首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Net photosynthesis of the flag leaf of hard wheat ( Triticum durum L. evs Valforte, Produra, Adamello, Karel, Appulo and El Amel from the collection of the Instituto di Cerealicultura. Foggia, Italy) of different water potential has been studied on three consecutive years. Net photosynthesis was measured in natural conditions with a LI-COR portable instrument and in saturating CO2 with an oxygen electrode. Net photosynthesis and stomatal conductance were significantly lower in the unirrigated leaves. However, the ratio of intercellular CO2, concentration (C1) to ambient CO3 concentration (Ca) around the stressed plants was similar to the irrigated control. The maximal rate of photosynthesis in saturating CO2, (Pnmax). measured in the second year of the experiment, was quite close to photosynthesis under natural conditions, indicating that CO2 supply was not limiting. These results suggest that altered mesophyll photosynthetic capacity, rather than stomatal closure, causes the observed reduction in photosynthesis in the unirrigated plants. The variable fluorescence yield (v/Fm) in predarkened leaves measured for two consecutive years, did not show differences between treatments or between cultivars. However, the analysis of the slow transients, measured the last year of the experiment, showed a linear relation between the fluorescence decline from the maximum initial level (P) and maximum photosynthesis (Pnmax).  相似文献   

2.
Abstract. Plantago maritima L. was grown at three levels of salinity, 50, 200, 350 mol m−3 NaCl, and the effects on growth, ion content and photosynthetic capacity were studied. Shoot and root dry weight, leaf production and leaf length were all substantially reduced in plants grown at high salinity. Total leaf area of plants grown at 350 mol m−3 NaCl was only 20% of that in plants at low salinity. Both the Na+ and K+ content of leaves and roots increased with external salinity. There was no change in the Na+/K+ ratio of leaves or roots at different salinity levels. Despite the large reductions in growth and high accumulation of Na+ ions, leaf photosynthetic rate was only slightly reduced by salinity stress. The reduction in photosynthesis was not caused by reduced biochemical capacity as judged by photosynthetic response to intercellular CO2 and by ribulose-1,5-bisphosphate carboxylase activity, but was due to reduced leaf conductance and low intercellular CO2 concentration. The increased stomatal limitation of photosynthesis resulted in higher water-use efficiency of plants grown at high salinity.  相似文献   

3.
Sunflower seedlings ( Helianthus annuus hybrid Select) were grown in a complete nutrient solution in the absence or presence of Cd2+ (10 and 20 μM). Analyses were performed to establish whether there was a differential effect of Cd2+ on mature and young leaves. After 7 d the growth parameters as well as the leaf area had decreased in both mature and young leaves. Accumulation of Cd2+ in the roots exceeded that in the shoots. Seedlings treated with Cd2+ exhibited reduced contents of chlorophyll and CO2 assimilation rate, with a greater decrease in young leaves. The photochemical efficiency of photosystem II (PSII) was not altered by Cd2+ treatment in either mature or young leaves, although during steady-state photosynthesis in young leaves there was a significant alteration in the following parameters: quantum yield of electron transport by PSII (ΦPSII), photochemical quenching ( q P), non-photochemical quenching ( q NP), and excitation capture efficiency of PSII (Φexc).  相似文献   

4.
A simple method is proposed for quantitative evaluation of Stomatal and non-stomatal components of the decline in leaf CO2 uptake during rapid water stress. The changes in leaf conductance were measured during the stress and were used to calculate the photosynthetic rate which would be observed if Stomatal closure were the only cause of the decline in photosynthesis. Photosynthesis-CO2 response curves, determined just before the stress, were used for this calculation. The difference between the calculated and the actual rate is a measure of the non-stomatal effect of water stress.
This analysis was tested on Sinapis alba submitted to rapid and severe water stress by excising leaves or roots. Experiments were performed at saturating light conditions under high (61 Pa), normal (34 Pa) or low (11 Pa) ambient CO 2 pressure. The non-stomatal effect on de-rooted plants reaches a maximum at the beginning of the stress and is dependent on the CO 2 pressure: after 45 min its influence is still about 100°, 70° and 8°, respectively, at high, normal and low CO2. In the excised leaf system in which desiccation was more rapid, the non-stomatal effect accounted for nearly 100° of the assimilation decline whatever the CO2 pressure.  相似文献   

5.
The physiological characteristics of holm oak ( Quercus ilex L.) resprouts originated from plants grown under current CO2 concentration (350 μl l−1) (A-resprouts) were compared with those of resprouts originated from plants grown under elevated CO2 (750 μl l−1) (E-resprouts). At their respective CO2 growth concentration, no differences were observed in photosynthesis and chlorophyll fluorescence parameters between the two kinds of resprout. E-resprouts appeared earlier and showed lower stomatal conductance, higher water-use efficiency and increased growth (higher leaf, stem and root biomass and increased height). Analyses of leaf chemical composition showed the effect of elevated [CO2] on structural polysaccharide (higher cellulose content), but no accumulation of total non-structural carbohydrate on area or dry weight basis was seen. Four months after appearance, downregulation of photosynthesis and electron transport components was observed in E-resprouts: lower photosynthetic capacity, photosystem II quantum efficiency, photochemical quenching of fluorescence and relative electron transport rate. Reduction in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) activity, deduced from the maximum carboxylation velocity of RuBisCo, accounts for the observed acclimation. Increased susceptibility of photosynthetic apparatus to increasing irradiance was detected in E-resprouts.  相似文献   

6.
The effects of CO2 enrichment on growth of Xanthomonas campestris pv. pelargonii and the impact of infection on the photosynthesis and export of attached, intact, 'source' leaves of geranium ( Pelargonium x domesticum, 'Scarlet Orbit Improved' ) are reported. Two experiments were performed, one with plants without flower buds, and another with plants which were flowering. Measurements were made on healthy and diseased leaves at the CO2 levels (35 Pa or 90 Pa) at which the plants were grown. There were no losses of chlorophyll, or any signs of visible chlorosis or necrosis due to infection. Lower numbers of bacteria were found in leaves at high CO2, suggesting growth at elevated CO2 created a less favourable condition in the leaf for bacterial growth. Although high CO2 lowered the bacterial number in infected leaves, reductions in photosynthesis and export were greater than at ambient CO2. The capacity of infected source leaves to export photoassimilates at rates observed in the controls was reduced in both light and darkness. In summary, the severity of infection on source leaf function by the bacteria was increased, rather than reduced by CO2 enrichment, underscoring the need for further assessment of plant diseases and bacterial virulence in plants growing under varying CO2 levels.  相似文献   

7.
Plants grown in an environment of elevated CO2 and temperature often show reduced CO2 assimilation capacity, providing evidence of photosynthetic downregulation. The aim of this study was to analyse the downregulation of photosynthesis in elevated CO2 (700 µmol mol−1) in nodulated alfalfa plants grown at different temperatures (ambient and ambient + 4°C) and water availability regimes in temperature gradient tunnels. When the measurements were taken in growth conditions, a combination of elevated CO2 and temperature enhanced the photosynthetic rate; however, when they were carried out at the same CO2 concentration (350 and 700 µmol mol−1), elevated CO2 induced photosynthetic downregulation, regardless of temperature and drought. Intercellular CO2 concentration measurements revealed that photosynthetic acclimation could not be accounted for by stomatal limitations. Downregulation of plants grown in elevated CO2 was a consequence of decreased carboxylation efficiency as a result of reduced rubisco activity and protein content; in plants grown at ambient temperature, downregulation was also induced by decreased quantum efficiency. The decrease in rubisco activity was associated with carbohydrate accumulation and depleted nitrogen availability. The root nodules were not sufficiently effective to balance the source–sink relation in elevated CO2 treatments and to provide the required nitrogen to counteract photosynthetic acclimation.  相似文献   

8.
Parameters for the evaluation of the effects of photoinhibition on photosynthetic carbon gain were studied in Chenopodium album leaves. The light-response curve of photosynthetic rate was determined at 36 Pa CO2 partial pressure and fitted by a non-rectangular hyperbola. Both the initial slope of the curve and the light-saturated rate decreased in photoinhibited leaves, although the decrease in the latter was small. The convexity of the curve was also smaller in photoinhibited leaves. The capacities of ribulose-1,5-bisphosphate carboxylation ( V cmax) and electron transport ( J max) were estimated from the CO2-response curves. V cmax and J max decreased similarly with increasing photoinhibition. Energy partitioning in photosystem II (PSII) was estimated using chlorophyll fluorescence parameters. The fraction of energy that was consumed by photochemistry decreased with increasing photoinhibition. However, an increase in inactive PSII, decreasing energy partitioning to active PSII, relaxed the excitation pressure in PSII, and led to a reduction in the fraction of excess energy that was neither consumed by photochemistry nor dissipated as heat.  相似文献   

9.
Soybean ( Glycine max cv. Clark) was grown at both ambient (ca 350 μmol mol−1) and elevated (ca 700 μmol mol−1) CO2 concentration at 5 growth temperatures (constant day/night temperatures of 20, 25, 30, 35 and 40°C) for 17–22 days after sowing to determine the interaction between temperature and CO2 concentration on photosynthesis (measured as A, the rate of CO2 assimilation per unit leaf area) at both the single leaf and whole plant level. Single leaves of soybean demonstrated increasingly greater stimulation of A at elevated CO2 as temperature increased from 25 to 35°C (i.e. optimal growth rates). At 40°C, primary leaves failed to develop and plants eventually died. In contrast, for both whole plant A and total biomass production, increasing temperature resulted in less stimulation by elevated CO2 concentration. For whole plants, increased CO2 stimulated leaf area more as growth temperature increased. Differences between the response of A to elevated CO2 for single leaves and whole plants may be related to increased self-shading experienced by whole plants at elevated CO2 as temperature increased. Results from the present study suggest that self-shading could limit the response of CO2 assimilation rate and the growth response of soybean plants if temperature and CO2 increase concurrently, and illustrate that light may be an important consideration in predicting the relative stimulation of photosynthesis by elevated CO2 at the whole plant level.  相似文献   

10.
Plant responses to elevated CO2 can be modified by many environmental factors, but very little attention has been paid to the interaction between CO2 and changes in vapour pressure deficit (VPD). Thirty-day-old alfalfa plants ( Medicago sativa L. cv. Aragón), which were inoculated with Sinorhizobium meliloti 102F78 strain, were grown for 1 month in controlled environment chambers at 25/15°C, 14 h photoperiod, and 600 µmol m−2 s−1 photosynthetic photon flux (PPF), using a factorial combination of CO2 concentration (400 µmol mol−1 or 700 µmol mol−1) and vapour pressure deficit (0.48 kPa or 1.74 kPa, which corresponded to relative humidities of 85% and 45% at 25°C, respectively). Elevated CO2 strongly stimulated plant growth under high VPD conditions, but this beneficial effect was not observed under low VPD. Under low VPD, elevated CO2 also did not enhance plant photosynthesis, and plant water stress was greatest for plants grown at elevated CO2 and low VPD. Moreover, plants grown under elevated CO2 and low VPD had a lower leaf soluble protein and photosynthetic activity (photosynthetic rate and carboxylation efficiency) than plants grown under elevated CO2 and high VPD. Elevated CO2 significantly increased leaf adaxial and abaxial temperatures. Because the effects of elevated CO2 were dependent on vapour pressure deficit, VPD needs to be controlled in experiments studying the effect of elevated CO2 as well as considered in the extrapolations of results to a warmer, high-CO2 world.  相似文献   

11.
The functioning of the photosynthetic apparatus during leaf senescence was investigated in alstroemeria cut flowers by a combination of gas-exchange measurements and analysis of in vivo chlorophyll fluorescence. Chlorophyll loss in leaves of alstroemeria cut flowers is delayed by light and by a treatment of the cut flowers with gibberellic acid (GA3). The maximal photosynthesis of the leaves was approximately 6 μmol CO2 m−2 s−1 at I 350 μmol m−2 s−1 (PAR) which is relatively low for intact C3 leaves. Qualitatively the gas-exchange rates followed the decline in chlorophyll content for the various treatments, i.e. light and GA3-treatment delayed the decline in photosynthetic rates. However, when chlorophyll loss could not yet be observed in the leaves, photosynthetic rates were already strongly decreased. In vivo fluorescence measurements revealed that the decrease in CO2 uptake is (partly) due to a decreased electron flow through photosystem II. Furthermore, analysis of the fluorescence data showed a high nonphotochemical quenching under all experimental conditions, indicating that the consumption of reducing power in the Calvin cycle is very low. The chlorophyll, remaining after 9 days incubation of leaves with GA3 in the dark should be considered as a 'cosmetic' pigment without any function in the supply of assimilates to the flowers.  相似文献   

12.
Parameters related to leaf photosynthesis were evaluated in three genotypes of common bean ( Phaseolus vulgaris L.) with contrasting tolerance to Mn toxicity. Two short-term studies in solution culture were used to assess the effect of excess Mn on CO2 assimilation in mature and immature leaves. Mn toxicity decreased total chlorophyll content only in immature leaves, with a consequent reduction of leaf CO2 assimilation. Mature leaves that showed brown speckles characteristic of Mn toxicity, did not suffer any detriment in their capacity to assimilate CO2, at least in a 4-day experiment. Stomatal conductance and transpiration were not affected by the presence of high levels of Mn in leaf tissue. Lower stomatal conductance and transpiration rates were observed only in leaves with advanced chlorosis. Differences among genotypes were detected as increased chlorosis in the more sensitive genotype ZPV-292, followed by A-283 and less chlorosis in the tolerant genotype CALIMA. Since CO2 assimilation expressed per unit of chlorophyll was not different between high-Mn plants and control plants, we conclude that the negative effect of Mn toxicity on CO2 assimilation can be explained by a reduction in leaf chlorophyll content.  相似文献   

13.
The effect of fruit removal on gas exchange, water relations, chlorophyll and non-structural carbohydrate content of leaves from mature, field-grown plum trees ( Prunus domestica L. cv. Stanley) was determined over 2 consecutive growing seasons. Removal of fruits during stage II of fruit development decreased CO2 assimilation rate within 24 h from 12.6 to 8.5 μmol m-2 s-1 in 1986, and from 12.1 to 10.2 μmol m-2 s-1 in 1987. Depression of net photosynthesis persisted for at least 5 days and was greatest in the early afternoon. Recovery of the CO2 assimilation rate to pretreatment levels coincided in defruited trees with vegetative growth that was more than 5-fold that of fruiting trees in the first 6 weeks after fruit removal in 1986. Estimated photorespiration was similar in both fruiting and defruited trees. The stomatal contribution to the decrease of CO2 assimilation rate, calculated from assimilation/intercellular CO2 curves, ranged from 31 to 46%. Defruiting did not affect leaf water potential, but decreased leaf osmotic potential. Leaf levels of chlorophyll, fructose, glucose, sorbitol and sucrose were not affected by defruiting, whereas starch content increased up to 51% in leaves of defruited trees within 24 h after fruit removal. However, because of the small starch pool present in plum leaves (<1.9% dry weight) it is unlikely that starch accumulation was responsible for the observed decline in CO2 assimilation rate after fruit removal. The decrease of CO2 assimilation rate is discussed in relation to the hypothesis of assimilate demand regulating photosynthesis through a feedback mechanism.  相似文献   

14.
Diurnal regulation of photosynthesis in understory saplings   总被引:6,自引:1,他引:5  
Photosynthetic rates of plants grown in natural systems exhibit diurnal patterns often characterized by an afternoon decline, even when measured under constant light and temperature conditions. Since we thought changes in the carbohydrate status could cause this pattern through feedback from starch and sucrose synthesis, we studied the natural fluctuations in photosynthesis rates of plants grown at 36 and 56 Pa CO2 at a FACE (free-air-CO2-enrichment) research site. Light-saturated photosynthesis varied by 40% during the day and was independent of the light-limited quantum yield of photosynthesis, which varied little through the day. Photosynthesis did not correspond with xylem water potential or leaf carbohydrate build-up, but rather with diurnal changes in air vapor-pressure deficit and light. The afternoon decline in photosynthesis also corresponded with decreased stomatal conductance and decreased Rubisco carboxylation efficiency which in turn allowed leaf-airspace CO2 partial pressure to remain constant. Growth at elevated CO2 did not affect the afternoon decline in photosynthesis, but did stimulate early-morning photosynthesis rates relative to the rest of the day. Plants grown at 56 Pa CO2 had higher light-limited quantum yields than those at 36 Pa CO2 but, there was no growth–CO2 effect on quantum yield when measured at 2 kPa O2. Therefore, understory plants have a high light-limited quantum yield that does not vary through the day. Thus, the major diurnal changes in photosynthesis occur under light-saturated conditions which may help understory saplings maximize their sunfleck-use-efficiency.  相似文献   

15.
Relationship between photosystem II activity and CO2 fixation in leaves   总被引:9,自引:2,他引:7  
There is now potential to estimate photosystem II (PSII) activity in vivo from chlorophyll fluorescence measurements and thus gauge PSII activity per CO2 fixed. A measure of the quantum yield of photosystem II, ΦII (electron/photon absorbed by PSII), can be obtained in leaves under steady-state conditions in the light using a modulated fluorescence system. The rate of electron transport from PSII equals ΦII times incident light intensity times the fraction of incident light absorbed by PSII. In C4 plants, there is a linear relationship between PSII activity and CO2 fixation, since there are no other major sinks for electrons; thus measurements of quantum yield of PSII may be used to estimate rates of photosynthesis in C4 species. In C3 plants, both CO2 fixation and photorespiration are major sinks for electrons from PSII (a minimum of 4 electrons are required per CO2, or per O2 reacting with RuBP). The rates of PSII activity associated with photosynthesis in C3 plants, based on estimates of the rates of carboxylation (vo) and oxygenation (vo) at various levels of CO2 and O2, largely account for the PSII activity determined from fluorescence measurements. Thus, in C3 plants, the partitioning of electron flow between photosynthesis and photorespiration can be evaluated from analysis of fluorescence and CO2 fixation.  相似文献   

16.
The effect of Cu toxicity on photosynthetic function, chlorophyll and Ca2+ content of Cu-tolerant Silene compacta plants grown in nutrient solution was studied. Since, in plants grown under 8 μ M Cu, the chlorophyll and Ca2+ concentration as well as the photosystem II (PSII) photochemistry were increased, compared to the control, the development of an adaptive mechanism of the Cu-tolerant ecotype of S. compacta to 8 μ M Cu is suggested. Increased Cu tolerance of the S. compacta ecotype reflects modulation of the photosynthetic apparatus to optimize photosynthesis. However, exposure of plants to 160 μ M Cu resulted in a marked increase of the fraction of closed PSII centres and decreased quantum yield of PSII electron transport (ΦPSU) which was accompanied by a significant decline of relative quantum yield for O2 evolution (Aox/Apt). The concentration of chlorophyll and Ca2+ in leaves also decreased significantly under 160 μ M Cu treatment. Photochemical quenching (qp) displayed a reduction as a result of perturbation of the photosynthetic electron transfer chain, while non-photochemical quenching (qN) increased. High Cu treatment reduced photosynthetic productivity of S. compacta plants which can be attributed, in part, to pertubation of photosynthetic process and photosynthetic pigments as well as to Ca2+ loss.  相似文献   

17.
Single leaf photosynthetic rates and various leaf components of potato ( Solanum tuberosum L.) were studied 1–3 days after reciprocally transferring plants between the ambient and elevated growth CO2 treatments. Plants were raised from individual tuber sections in controlled environment chambers at either ambient (36 Pa) or elevated (72 Pa) CO2. One half of the plants in each growth CO2 treatment were transferred to the opposite CO2 treatment 34 days after sowing (DAS). Net photosynthesis (Pn) rates and various leaf components were then measured 34, 35 and 37 DAS at both 36 and 72 Pa CO2. Three-day means of single leaf Pn rates, leaf starch, glucose, initial and total Rubisco activity, Rubisco protein, chlorophyll ( a + b ), chlorophyll ( a/b ), α -amino N, and nitrate levels differed significantly in the continuous ambient and elevated CO2 treatments. Acclimation of single leaf Pn rates was partially to completely reversed 3 days after elevated CO2-grown plants were shifted to ambient CO2, whereas there was little evidence of photosynthetic acclimation 3 days after ambient CO2-grown plants were shifted to elevated CO2. In a four-way comparison of the 36, 72, 36 to 72 (shifted up) and 72 to 36 (shifted down) Pa CO2 treatments 37 DAS, leaf starch, soluble carbohydrates, Rubisco protein and nitrate were the only photosynthetic factors that differed significantly. Simple and multiple regression analyses suggested that negative changes of Pn in response to growth CO2 treatment were most closely correlated with increased leaf starch levels.  相似文献   

18.
In May, greenhouse tomato ( Lycopersicon esculentum Mill.) plants near the end of their winter production cycle were shown to exhibit a diurnal photosynthetic decrease. In order to identify the physiological causes of this decline, we compared in May the photosynthetic characteristics of the fifth youngest leaves from tomato plants of different ages corresponding to a winter production (11-month-old plants) and to a spring production (5-month-old plants). Although the leaves were developed simultaneously under the same environmental conditions, only the ones from the winter production showed a diurnal decline of the in situ CO2 assimilation rate (A CO 2). This was accompanied by a decline of internal CO2 and stomatal conductance and by large accumulations of hexoses. When stomatal closure was relieved under saturated CO2 concentration (5%) using a leaf-disc electrode system, the fifth leaves of both tomato cultures had similar maximum quantum efficiency of O2 evolution (Φmax), light-saturated rate of O2 evolution (Pmax) and quantum efficiency of photosystem II (PSII) photochemistry (ΔF/F'm, q P and q N ). We concluded that the diurnal decline of A CO 2 observed in winter tomato production during May originates from a stomatal limitation that is not dependent on environmental conditions but rather related to the developmental stage of the plants.  相似文献   

19.
The effect of exogenous application of the cytokinin meta -topolin [mT; N6-( meta -hydroxybenzyl)adenine] on artificial senescence of detached wheat leaves ( Triticum aestivum L. cv. Hereward) was studied and compared in leaves senescing under continuous light (100 µmol photons m−2 s−1) and darkness. Senescence-induced deterioration in structure and function of the photosynthetic apparatus was characterized by reduction in chlorophyll content, maximal efficiency of photosystem (PS) II photochemistry ( F v/ F m) and the rate of CO2 assimilation, by increase in the excitation pressure on PSII (1 −  q P) and a level of lipid peroxidation and by modifications in chloroplast ultrastructure. While in darkened leaf segments mT effectively slowed senescence-induced changes in all measured parameters, in light-senescing segments the effect of mT changed into opposite a few days after detachment. We observed an overexcitation of photosynthetic apparatus, as indicated by pronounced increases in the excitation pressure on PSII and in a deepoxidation state of xanthophyll cycle pigments, marked starch grain accumulation in chloroplasts and stimulation of lipid peroxidation in light-senescing leaf segments in mT. Possible mechanisms of acceleration of senescence-accompanying decrease in photosynthetic function and increase in lipid peroxidation during mT influence are discussed. We propose that protective mT action in darkness becomes damaging during artificial senescence in continuous light due to overexcitation of photosynthetic apparatus resulting in oxidative damage.  相似文献   

20.
Changes in photosystem II function during senescence of wheat leaves   总被引:6,自引:0,他引:6  
Analyses of chlorophyll fluorescence were undertaken to investigate the alterations in photosystem II (PSII) function during senescence of wheat ( Triticum aestivum L. cv. Shannong 229) leaves. Senescence resulted in a decrease in the apparent quantum yield of photosynthesis and the maximal CO2 assimilation capacity. Analyses of fluorescence quenching under steady‐state photosynthesis showed that senescence also resulted in a significant decrease in the efficiency of excitation energy capture by open PSII reaction centers (F'v/F'm) but only a slight decrease in the maximum efficiency of PSII photochemistry (F'v/F'm). At the same time, a significant increase in non‐photochemical quenching (qN) and a considerable decrease in photochemical quenching (qP) were observed in senescing leaves. Rapid fluorescence induction kinetics indicated a decrease in the rate of QA reduction and an increase in the proportion of QB‐non‐reducing PSII reaction during senescence. The decrease in both F'v/F'm and qP explained the decrease in the actual quantum yield of PSII electron transport ((φPSII). We suggest that the modifications in PSII function, which led to the down‐regulation of photosynthetic electron transport, would be in concert with the lower demand for ATP and NADPH in the Calvin cycle which is often inhibited in senescing leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号