS distribution in the patient-specific model. The peak time-averaged WSS value of approximately 73 Pa was predicted by the transitional flow model, and the regions of high WSS occurred at the throat of the stenosis. High oscillatory shear index values up to 0.50 were present in a helical flow pattern from the outer wall of the internal carotid artery immediately after the throat. This study shows the potential suitability of a transitional turbulent flow model in capturing the flow phenomena in severely stenosed carotid arteries using patient-specific MRI data and provides the basis for further investigation of the links between haemodynamic variables and plaque vulnerability. It may be useful in the future for risk assessment of patients with carotid disease.  相似文献   

7.
Chen J  Lu XY  Wang W 《Journal of biomechanics》2006,39(11):1983-1995
Non-Newtonian fluid flow in a stenosed coronary bypass is investigated numerically using the Carreau-Yasuda model for the shear thinning behavior of the blood. End-to-side coronary bypass anastomosis is considered in a simplified model geometry where the host coronary artery has a 75% severity stenosis. Different locations of the bypass graft to the stenosis and different flow rates in the graft and in the host artery are studied. Particular attention is given to the non-Newtonian effect of the blood on the primary and secondary flow patterns in the host coronary artery and the wall shear stress (WSS) distribution there. Interaction between the jet flow from the stenosed artery and the flow from the graft is simulated by solving the three-dimensional Navier-Stokes equation coupled with the non-Newtonian constitutive model. Results for the non-Newtonian flow, the Newtonian flow and the rescaled Newtonian flow are presented. Significant differences in axial velocity profiles, secondary flow streamlines and WSS between the non-Newtonian and Newtonian fluid flows are revealed. However, reasonable agreement between the non-Newtonian and the rescaled Newtonian flows is found. Results from this study support the view that the residual flow in a partially occluded coronary artery interacts with flow in the bypass graft and may have significant hemodynamic effects in the host vessel downstream of the graft. Non-Newtonian property of the blood alters the flow pattern and WSS distribution and is an important factor to be considered in simulating hemodynamic effects of blood flow in arterial bypass grafts.  相似文献   

8.
PurposeAccurate determination of the bifurcation angle and correlation with plaque buildup may lead to the prediction of coronary artery disease (CAD). This work evaluates two techniques to measure bifurcation angles in 3D space using coronary computed tomography angiography (CCTA).Materials and MethodsNine phantoms were fabricated with different bifurcation angles ranging from 55.3° to 134.5°. General X-ray and CCTA were employed to acquire 2D and 3D images of the bifurcation phantoms, respectively. Multiplanar reformation (MPR) and volume rendering technique (VRT) were used to measure the bifurcation angle between the left anterior descending (LAD) and left circumflex arteries (LCx). The measured angles were compared with the true values to determine the accuracy of each measurement technique. Inter-observer variability was evaluated. The two techniques were further applied on 50 clinical CCTA cases to verify its clinical value.ResultsIn the phantom setting, the mean absolute differences calculated between the true and measured angles by MPR and VRT were 2.4° ± 2.2° and 3.8° ± 2.9°, respectively. Strong correlation was found between the true and measured bifurcation angles. Furthermore, no significant differences were found between the bifurcation angles measured using either technique. In clinical settings, large difference of 12.0° ± 10.6° was found between the two techniques.ConclusionIn the phantom setting, both techniques demonstrated a significant correlation to the true bifurcation angle. Despite the lack of agreement of the two techniques in the clinical context, our findings in phantoms suggest that MPR should be preferred to VRT for the measurement of coronary bifurcation angle by CCTA.  相似文献   

9.
The blood flow dynamics of a stenosed, subject-specific, carotid bifurcation were numerically simulated using the spectral element method. Pulsatile inlet conditions were based on in vivo color Doppler ultrasound measurements of blood velocity. The results demonstrated the transitional or weakly turbulent state of the blood flow, which featured rapid velocity and pressure fluctuations in the post-stenotic region of the internal carotid artery (ICA) during systole and laminar flow during diastole. High-frequency vortex shedding was greatest downstream of the stenosis during the deceleration phase of systole. Velocity fluctuations had a frequency within the audible range of 100-300Hz. Instantaneous wall shear stress (WSS) within the stenosis was relatively high during systole ( approximately 25-45Pa) compared to that in a healthy carotid. In addition, high spatial gradients of WSS were present due to flow separation on the inner wall. Oscillatory flow reversal and low pressure were observed distal to the stenosis in the ICA. This study predicts the complex flow field, the turbulence levels and the distribution of the biomechanical stresses present in vivo within a stenosed carotid artery.  相似文献   

10.
Coronary artery stenosis is commonly treated by stent placement via percutaneous intervention, at times requiring multiple stents that may overlap. Stent overlap is associated with increased risk of adverse clinical outcome. While changes in local blood flow are suspected to play a role therein, hemodynamics in arteries with overlapping stents remain poorly understood. In this study we analyzed six cases of partially overlapping stents, placed ex vivo in porcine left coronary arteries and compared them to five cases with two non-overlapping stents. The stented vessel geometries were obtained by micro-computed tomography of corrosion casts. Flow and shear stress distribution were calculated using computational fluid dynamics. We observed a significant increase in the relative area exposed to low wall shear stress (WSS<0.5 Pa) in the overlapping stent segments compared both to areas without overlap in the same samples, as well as to non-overlapping stents. We further observed that the configuration of the overlapping stent struts relative to each other influenced the size of the low WSS area: positioning of the struts in the same axial location led to larger areas of low WSS compared to alternating struts. Our results indicate that the overlap geometry is by itself sufficient to cause unfavorable flow conditions that may worsen clinical outcome. While stent overlap cannot always be avoided, improved deployment strategies or stent designs could reduce the low WSS burden.  相似文献   

11.
Accurate assessment of wall shear stress (WSS) is vital for studies on the pathogenesis of atherosclerosis. WSS distributions can be obtained by computational fluid dynamics (CFD) using patient-specific geometries and flow measurements. If patient-specific flow measurements are unavailable, in- and outflow have to be estimated, for instance by using Murray’s Law. It is currently unknown to what extent this law holds for carotid bifurcations, especially in cases where stenoses are involved. We performed flow measurements in the carotid bifurcation using phase-contrast MRI in patients with varying degrees of stenosis. An empirical relation between outflow and degree of area stenosis was determined and the outflow measurements were compared to estimations based on Murray’s Law. Furthermore, the influence of outflow conditions on the WSS distribution was studied.For bifurcations with an area stenosis smaller than 65%, the outflow ratio of the internal carotid artery (ICA) to the common carotid artery (CCA) was 0.62±0.12 while the outflow ratio of the external carotid artery (ECA) was 0.35±0.13. If the area stenosis was larger than 65%, the flow to the ICA decreased linearly to zero at 100% area stenosis. The empirical relation fitted the flow data well (R2=0.69), whereas Murray’s Law overestimated the flow to the ICA substantially for larger stenosis, resulting in an overestimation of the WSS. If patient-specific flow measurements of the carotid bifurcation are unavailable, estimation of the outflow ratio by the presented empirical relation will result in a good approximation of calculated WSS using CFD.  相似文献   

12.
Wave-intensity analysis, which separates upstream from downstream events and defines their interaction, has been used to study the effects of changes in left ventricular (LV) contractility (E(max)) and left circumflex coronary artery resistance (R(LCx)) on the coronary systolic flow impediment (CSFI). In 10 anesthetized, open-chest dogs, we measured coronary, aortic, and LV pressures, coronary velocity (Flowire), and flow. E(max) was increased by paired pacing and R(LCx) was modulated by intracoronary infusions of vasodilators (adenosine and nitroglycerin) and a vasoconstrictor (phenylephrine). When both E(max) and R(LCx) were varied, CSFI and the energy of the backward-going compression wave (I(W-)) were greatest at the highest levels of E(max) and the lowest levels of R(LCx). I(W-) was proportional to the CSFI. We conclude that contractility and coronary resistance change CSFI by modulating the backward-going compression wave.  相似文献   

13.
The deployment of a coronary stent near complex lesions can sometimes lead to incomplete stent apposition (ISA), an undesirable side effect of coronary stent implantation. Three-dimensional computational fluid dynamics (CFD) calculations are performed on simplified stent models (with either square or circular cross-section struts) inside an idealised coronary artery to analyse the effect of different levels of ISA to the change in haemodynamics inside the artery. The clinical significance of ISA is reported using haemodynamic metrics like wall shear stress (WSS) and wall shear stress gradient (WSSG). A coronary stent with square cross-sectional strut shows different levels of reverse flow for malapposition distance (MD) between 0 mm and 0.12 mm. Chaotic blood flow is usually observed at late diastole and early systole for MD=0 mm and 0.12 mm but are suppressed for MD=0.06 mm. The struts with circular cross section delay the flow chaotic process as compared to square cross-sectional struts at the same MD and also reduce the level of fluctuations found in the flow field. However, further increase in MD can lead to chaotic flow not only at late diastole and early systole, but it also leads to chaotic flow at the end of systole. In all cases, WSS increases above the threshold value (0.5 Pa) as MD increases due to the diminishing reverse flow near the artery wall. Increasing MD also results in an elevated WSSG as flow becomes more chaotic, except for square struts at MD=0.06 mm.  相似文献   

14.
The branching angle and diameter ratio in epicardial coronary artery bifurcations are two important determinants of atherogenesis. Murray's cubed diameter law and bifurcation angle have been assumed to yield optimal flows through a bifurcation. In contrast, we have recently shown a 7/3 diameter law (HK diameter model), based on minimum energy hypothesis in an entire tree structure. Here, we derive a bifurcation angle rule corresponding to the HK diameter model and critically evaluate the streamline flow through HK and Murray-type bifurcations. The bifurcations from coronary casts were found to obey the HK diameter model and angle rule much more than Murray's model. A finite element model was used to investigate flow patterns for coronary artery bifurcations of various types. The inlet velocity and pressure boundary conditions were measured by ComboWire. Y-bifurcation of Murray type decreased wall shear stress-WSS (10%-40%) and created an increased oscillatory shear index-OSI in atherosclerosis-prone regions as compared with HK-type bifurcations. The HK-type bifurcations were found to have more optimal flow patterns (i.e., higher WSS and lower OSI) than Murray-type bifurcations which have been traditionally believed to be optimized. This study has implications for changes in bifurcation angles and diameters in percutaneous coronary intervention.  相似文献   

15.
Abnormal haemodynamic parameters are associated with atheroma plaque progression and instability in coronary arteries. Flow recirculation, shear stress and pressure gradient are understood to be important pathogenic mediators in coronary disease. The effect of freedom of coronary artery movement on these parameters is still unknown. Fluid–structure interaction (FSI) simulations were carried out in 25 coronary artery models derived from authentic human coronaries in order to investigate the effect of degree of freedom of movement of the coronary arteries on flow recirculation, wall shear stress (WSS) and wall pressure gradient (WPG). Each FSI model had distinctive supports placed upon it. The quantitative and qualitative differences in flow recirculation, maximum wall shear stress (MWSS), areas of low wall shear stress (ALWSS) and maximum wall pressure gradient (MWPG) for each model were determined. The results showed that greater freedom of movement was associated with lower MWSS, smaller ALWSS, smaller flow recirculation zones and lower MWPG. With increasing percentage diameter stenosis (%DS), the effect of degree of freedom on flow recirculation and WSS diminished. Freedom of movement is an important variable to be considered for computational modelling of human coronary arteries, especially in the setting of mild to moderate stenosis.

Abbreviations: 3D: Three-dimensional; 3DR: Three-dimensional Reconstruction; 3D-QCA: Three-dimensional quantitative coronary angiography; ALWSS: Areas of low wall shear stress; CAD: Coronary artery disease; CFD: Computational fluid dynamics; %DS: Diameter stenosis percentage; EPCS: End point of counter-rotating streamlines; FSI: Fluid–structure interaction; IVUS: Intravascular ultrasound; LAD: Left anterior descending; MWSS: Maximum wall shear stress; SST: Shear stress transport; TAWSS: Time-averaged wall shear stress; WSS: wall shear stress; WPG: Wall pressure gradient; MWPG: Maximum wall pressure gradient; FFR: Fractional flow reserve; iFR: Instantaneous wave-free ratio  相似文献   


16.
The haemodynamic behaviour of blood inside a coronary artery after stenting is greatly affected by individual stent features as well as complex geometrical properties of the artery including tortuosity and curvature. Regions at higher risk of restenosis, as measured by low wall shear stress (WSS < 0.5 Pa), have not yet been studied in detail in curved stented arteries. In this study, three-dimensional computational modelling and computational fluid dynamics methodologies were used to analyse the haemodynamic characteristics in curved stented arteries using several common stent models. Results in this study showed that stent strut thickness was one major factor influencing the distribution of WSS in curved arteries. Regions of low WSS were found behind struts, particularly those oriented at a large angle relative to the streamwise flow direction. These findings were similar to those obtained in studies of straight arteries. An uneven distribution of WSS at the inner and outer bends of curved arteries was observed where the WSS was lower at the inner bend. In this study, it was also shown that stents with a helical configuration generated an extra swirling component of the flow based on the helical direction; however, this extra swirl in the flow field did not cause significant changes on the distribution of WSS under the current setup.  相似文献   

17.
Outward arterial remodeling is a physiological response to accommodate chronically elevated blood flow and requires endothelial cells (ECs) and expression of endothelial nitric oxide synthase (eNOS). ECs may sense elevated flow via stretch-activated ion channels (SACs). We evaluated the role of SACs in regulation of flow-induced arterial expansion and eNOS expression by ECs. A high-flow environment was created in the common carotid arteries (CCAs) of mice via contralateral common carotid artery (CCA) ligation. Either streptomycin for SAC blockade or saline for placebo was delivered to the mice. CCAs were harvested for morphometric analysis 7 days post procedure. Cultured ECs were exposed to flow with wall shear stresses (WSSs) of 1.5–10 Pa for 24 h in presence or absence of streptomycin. Immunofluorescent staining was used for eNOS quantification. In vivo, CCA expansion in streptomycin-treated mice (n = 7) was significantly less than in the placebo-treated group (n = 8) (p = 0.015). In vitro, streptomycin exposure significantly inhibited eNOS expression at WSS >2.5 Pa (p = 0.001) while not affecting eNOS expression at baseline WSS (1.5–2.5 Pa). Blockade of SACs with streptomycin impairs outward arterial remodeling and eNOS expression at high WSSs. Activation of SACs under elevated WSS may contribute to vessel expansion by upregulating eNOS in ECs.  相似文献   

18.
Computational Fluid Dynamics has become relevant in the study of hemodynamics, where clinical results are challenging to obtain. This paper discusses a 2-Dimensional transient blood flow analysis through an arterial bifurcation for patients infected with the Coronavirus. The geometry considered is an arterial bifurcation with main stem diameter 3 mm and two outlets. The left outlet (smaller) has a diameter of 1.5 mm and the right outlet (larger), 2 mm. The length of the main stem, left branch and right branch are fixed at 35 mm, 20 mm and 25 mm respectively. Viscosity change that occurs in the blood leads to different parametrical changes in blood flow. The blood flow towards the smaller branch is significantly affected by the changed blood viscosity. Extended regions of high pressure and increased velocity towards the larger outlet are obtained. The Time Averaged Wall Shear Stress (TAWSS) for the corona affected artery is found to be 10.4114 Pa at a 90° angle of bifurcation as compared to 2.45002 Pa of the normal artery. For varying angles of bifurcation, an angle of 75° was found to have a maximum Time Averaged Wall Shear Stress of 2.46076 Pa and 10.42542 Pa for normal and corona affected artery, respectively.  相似文献   

19.
Finite element simulations of fluid-solid interactions were used to investigate inter-individual variations in flow dynamics and wall mechanics at the carotid artery bifurcation, and its effects on atherogenesis, in three healthy humans (normal volunteers: NV1, NV2, NV4). Subject-specific calculations were based on MR images of structural anatomy and ultrasound measurements of flow at domain boundaries. For all subjects, the largest contiguous region of low wall shear stress (WSS) occurred at the carotid bulb, WSS was high (6-10 Pa) at the apex, and a small localized region of WSS > 10 Pa occurred close to the inner wall of the external carotid artery (ECA). NV2 and NV4 had a "spot" of low WSS distal to the bifurcation at the inner wall of the ECA. Low WSS patches in the common carotid artery (CCA) were contiguous with the carotid bulb low WSS region in NV1 and NV2, but not in NV4. In all three subjects, areas of high oscillatory shear index (OSI) were confined to regions of low WSS. Only NV4 exhibited high levels of OSI on the external adjoining wall of the ECA and CCA. For all subjects, the maximum wall shear stress temporal gradient (WSSTG) was highest at the flow divider (reaching 1,000 Pa/s), exceeding 300 Pa/s at the walls connecting the ECA and CCA, but remaining below 250 Pa/s outside of the ECA. In all subjects, (maximum principle) cyclic strain (CS) was greatest at the apex (NV1: 14%; NV2: 11%; NV4: 6%), and a second high CS region occurred at the ECA-CCA adjoining wall (NV1: 11%, NV2: 9%, NV4: 5%). Wall deformability was included in one simulation (NV2) to verify that it had little influence on the parameters studied. Location and magnitude of low WSS were similar, except for the apex (differences of up to 25%). Wall distensibility also influenced OSI, doubling it in most of the CCA, separating the single high OSI region of the carotid bulb into two smaller regions, and shrinking the ECA internal and external walls' high OSI regions. These observations provide further evidence that significant intra-subject variability exists in those factors thought to impact atherosclerosis.  相似文献   

20.
To clarify the manner of accumulation of Ca and P in the coronary arteries, the authors divided the coronary arteries into many segments based on arterial ramification and investigated the element contents of the segments by direct chemical analysis. After ordinary dissection at Chiang Mai University was finished, the left coronary (LC) and the right coronary (RC) arteries were removed successively from the hearts of Thai subjects. The Thai subjects consisted of seven men and five women, ranging in age from 42 to 87 years (average age = 73.9 ± 13.5 years). The LC and the RC arteries were divided into 19 segments based on arterial ramification. After incineration with nitric acid and perchloric acid, element contents of the segments were analyzed by inductively coupled plasma–atomic emission spectrometry. In two cases, a significant content of Ca and P was contained only in the left anterior descending (LAD) artery (type I). In four cases, a significant content of Ca and P was contained in both the LAD and the RC arteries (type II). In five cases, a significant content of Ca and P was contained in all the LAD, the RC, and the circumflex (CF) arteries (type III). In the other one case, no significant content of Ca and P was contained in the coronary arteries. The manner of accumulation of Ca and P in the coronary arteries was classified into the three types, I, II, and III. Regarding the average content of elements in 12 cases, the average content of Ca was the highest in the segment of the LAD artery ramifying the first left diagonal artery and was higher in the proximal and distal adjacent segments of the LAD artery ramifying the first left diagonal artery, the proximal segment of the RC artery, and the proximal segment of the CF artery. To examine an effect of arterial ramification on accumulation of Ca and P, the differences in the Ca and P content between artery-ramifying and non-ramified proximal or distal segments of the coronary arteries were analyzed with Student’s t test. It was found that there were no significant differences in the Ca and P content between the artery-ramifying and non-ramified proximal or distal segments of the coronary arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号