首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental autoimmune uveitis (EAU) serves as an animal model of ocular inflammation. The disease is caused by the immunization of microgram amounts of a soluble retinal protein, designated S-antigen, in susceptible animal strains, including primates. We induced EAU and experimental autoimmune pinealitis (EAP) in Lewis rats with a small synthetic peptide corresponding to amino acid positions 106-121 in yeast histone H3. This peptide contains five consecutive amino acids identical to a uveitopathogenic site (peptide M) in human S-antigen. Lymph node or mononuclear cells from different species of animals immunized either with histone H3 or with peptide M showed significant cross-reaction as measured by in vitro lymphocyte mitogenesis assay using [3H]thymidine. Also, we adoptively transferred the EAU and EAP in naive rats by immune lymph node cells. These findings support the fact that selected bacterial, viral, or fungal proteins with amino acid sequence homologies to normal retinal proteins are uveitopathogenic and, as such, provide a basis for autoimmune inflammatory diseases.  相似文献   

2.
Experimental autoimmune uveitis (EAU) is caused by the immunization of microgram amounts of a soluble retinal protein, known as S-antigen, in susceptible animal strains including primates. The disease serves as an animal model of ocular inflammation. We induced EAU and pinealitis in Lewis rats with small synthetic peptides, corresponding to the amino acid sequence in Escherichia coli protein, which contains six consecutive amino acids identical to a uveitopathogenic site in human S-antigen (peptide M). EAU and pinealitis induced in rats by synthetic peptide derived from E. coli was indistinguishable from those induced by native S-antigen or other uveitopathogenic synthetic peptides corresponding to the amino acid sequence of S-antigen. Furthermore, lymph node cells from animals immunized with either peptide M or peptide derived from E. coli protein showed significant proliferation in the presence of either peptide when tested in vitro for lymphocyte mitogenesis using [3H]thymidine. Thus, molecular mimicry, a process by which an immune response directed against a nonself protein cross-reacts with a normal host protein, may play a role in autoimmunity.  相似文献   

3.
Experimental autoimmune uveoretinitis (EAU) is a T cell-mediated autoimmune disease of the eye which can be induced in LEW rats by immunization with either human or bovine S-antigen (S-Ag). In previous reports, two nonimmunodominant pathogenic sites were found using synthetic peptides corresponding to conserved sequences at amino acid residues 303-314 and 286-297 of the bovine sequence. In this report, a 20-residue synthetic peptide encompassing amino acids 343-362 located near the C-terminus was found to be highly immunopathogenic in LEW rats. The onset of EAU was observed at as early as 8 days when high doses of a peptide-encompassing residues 343-362 were used. EAU was elicited with as little as 0.5 microgram of peptide per animal. Smaller peptides from this region were also tested for uveitogenicity, further refining the site to 13 amino acids. Uveitogenic T cell lines were made to this site in two ways; first, by the in vitro selection of a bulk T cell line raised to human S-Ag with peptide 343-362. Second, by the in vitro selection of a peptide-specific line from an animal immunized with peptide 352-364, which corresponds to the minimal uveitogenic site. Both of these lines adoptively transferred EAU to LEW rats, further establishing the pathogenicity of this site. A proliferative site distinct from, but overlapping, the uveitogenic site was also found. The potent uveitopathogenicity of peptides from this region indicates that it is a major pathogenic site responsible for EAU induced in LEW rats by immunization with human S-Ag.  相似文献   

4.
Experimental autoimmune uveoretinitis (EAU) is a predominantly T cell-mediated autoimmune disease induced in susceptible animals by active immunization with human or bovine retinal S-Ag or by passive transfer of activated S-Ag or peptide-specific CD4+ T cells. During the course of studies aimed at the identification of T cell and B cell recognition sites in bovine and human S-Ag, a new potent uveitogenic region, located near the carboxy terminus of the molecule, was identified and characterized. Analysis of several synthetic peptides from this region showed that a 14 amino acid residue peptide, BSAg339-352, was highly uveitogenic when injected with adjuvants into Lewis rats. A uveitogenic T cell line, R737, was raised by in vitro selection of lymphocytes from animals immunized with peptide BSAg333-352. Northern blot analysis of mRNA from the R737 T cell line was positive for the rat homologs of murine V beta 8 and V alpha 2 T cell receptor gene probes. Whereas peptide BSAg339-352 defined the pathogenic site, nonpathogenic, proliferative sites were found in close physical association. This region is immediately adjacent to previously characterized pathogenic and proliferative sites contained in residues BSAg352-364. These results, as well as our previous observations, show S-Ag to be a complex molecule with several highly conserved amino acid sequences that can elicit pathogenic T cells with restricted T cell receptor V gene usage capable of active and passive elicitation of experimental autoimmune uveoretinitis.  相似文献   

5.
The oral administration of S-antigen fragment (a synthetic peptide designated as peptide M and known to be uveitopathogenic for rat, guinea pig, and monkey) to Lewis rats prior to challenge with an emulsion of peptide M and CFA resulted in either a total or partial suppression of experimental autoimmune uveitis (EAU), a T cell-mediated autoimmune disease studied as a model for human uveitis and experimental autoimmune pinealitis (EPA). Both the clinical and histopathologic manifestations of the disease were suppressed in a dose-dependent manner. Pinealitis associated with EAU was also suppressed by the oral administration of peptide M. Additionally, ingestion of a fragment of baker's yeast (Saccharomyces cerevisiae) histone H3, which has five consecutive amino acids identical to peptide M and which has been found to be uveitopathogenic in Lewis rats, induced tolerance to either peptide M or synthetic histone H3 peptide. In addition, the proliferative response to peptide M was inhibited in peptide M-fed rats. The suppression of EAU and in vitro lymphocyte proliferative responses to peptide M were observed to be antigen specific, since oral feeding of a control protein (BSA) exerted no suppressive effect. Furthermore, the T cells isolated from the spleen and lymph nodes of animals rendered tolerant by oral administration of peptide M can transfer protection against EAU adoptively. These results demonstrate that the oral administration of an autoantigen or its homologous peptide initiates an antigen-specific cellular mechanism which may ameliorate EAU.  相似文献   

6.
Previous analyses of T cell recognition sites on immunopathogenic neural autoantigens have demonstrated, using LEW rats, the functional dissociation of in vitro proliferative responses and the ability to actively induce autoimmune diseases. In experimental autoimmune uveoretinitis, immunization of LEW rats with bovine retinal S-Ag reveals the presence of three immunodominant T cell recognition sites located in regions containing sequence differences between bovine and rat S-Ag. Immune responses of LEW rats to self (rat) and nonself (bovine and human) peptide homologues representing these three sites were compared. The immunodominant sequences of heterologous S-Ag were found to predict new pathogenic T cell recognition sites in the corresponding autologous rat sequence. Furthermore, in vitro proliferative responses to the pathogenic autologous sequences are dramatically diminished relative to the responses of lymphocytes raised to the non-self homologues. A pathogenic T cell line, R858, efficiently transferred disease, but was unresponsive to the autologous S-Ag peptide in proliferation assays. However, responses to autologous peptides were readily detected using nonirradiated splenic APC. Detection of responses to non-self peptides was independent of this radiosensitive Ag-presenting activity. The lack of in vitro proliferative responses to pathogenic autologous sequences by T cells bearing self-specific receptors, contrasted with the strong proliferation induced by non-self peptide homologues, suggests a mechanism of unresponsiveness to self.  相似文献   

7.
S-antigen is a well-characterized retinal protein that is highly pathogenic for the induction of experimental autoimmune uveitis (EAU), a severe inflammatory disease of the eye and the pineal gland. EAU was observed following the immunization of Lewis rats with various doses (50 to 200 micrograms) of a small synthetic peptide, peptide N (22 amino acids in length), which corresponds to amino acid positions 281 to 302 in bovine S-antigen. Peptide N consistently induced an EAU that was identical to the disease caused by native S-antigen. Clinically, the disease that developed in the eye was characterized by iris and pericorneal hyperemia, followed by inflammatory exudates in the anterior chamber and vitreous. Histopathologically, a severe inflammatory response was observed that resulted in the complete destruction of the photoreceptor cell layer of the retina. In addition, animals with ocular inflammatory disease had an associated pinealitis characterized by a lymphocytic infiltration of the pineal gland. Furthermore, draining lymph node cells of rats immunized with peptide N showed strong in vitro proliferative responses toward peptide N as measured by [3H]thymidine uptake. Our results indicate that several synthetic peptides, which correspond to the amino acid sequence of bovine S-antigen, are capable of inducing an EAU and, as such, suggest that multiple uveitopathogenic sites may be present in the molecule.  相似文献   

8.
The Abelson leukemia virus (AbLV) polyprotein P120 is compared to translational products representing the entire Moloney murine leukemia virus (MuLV) genome on the basis of [35S]methionine tryptic peptide composition. Three methionine-containing tryptic peptides present in Moloney Pr65gag are each shown to be present in both Pr75gag and in Pr180gag-pol. Of these, one peptide, corresponding to Moloney MuLV p12, but neither of two p30-specific peptides are present in AbLV P120. Among the 12 remaining methionine-containing peptides present in AbLV P120, many, if not all, are unique to AbLV P120 and not shared by either Moloney MuLV Pr180gag-pol or Pr82gag.  相似文献   

9.
Hepatitis A virus (HAV) 3C proteinase is responsible for processing the viral precursor polyprotein into mature proteins. The substrate specificity of recombinant hepatitis A 3C proteinase was investigated using a series of synthetic peptides representing putative polyprotein junction sequences. Two peptides, corresponding to the viral polyprotein 2B/2C and 2C/3A junctions, were determined to be cleaved most efficiently by the viral 3C proteinase. The kcat/Km values determined for the hydrolysis of a further series of 2B/2C peptides, in which C-terminal and N-terminal amino acids were systematically removed, revealed that P4 through P2' amino acids were necessary for efficient substrate cleavage. The substitution of Ala for amino acids in P1 and P4 positions decreased the rate of peptide hydrolysis by 100- and 10-fold, respectively, indicating that the side chains of Gln in P1 and Leu in P4 are important determinants of substrate specificity. Rates of hydrolysis measured for other P1- and P4-substituted peptides indicate that S1 is very specific for the Gln side chain whereas S4 requires only that the amino acid in P4 be hydrophobic. A continuous fluorescence quench assay was developed, allowing the determination of kcat/Km dependence on pH. The pH rate profile suggests that catalyzed peptide hydrolysis is dependent on deprotonation of a reactive group having a pKa of 6.2 (+/- 0.2). The results of tests with several proteinase inhibitors indicate that this cysteine proteinase, like other picornaviral 3C proteinases, is not a member of the papain family.  相似文献   

10.
11.
The bovine immunodeficiency virus (BIV) gag gene encodes a 53-kDa precursor (Pr53gag) that is involved in virus particle assembly and is further processed into the putative matrix (MA), capsid (CA), and nucleocapsid (NC) functional domains in the mature virus. Gag determinants are also found in the Gag-Pol polyprotein precursor. To immunologically identify the major precursors and processed products of the BIV gag gene, monospecific rabbit sera to recombinant BIV MA protein and Pr53gag and peptides predicted to correspond to the CA and NC proteins and the MA-CA cleavage site were developed and used in immunoprecipitations and immunoblots of BIV antigens. Monospecific antisera to native and recombinant human immunodeficiency virus type 1 proteins were also used to identify analogous BIV Gag proteins and to determine whether cross-reactive epitopes were present in the BIV Gag precursors or processed products. The BIV MA, CA, and NC Gag proteins were identified as p16, p26, and p13, respectively. In addition to BIV Pr53gag, the major Gag precursor, two other Gag-related precursors of 170 and 49 kDa were identified that have been designated pPr170gag-pol and Pr49gag, respectively; pPr170gag-pol is the Gag-Pol polyprotein precursor, and Pr49gag is the transframe Gag precursor present in pPr170gag-pol. Several alternative Gag cleavage products were also observed, including p23, which contains CA and NC determinants, and p10, which contains a peptide sequence conserved in the CA proteins of most lentiviruses. The monospecific antisera to human immunodeficiency virus type 1 CA (p24) and NC (p7) proteins showed cross-reactivity to and aided in the identification of analogous BIV proteins. Based on the present data, a scheme for the processing of BIV Gag precursors is proposed.  相似文献   

12.
Although the full sequence of the human immunodeficiency virus type 1 (HIV-1) genome has been known for more than a decade, effective genetic antivirals have yet to be developed. Here we show that, of 22 regions examined, one highly conserved sequence (ACTCTTTGGCAACGA) near the 3' end of the HIV-1 gag-pol transframe region, encoding viral protease residues 4 to 8 and a C-terminal Vpr-binding motif of p6(Gag) protein in two different reading frames, can be successfully targeted by an antisense peptide nucleic acid oligomer named PNA(PR2). A disrupted translation of gag-pol mRNA induced at the PNA(PR2)-annealing site resulted in a decreased synthesis of Pr160(Gag-Pol) polyprotein, hence the viral protease, a predominant expression of Pr55(Gag) devoid of a fully functional p6(Gag) protein, and the excessive intracellular cleavage of Gag precursor proteins, hindering the processes of virion assembly. Treatment with PNA(PR2) abolished virion production by up to 99% in chronically HIV-1-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates with the multidrug-resistant phenotype. This particular segment of the gag-pol transframe gene appears to offer a distinctive advantage over other regions in invading viral structural genes and restraining HIV-1 replication in infected cells and may potentially be exploited as a novel antiviral genetic target.  相似文献   

13.
S-antigen (S-Ag) is a soluble, highly antigenic protein, the administration of which induces autoimmune uveitis. This protein is found in the retina and pineal. Retinal S-Ag from three species has been sequenced. In this study rat pineal S-Ag was sequenced. Clones were isolated from a rat pineal lambda gt11 cDNA library by probing with a 300 bp fragment of mouse retinal S-Ag cDNA containing the 5'-coding region. The largest clone isolated (RPS-118; 1364 bp) contained the entire coding sequence. Comparison of the rat pineal and mouse retinal S-Ag nucleotide sequences indicated a high homology (95%). The deduced amino acid sequence was found to contain 403 residues (congruent to 44 992 Da). Comparison of the rat pineal and mouse retinal S-Ag amino acid sequences also revealed high homology (97%). The similarity of both the nucleotide and amino acid sequences of rat pineal and mouse retinal S-Ag indicates that expression of the S-Ag gene in both tissues is similar. Further analysis of the rat pineal S-Ag sequence indicated that it contained essentially the same major uveitopathogenic region of S-Ag present in bovine retina; minor uveitopathogenic sites were somewhat different. As is true of retinal S-Ag, rat pineal S-Ag contains the same consensus phosphoryl-binding site present in many GTP/GDP-binding proteins and a homologous sequence found in the C-terminus of alpha-transducin. These sequences may play a role in the action of pineal S-Ag in transmembrane signal transduction.  相似文献   

14.
15.
Experimental autoimmune uveitis (EAU) and experimental autoimmune pinealitis (EAP) are CD4+ T cell-mediated inflammatory diseases of the uveal tract and retina of the eye and of the pineal gland. EAU and EAP can be induced by several retinal autoantigens including S-antigen (S-Ag) and interphotoreceptor retinoid binding protein (IRBP). In this study we investigated the effect of intravenous administration of S-Ag and IRBP coupled to syngeneic spleen cells on the development of EAU and EAP. Injection of S-Ag or IRBP coupled to spleen cells 5 days prior to immunization with native S-Ag or IRBP, respectively, was effective in preventing the induction of EAU and EAP in LEW rats. Conversely, LEW rats receiving S-Ag-coupled spleen cells and challenged with IRBP or LEW rats receiving IRBP-coupled spleen cells and challenged with S-Ag developed a severe EAU within 10 days to 2 weeks following immunization, as did all control animals receiving sham-coupled spleen cells and challenged with the two retinal antigens. The results show that the administration of retinal autoantigens coupled to spleen cells effectively protects against the development of EAU when animals are subsequently challenged with the tolerizing antigen but not when challenged with another unrelated pathogenic retinal autoantigen.  相似文献   

16.
S Oertle  N Bowles    P F Spahr 《Journal of virology》1992,66(6):3873-3878
Avian retroviruses (with the notable exception of spleen necrosis virus) express their protease (PR) both in their gag and their gag-pol polyprotein precursors, in contrast to other retroviruses, notably, the mammalian retroviruses, in which PR is encoded in the gag-pol polyprotein or in a separate reading frame as a gag-pro product. The consequence is that the avian PR is expressed in stoichiometric rather than catalytic amounts. To investigate the significance of the particular genome organization of the avian retrovirus prototype Rous sarcoma virus, we developed an assay that measures complementation between the gag and the gag-pol polyproteins by expressing them from two different plasmids in transfected cells. By using this assay, we showed that the protease PR from the gag-pol polyprotein is capable of autocatalytic self-cleavage and -activation when coexpressed with a protease-deficient gag protein and that the PR domain has a role in viral particle assembly. Furthermore, this complementation assay can be used to investigate the role of the gag domain in the gag-pol polyprotein by determining whether it can rescue a defect in the gag polyprotein. We report here the results of such an experiment, which studied a mutation in the N terminus of the gag gene.  相似文献   

17.
18.
The structure of viral and cellular fos gene products and their association with a 39,000-dalton cellular protein (p39) were investigated by using antisera raised against synthetic peptides. The first peptide, termed M, corresponded to amino acids 127 to 152 of the v-fos sequence, a region which is identical in c-fos. The second peptide, termed V, corresponded to the nine C-terminal amino acids of v-fos; this region is not present in c-fos. Rabbit antisera were purified by affinity chromatography against their respective peptides before being used for immunoprecipitation. M peptide antisera precipitated p55v-fos and p55c-fos, whereas V peptide antisera precipitated only p55v-fos. This observation confirms the prediction from nucleotide sequence analysis that these proteins are distinct at their C termini. p39 was precipitated in association with p55v-fos and p55c-fos by M and V peptide antisera. However, V peptide antisera did not precipitate p39 from cells expressing p55c-fos, even though the presence of p39 in such cells was demonstrated with M peptide antisera. Denaturation of cell lysates completely abolished the precipitation of p39, whereas the precipitation of p55v-fos was unaffected. Taken together, the data demonstrate that p39 exists in a complex with p55.  相似文献   

19.
Episomal plasmids (p8901) with minigenes coding for the influenza virus matrix peptide amino acids 57-68 (KGILGFVFTLTV; referred to as M57-68) or coding for a modified peptide were introduced into HLA-A2-positive target cells. The association of these peptides, synthesized in the cytoplasm, with HLA-A2 and the expression of this complex at the cell surface was evaluated with HLA-A2-restricted CTL specific for the influenza virus matrix peptide M57-68. Cells expressing M57-68 were lysed effectively, as were cells expressing a peptide that retained residues 60-64 with seven flanking alanine residues (AAALGFVFAAAA). An exogenously added synthetic analog of peptide M57-68 that inhibited sensitization of targets with synthetic peptide M57-68 also inhibited lysis of cells expressing the minigene coding for the peptide with seven alanine substitutions. These results demonstrate the utility of minigene DNA constructs in creating experimental systems to develop agents to diminish the severity of CTL-mediated tissue damage in autoimmune diseases and graft rejection.  相似文献   

20.
Plant virus‐based expression systems allow quick and efficient production of recombinant proteins in plant biofactories. Among them, a system derived from tobacco etch virus (TEV; genus potyvirus) permits coexpression of equimolar amounts of several recombinant proteins. This work analyzed how to target recombinant proteins to different subcellular localizations in the plant cell using this system. We constructed TEV clones in which green fluorescent protein (GFP), with a chloroplast transit peptide (cTP), a nuclear localization signal (NLS) or a mitochondrial targeting peptide (mTP) was expressed either as the most amino‐terminal product or embedded in the viral polyprotein. Results showed that cTP and mTP mediated efficient translocation of GFP to the corresponding organelle only when present at the amino terminus of the viral polyprotein. In contrast, the NLS worked efficiently at both positions. Viruses expressing GFP in the amino terminus of the viral polyprotein produced milder symptoms. Untagged GFPs and cTP and NLS tagged amino‐terminal GFPs accumulated to higher amounts in infected tissues. Finally, viral progeny from clones with internal GFPs maintained the extra gene better. These observations will help in the design of potyvirus‐based vectors able to coexpress several proteins while targeting different subcellular localizations, as required in plant metabolic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号