首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A PCR-based diagnostic assay was developed for early detection and identification of Aphelenchoides fragariae directly in host plant tissues using the species-specific primers AFragFl and AFragRl that amplify a 169-bp fragment in the internal transcribed spacer (ITS1) region of ribosomal DNA. These species-specific primers did not amplify DNA from Aphelenchoides besseyi or Aphelenchoides ritzemabosi. The PCR assay was sensitive, detecting a single nematode in a background of plant tissue extract. The assay accurately detected A. fragariae in more than 100 naturally infected, ornamental plant samples collected in North Carolina nurseries, garden centers and landscapes, including 50 plant species not previously reported as hosts of Aphelenchoides spp. The detection sensitivity of the PCR-based assay was higher for infected yet asymptomatic plants when compared to the traditional, water extraction method for Aphelenchoides spp. detection. The utility of using NaOH extraction for rapid preparation of total DNA from plant samples infected with A. fragariae was demonstrated.  相似文献   

2.
Turnip yellow mosaic virus (TYMV) is a plant pathogenic virus transmitted mainly through its host Brassica spp. TYMV is originated from Europe. Its infection cases have been reported in Australia, Brazil, Turkey, and Japan. Symptoms similar to those of TYMV infections were also reported in Korea in 2012. In this study, we developed RT-PCR primer pairs that were highly sensitive for detecting TYMV. The developed RT-PCR primer pairs offered about 10–100 times stronger detection sensitivity compared to primer pairs previously used in Korea. As a result, a 491 bp TYMV-specific band was identified. The specific band was confirmed to be TYMV based on sequencing results and phylogenetic analysis. The RT-PCR primer pairs developed in this study can be used to rapidly and precisely diagnose TYMV in agricultural products such as Chinese cabbage and other crops infected by TYMV.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0557-1) contains supplementary material, which is available to authorized users.  相似文献   

3.
Rapid and accurate polymerase chain reaction (PCR) and real‐time PCR methods were developed for the detection of Colletotrichum lagenarium, the causal agent of anthracnose, in tissues of squash (Cucurbita moschata), watermelon (Citrullus lanatus), cucumber (Cucumis sativus) and muskmelon (Cucumis melo). PCR assays amplified different internal transcribed spacer sequences from C. lagenarium, so effectively detected this pathogen in infected tissues. PCR analysis with the primer co‐m‐337F1/R1 was able to differentiate C. lagenarium from other fungal pathogens, including Colletotrichum spp., Fusarium spp., Alternaria spp. and Didymella spp. An optimized real‐time PCR assay was developed to detect and monitor C. lagenarium in both infected plant tissues and soil samples. The sensitivity of real‐time PCR can detect down to 1 pg of DNA. Thus, PCR‐based analysis is a useful technique for rapid detection and diagnosis of C. lagenarium in infected plants or infested soils.  相似文献   

4.
5.
Improved methods for detection of Cryptosporidium oocysts in environmental and clinical samples are urgently needed to improve detection of cryptosporidiosis. We compared the sensitivity of 7 PCR primer sets for detection of Cryptosporidium parvum. Each target gene was amplified by PCR or nested PCR with serially diluted DNA extracted from purified C. parvum oocysts. The target genes included Cryptosporidium oocyst wall protein (COWP), small subunit ribosomal RNA (SSU rRNA), and random amplified polymorphic DNA. The detection limit of the PCR method ranged from 103 to 104 oocysts, and the nested PCR method was able to detect 100 to 102 oocysts. A second-round amplification of target genes showed that the nested primer set specific for the COWP gene proved to be the most sensitive one compared to the other primer sets tested in this study and would therefore be useful for the detection of C. parvum.  相似文献   

6.
This study assessed the potential impact of various Fusarium strains on the population development of sugarbeet cyst nematodes. Fungi were isolated from cysts or eggs of Heterodera schachtii Schmidt that were obtained from a field suppressive to that nematode. Twenty-six strains of Fusarium spp. were subjected to a phylogenic analysis of their rRNA-ITS nucleotide sequences. Seven genetically distinct Fusarium strains were evaluated for their ability to influence population development of H. schachtii and crop performance in greenhouse trials. Swiss chard (Beta vulgaris) seedlings were transplanted into fumigated field soil amended with a single fungal strain at 1,000 propagules/g soil. One week later, the soil was infested with 250 H. schachtii J2/100 cm3 soil. Parasitized eggs were present in all seven Fusarium treatments at 1,180 degree-days after fungal infestation. The percentage of parasitism ranged from 17 to 34%. Although the most efficacious F. oxysporum strain 471 produced as many parasitized eggs as occurred in the original suppressive soil, none of the Fusarium strains reduced the population density of H. schachtii compared to the conducive check. This supports prior results that Fusarium spp. were not the primary cause of the population suppression of sugarbeet cyst nematodes at this location.  相似文献   

7.
Laboratory detection of Brucella is based largely on bacterial isolation and phenotypic characterization. These methods are lengthy and labor-intensive and have been associated with a heightened risk of laboratory-acquired infection. Antibody based indirect detection methods also suffer from limitations in proper diagnosis of the organism. To overcome these problems, nucleic acid amplification has been explored for rapid detection and confirmation of the presence of Brucella spp. PCR-based diagnostics is useful for screening large populations of livestock to identify infected individuals and confirms the presence of the pathogen. Random Amplification of Polymorphic DNA (RAPD) was performed and identified a 1.3 kb PCR fragment specifically amplifiable from DNA isolated from Brucella. A BLAST search revealed no significant homology with the reported sequences from species other than the members of Brucella. The isolated fragment seems to be a part of d-alanine–d-alanine ligase gene in Brucella sp. Translational BLAST revealed certain degree of homology of this sequence with orthologs of this gene reported from other microbial species at the deduced amino acid level. The sequence information was used to develop PCR based assays to detect Brucella sp. from various samples. The minimum detection limit of Brucella from blood and milk samples spiked with Brucella DNA was found to be 1 ng/ml and 10 ng/ml, respectively. In conclusion, we demonstrated that the PCR based detection protocol was successfully used for the detection of Brucella from various organs and spiked samples of diseased sheep. Diagnosis of Brucellosis by PCR based method reported in this study is relatively rapid, specific and simple.  相似文献   

8.
Maize contamination with Fusarium species is one of the major sources of mycotoxins in food and feed derivates. In the present study, a LightCycler® real-time PCR method using hybridization probes was developed for the specific identification, detection, and quantification of Fusarium proliferatum, Fusarium subglutinans, Fusarium temperatum, and Fusarium verticillioides, four mycotoxin-producing pathogens of maize. Primers and hybridization probes were designed to target the translation elongation factor 1α (EF-1α) gene of F. subglutinans and F. temperatum or the calmodulin (Cal) gene of F. proliferatum and F. verticillioides. The specificity of the real-time PCR assays was confirmed for the four Fusarium species, giving no amplification with DNA from other fungal species commonly recovered from maize. The assays were found to be sensitive, detecting down to 5 pg and 50 pg of Fusarium DNA in simplex and multiplex conditions respectively, and were able to quantify pg-amounts of Fusarium DNA in artificially Fusarium-contaminated maize samples. The real-time PCR method developed provides a useful tool for routine identification, detection, and quantification of toxigenic Fusarium species in maize.  相似文献   

9.
Multiplex PCR to detect four different tomato-infecting pathogens   总被引:2,自引:0,他引:2  
This work was aimed to develop a multiplex PCR assay to detect infectious agents such as Clavibacter michiganensis subsp. michiganensis, Fusarium sp, Leveillula taurica, and begomoviruses in tomato (Solanum lycopersicum) plants. Specific primer sets of each pathogen were designed based on intergenic ribosomal RNA sequences for the first three, whereas for begomoviruses, primers were designed based on conserved regions. The design also considered that the length (200–800 bp) of the PCR products was resolvable by electrophoresis; thus 296, 380, 457, and 731 bp fragments for Clavibacter, Fusarium, Leveillula, and begomoviruses, respectively, were considered. PCR conditions were optimized to amplify all the products in a single tube from genomic DNA and circumvent PCR inhibitors from infected plants. Finally, when the multiplex PCR assay was tested with tomato plants infected with any of the four pathogens, specific PCR products confirmed the presence of the pathogens. Optimized PCR multiplex allowed for the accurate and simultaneous detection of Clavibacter, Fusarium, Leveillula, and begomoviruses in infected plants or seeds from tomato.  相似文献   

10.
We have developed a simple PCR assay protocol for detection of the root-knot nematode (RKN) species Meloidogyne arenaria, M. incognita, and M. javanica extracted from soil. Nematodes are extracted from soil using Baermann funnels and centrifugal flotation. The nematode-containing fraction is then digested with proteinase K, and a PCR assay is carried out with primers specific for this group of RKN and with universal primers spanning the ITS of rRNA genes. The presence of RKN J2 can be detected among large numbers of other plant-parasitic and free-living nematodes. The procedure was tested with several soil types and crops from different locations and was found to be sensitive and accurate. Analysis of unknowns and spiked soil samples indicated that detection sensitivity was the same as or higher than by microscopic examination.  相似文献   

11.
Recent increasing number of travelers, immigrants and foreign workers from schistosomiasis endemic area has thus resulted in the importation of schistosomiasis to non-endemic countries. To avoid ova-induced pathogenicity, sensitive and specific diagnostic means at an early stage of infection are therefore crucial. In this study, we developed polymerase chain reaction (PCR) primers specific for human schistosome species. The PCR products were obtained in a species-specific manner (479 bp, Schistosoma mansoni; 365 bp, S. haematobium; 614 bp, S. japonicum; 303 bp, S. mekongi) and were detectable from 0.01 pg of total worm DNA (S. haematobium, S. japonicum, S. mekongi). The primer sets were also available for multiplex use. Although some difficulties were experienced in amplifying the parasite DNA from the infected animals, schistosome DNA could be detected from one day post infection. The PCR method described herein will therefore be beneficial to detect human schistosomiasis, after some improvements in this method.  相似文献   

12.
The rapid and direct quantification of Campylobacter spp. in complex substrates like feces or environmental samples is crucial to facilitate epidemiological studies on Campylobacter in pig production systems. We developed a real-time PCR assay for detecting and quantifying Campylobacter spp. directly in pig feces with the use of an internal control. Campylobacter spp. and Yersinia ruckeri primers-probes sets were designed and checked for specificity with diverse Campylobacter, related organisms, and other bacterial pathogens before being used in field samples. The quantification of Campylobacter spp. by the real-time PCR then was realized on 531 fecal samples obtained from experimentally and naturally infected pigs; the numeration of Campylobacter on Karmali plate was done in parallel. Yersinia ruckeri, used as bacterial internal control, was added to the samples before DNA extraction to control DNA-extraction and PCR-amplification. The sensitivity of the PCR assay was 10 genome copies. The established Campylobacter real-time PCR assay showed a 7-log-wide linear dynamic range of quantification (R2 = 0.99) with a detection limit of 200 Colony Forming Units of Campylobacter per gram of feces. A high correlation was found between the results obtained by real-time PCR and those by culture at both qualitative and quantitative levels. Moreover, DNA extraction followed by real-time PCR reduced the time needed for analysis to a few hours (within a working day). In conclusion, the real-time PCR developed in this study provides new tools for further epidemiological surveys to investigate the carriage and excretion of Campylobacter by pigs.  相似文献   

13.
The most important restriction for the detection in water samples is the low concentration of Giardia intestinalis cysts, additional difficulty is the presence of PCR inhibitors. We have carried out trials in order to assess the sensitivity of semi-nested PCR and TaqMan real time PCR on the basis of DNA extracted from G. intestinalis cysts coming from spiked environmental and distilled water samples, filtrated with the use of Filta-Max® equipment (1623 Method). Removal of inhibitors was carried out with addition of BSA in different concentrations. During the filtration and concentration of water samples, losses of cysts have been recorded. Moreover, addition of BSA to the PCR and real time PCR mix increases the sensitivity of reaction. The optimal concentration of BSA for semi-nested PCR was 15 and 20 ng/μl, whereas for real time PCR 5 ng/μl.  相似文献   

14.
Alternaria helianthi is an important seed-borne pathogenic fungus responsible for blight disease in sunflower. The current detection methods, which are based on culture and morphological identification, are time-consuming, laborious and are not always reliable. A PCR-based diagnostic method was developed with species-specific primers designed based on the sequence data of a region consisting of the 5.8S RNA gene and internal transcribed spacers—ITS 1 and ITS 2 of nuclear ribosomal RNA gene (rDNA) repeats of A. helianthi. The specificity of the primer pairs AhN1F and AhN1R designed was verified by PCR analysis of DNA from 18 Alternaria helianthi strains isolated from India, 14 non-target Alternaria spp. and 11 fungal isolates of other genera. A single amplification product of 357-bp was detected from DNA of A. helianthi isolates. No cross-reaction was observed with any of the other isolates tested. The detection limit of the PCR method was of 10?pg from template DNA. The primers could also detect the pathogen in infected sunflower seed. This species-specific PCR method provides a quick, simple, powerful and reliable alternative to conventional methods in the detection and identification of A. helianthi. This is the first report of an A. helianthi-specific primer set.  相似文献   

15.
A multiplex PCR method has been developed to detect, differentiate, and confirm the morphological identification of three root infecting Olpidium spp.: O. bornovanus, O. brassicae, and O. virulentus. Of the 132 root samples examined, 101 samples were infected by Olpidium spp.. Based on the morphology of resting spores, the presence of O. bornovanus was confirmed in 20.5 % of the samples, whereas species identity could not be determined for the remaining samples because they failed to reproduce sexually. With multiplex PCR, it was possible to determine the Olpidium identity of all the infected samples, even when resting spores were not formed. This method was also effective for detecting Olpidium spp. in water samples. In addition, the specificity and sensitivity of multiplex PCR were evaluated. The multiplex PCR method was validated with samples of 9 different crops from 11 countries of America, Europe, and Africa.  相似文献   

16.
Methylocella spp. are facultative methanotrophs, which are able to grow not only on methane but also on multicarbon substrates such as acetate, pyruvate or malate. Methylocella spp. were previously thought to be restricted to acidic soils such as peatlands, in which they may have a key role in methane oxidation. There is little information on the abundance and distribution of Methylocella spp. in the environment. New primers were designed, and a real-time quantitative PCR method was developed and validated targeting Methylocella mmoX (encoding the α-subunit of the soluble methane monooxygenase) that allowed the quantification of Methylocella spp. in environmental samples. We also developed and validated specific PCR assays, which target 16S rRNA genes of known Methylocella spp. These were used to investigate the distribution of Methylocella spp. in a variety of environmental samples. It was revealed that Methylocella species are widely distributed in nature and not restricted to acidic environments.  相似文献   

17.
Ammonia oxidation is the rate limiting step in nitrification and thus have an important role in removal of ammonia in natural and engineered systems with participation of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, their relative distribution and activity in fish processing effluent treatment plants (FPETPs) though significant, is hitherto unreported. Presence of AOA in sludge samples obtained from FPETPs was studied by amplification and sequencing of thaumarchaeal ammonia monooxygenase subunit A (AOA-amoA) gene. Different primer sets targeting 16S rRNA and AOA-amoA gene were used for the detection of AOA in FPETPs. Phylogenetic analysis of the gene revealed that the AOA was affiliated with thaumarchaeal group 1.1a lineage (marine cluster). Quantitative real time PCR of amoA gene was used to study the copy number of AOA and AOB in FPETPs. The AOA-amoA and AOB-amoA gene copy numbers of sludge samples ranged from 2.2 × 106 to 4.2 × 108 and 1.1 × 107 to 8.5 × 108 mg−1 sludge respectively. Primer sets Arch-amoAF/Arch-amoAR and 340F/1000R were found to be useful for the sensitive detection of AOA-amoA and Archaeal 16S rRNA genes respectively in FPETPs. Their presence suggests the widespread occurrence and possible usefulness in removing ammonia from FPETPs which is in line with reports from other waste water treatment plants.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-014-0484-6) contains supplementary material, which is available to authorized users.  相似文献   

18.
Quantitative real-time PCR (qPCR) is a powerful tool to detect and quantify species of cryptic organisms such as bacteria, fungi and nematodes from soil samples. As such, qPCR offers new opportunities to study the ecology of soil habitats by providing a single method to characterize communities of diverse organisms from a sample of DNA. Here we describe molecular tools to detect and quantify two bacteria (Paenibacillus nematophilus and Paenibacillus sp.) phoretically associated with entomopathogenic nematodes (EPNs) in the families Heterorhabditidae and Steinernematodae. We also extend the repertoire of species specific primers and TaqMan® probes for EPNs to include Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae and Steinernema scapterisci, all widely distributed species used commercially for biological control. Primers and probes were designed from the ITS rDNA region for the EPNs and the 16S rDNA region for the bacteria. Standard curves were established using DNA from pure cultures of EPNs and plasmid DNA from the bacteria. The use of TaqMan probes in qPCR resolved the non-specificity of EPN and some bacterial primer amplifications whereas those for Paenibacillus sp. also amplified Paenibacillus thiaminolyticus and Paenibacillus popilliae, two species that are not phoretically associated with nematodes. The primer-probe sets for EPNs were able to accurately detect three infective juvenile EPNs added to nematodes recovered from soil samples. The molecular set for Paenibacillus sp. detected the bacterium attached to Steinernema diaprepesi suspended in water or added to nematodes recovered from soil samples but its detection decreased markedly in the soil samples, even when a nested PCR protocol was employed. Using qPCR we detected S. scapterisci at low levels in a citrus grove, which suggested natural long-distance spread of this exotic species, which is applied to pastures and golf courses to manage mole crickets (Scapteriscus spp.). Paenibacillus sp. (but not P. nematophilus) was detected in low quantities in the same survey but was unrelated to the spatial pattern of S. diaprepesi. The results of this research validate several new tools for studying the ecology of EPNs and their phoretic bacteria.  相似文献   

19.
A novel method, which involves a nested PCR in a single closed tube, was developed for the sensitive detection of Erwinia amylovora in plant material. The external and internal primer pairs used had different annealing temperatures and directed the amplification of a specific DNA fragment from plasmid pEA29. The procedure involved two consecutive PCRs, the first of which was performed at a higher annealing temperature that allowed amplification only by the external primer pair. Using pure cultures of E. amylovora, the sensitivity of the nested PCR in one tube was similar to that of a standard nested PCR in two tubes. The specificity and sensitivity were greater than those of standard PCR procedures that used a single primer pair. The presence of inhibitors in plant material, very common in E. amylovora hosts, is overcome with this system in combination with a simple DNA extraction protocol because it eliminates many of the inhibitory compounds. In addition, it needs a very small sample volume (1 μl of DNA extracted). With 83 samples of naturally infected material, this method achieved better results than any other PCR technique: standard PCR detected 55% of positive samples, two-tube nested PCR detected 71% of positive samples, and nested PCR in a single closed tube detected 78% of positive samples. When analyzing asymptomatic plant material, the number of positive samples detected by the developed nested PCR was also the highest, compared with the PCR protocols indicated previously (17, 20, and 25% of 251 samples analyzed, respectively). This method is proposed for the detection of endophytic and epiphytic populations of E. amylovora in epidemiological studies and for routine use in quarantine surveys, due to its high sensitivity, specificity, speed, and simplicity.  相似文献   

20.
A fast and simple polymerase chain reaction method has been developed for detection of Phytophthora infestans oospores, the causal agent of Late blight of Potato in soil. The method involves the disruption of oospores by grinding dry soil, using abrasive properties, in the presence of glass powder and skimmed milk powder within a short time. The latter prevents loss of DNA by adsorption to soil particles or by degradation and reduces the co-extraction of PCR inhibitors with the DNA. After phenol/chloroform extraction; the DNA is suitable for direct PCR amplification without a precipitation step. This amplification leads to detection of pathogen in infested soils before planting of crop. The real-time PCR assay we describe is highly sensitive and specific, and has several advantages over conventional PCR assays used for P. infestans detection to confirm positive inoculum level in potato seeds and elsewhere. With increasing amounts of standard DNA templates, the respective threshold cycle (Ct) values were determined and a linear relationship was established between these Ct values and the logarithm of initial template amounts. The method is rapid, cost efficient, and when combined with suitable internal controls can be applied to the detection and quantification of P. infestans oospores on a large-scale basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号