首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 509 毫秒
1.
Hypohydration (decreased total body water) exacerbates the catabolic hormonal response to endurance exercise with unclear effects on anabolic hormones. Limited research exists that evaluates the effect of hypohydration on endocrine responses to resistance exercise; this work merits attention as the acute postexercise hormonal environment potently modulates resistance training adaptations. The purpose of this study was to examine the effect of hydration state on the endocrine and metabolic responses to resistance exercise. Seven healthy resistance-trained men (age = 23 +/- 4 yr, body mass = 87.8 +/- 6.8 kg, body fat = 11.5 +/- 5.2%) completed three identical resistance exercise bouts in different hydration states: euhydrated (EU), hypohydrated by approximately 2.5% body mass (HY25), and hypohydrated by approximately 5.0% body mass (HY50). Investigators manipulated hydration status via controlled water deprivation and exercise-heat stress. Cortisol, epinephrine, norepinephrine, testosterone, growth hormone, insulin-like growth factor-I, insulin, glucose, lactate, glycerol, and free fatty acids were measured during euhydrated rest, immediately preceding resistance exercise, immediately postexercise, and during 60 min of recovery. Body mass decreased 0.2 +/- 0.4, 2.4 +/- 0.4, and 4.8 +/- 0.4% during EU, HY25, and HY50, respectively, supported by humoral and urinary changes that clearly indicated subjects achieved three distinct hydration states. Hypohydration significantly 1) increased circulating concentrations of cortisol and norepinephrine, 2) attenuated the testosterone response to exercise, and 3) altered carbohydrate and lipid metabolism. These results suggest that hypohydration can modify the hormonal and metabolic response to resistance exercise, influencing the postexercise circulatory milieu.  相似文献   

2.
The purpose of this investigation was to observe the effect of hypohydration (-4% body mass) on lactate threshold (LAT) in 14 collegiate athletes (8 men and 6 women; age, 20.9 +/- 0.5 years; height, 171.1 +/- 2.4 cm; weight, 64.8 +/- 2.3 kg; V(O)2 max, 62.8 +/- 1.9 ml x kg(-1) x min(-1); percentage of fat, 11.4 +/- 1.5%). Subjects performed 2 randomized, discontinuous treadmill bouts at a dry bulb temperature (T(db)) of 22 degrees C to volitional exhaustion in 2 states of hydration, euhydrated and hypohydrated. The hypohydrated condition was achieved in a thermally neutral environment (T(db), 22 degrees C; humidity, 45%), with exercise conducted at a moderate intensity as defined by rating of perceived exertion (RPE, approximately 12) 12-16 hours before testing. On average, subjects decreased 3.9% of their body mass before the hypohydration test. Blood lactate, hematocrit, V(O)2, minute ventilation (VE), R value, heart rate (HR), and RPE were measured during each 4-minute stage of testing. In the hypohydrated condition, LAT occurred significantly earlier during exercise and at a lower absolute V(O)2, VE, respiratory exchange ratio, RPE, and blood lactate concentration. Also, the blood lactate concentration was significantly lower in the hypohydrated condition (6.7 +/- 0.8 mmol) compared with the euhydrated condition (10.2 +/- 0.9 mmol) at peak exercise. There were no differences in HR or percentage of maximum HR at LAT nor did plots of V(CO2):V(O)2 reveal differences in bicarbonate buffering during exercise between the 2 conditions. From these results, we speculate that hypohydration did not significantly alter cardiovascular function or buffering capacity but did cause LAT to occur at a lower absolute exercise intensity.  相似文献   

3.
This study examined the effects of hypohydration on plasma volume and red cell volume during rest in a comfortable (20 degrees C, 40% relative humidity) and exercise in a hot-dry (49 degrees C, 20% relative humidity) environment. A group of six male and six female volunteers [matched for maximal O2 uptake (VO2 max)] completed two test sessions following a 10-day heat acclimation program. One test session was completed when subjects were euhydrated and the other when subjects were hypohydrated (-5% from base-line body wt). The test sessions consisted of rest for 30 min in a 20 degrees C antechamber, followed by two 25-min bouts of treadmill walking (approximately 30% of VO2 max) in the heat, interspersed by 10 min of rest. No significant differences were found between the genders for the examined variables. At rest, hypohydration elicited a 5% decrease in plasma volume with less than 1% change in red cell volume. During exercise, plasma volume increased by 4% when subjects were euhydrated and decreased by 4% when subjects were hypohydrated. These percent changes in plasma volume values were significantly (P less than 0.01) different between the euhydration and hypohydration tests. Although red cell volume remained fairly constant during the euhydration test, these values were significantly (P less than 0.01) lower when hypohydrated during exercise. We conclude that hydration level alters vascular fluid shifts during exercise in a hot environment; hemodilution occurs when euhydrated and hemoconcentration when hypohydrated during light intensity exercise for this group of fit men and women.  相似文献   

4.
We investigated whether altered peripheral and/or corticospinal excitatory output and voluntary activation are implicated in hypohydration-induced reductions in muscle isometric and isokinetic (90°.s−1) strength. Nine male athletes completed two trials (hypohydrated, euhydrated) comprising 90 min cycling at 40°C, with body weight losses replaced in euhydrated trial. Peripheral nerve and transcranial magnetic stimulations were applied during voluntary contractions pre- and 40 min post-exercise to quantify voluntary activation and peripheral (M-wave) and corticospinal (motor evoked potential) evoked responses in m. vastus medialis. Both maximum isometric (−15.3±3.1 vs −5.4±3.5%) and isokinetic eccentric (−24.8±4.6 vs −7.3±7.2%) torque decreased to a greater extent in hypohydrated than euhydrated trials (p<0.05). Half relaxation time of the twitch evoked by peripheral nerve stimulation during maximal contractions increased after exercise in the hypohydrated (21.8±9.3%) but stayed constant in the euhydrated (1.6±10.7%; p = 0.017) condition. M-wave amplitude during maximum voluntary contraction increased after exercise in the heat in hypohydrated (10.7±18.0%) but decreased in euhydrated condition (−17.4±16.9%; p = 0.067). Neither peripheral nor cortical voluntary activation were significantly different between conditions. Motor evoked potential amplitude increased similarly in both conditions (hypohydrated: 25.7±28.5%; euhydrated: 52.9±33.5%) and was accompanied by lengthening of the cortical silent period in euhydrated but not hypohydrated condition (p = 0.019). Different neural strategies seem to be adopted to regulate neural drive in the two conditions, with increases in inhibitory input of either intracortical or corticospinal origin during the euhydrated trial. Such changes were absent in the hypohydrated condition, yet voluntary activation was similar to the euhydrated condition, perhaps due to smaller increases in excitatory drive rather than increased inhibition. Despite this maximal isometric and eccentric strength were impaired in the hypohydrated condition. The increase in peripheral muscle excitability evident in the hypohydrated condition was not sufficient to preserve performance in the face of reduced muscle contractility or impaired excitation-contraction coupling.  相似文献   

5.
The purpose of this investigation was to examine the effects of moderate hypohydration (HY) on skeletal muscle glycogen resynthesis after exhaustive exercise. On two occasions, eight males completed 2 h of intermittent cycle ergometer exercise (4 bouts of 17 min at 60% and 3 min at 80% of maximal O2 consumption/10 min rest) to reduce muscle glycogen concentrations (control values 711 +/- 41 mumol/g dry wt). During one trial, cycle exercise was followed by several hours of light upper body exercise in the heat without fluid replacement to induce HY (-5% body wt); in the second trial, sufficient water was ingested during the upper body exercise and heat exposure to maintain euhydration (EU). In both trials, 400 g of carbohydrate were ingested at the completion of exercise and followed by 15 h of rest while the desired hydration level was maintained. Muscle biopsy samples were obtained from the vastus lateralis immediately after intermittent cycle exercise (T1) and after 15 h of rest (T2). During the HY trial, the muscle water content was lower (P less than 0.05) at T1 and T2 (288 +/- 9 and 265 +/- 5 ml/100 g dry wt, respectively; NS) than during EU (313 +/- 8 and 301 +/- 4 ml/100 g dry wt, respectively; NS). Muscle glycogen concentration was not significantly different during EU and HY at T1 (200 +/- 35 vs. 251 +/- 50 mumol/g dry wt) or T2 (452 +/- 34 vs. 491 +/- 35 mumol/g dry wt). These data indicate that, despite reduced water content during the first 15 h after heavy exercise, skeletal muscle glycogen resynthesis is not impaired.  相似文献   

6.
Studies were conducted on 25 healthy male volunteers aged 20-25 years drawn randomly from the tropical regions of India. The subjects initially underwent an 8 day heat acclimatization schedule with 2 hours moderate work in a climatic chamber at 45 degrees C DB and 30% RH. These heat acclimatized subjects were then hypohydrated to varying levels of body weight deficits, i.e. 1.3 +/- 0.03, 2.3 +/- 0.04 and 3.3 +/- 0.04%, by a combination of water restriction and moderate exercise inside the hot chamber. After 2 hours rest in a thermoneutral room (25 +/- 1 degree C) the hypohydrated subjects were tested on a bicycle ergometer at a fixed submaximal work rate (40 W, 40 min) in a hot dry condition (45 degrees C DB, 30% RH, 34 degrees C WBGT). Significant increases in exercise heart rate and oral temperature were observed in hypohydrated subjects as compared to euhydration. Sweat rate increased with 1% and 2% hypohydration as compared to euhydration, but a significant decrease was observed with 3% hypohydration. Na+ & K+ concentrations in arm sweat increased with increase in the level of hypohydration. Oxygen consumption increased significantly only when hypohydration was about 2% or more. It appears that the increased physiological strain observed in tropical subjects working in heat with graded hypohydration is not solely due to reduced sweat rates.  相似文献   

7.
The purpose of this study was to examine the relationship between the muscle mass involved in exercise and post-exercise serum creatine kinase (CK) elevation. Twelve untrained college-aged men completed three isometric exercises: one arm flexion (OAF), two arm flexion (TAF) and one leg knee extension (OLE). These exercises were balanced over subjects and days and separated by two week intervals. Each exercise consisted of 40 maximal isometric concentrations lasting for 10 s with a 20 s rest between contractions. Relative increases in serum CK for OAF, TAF, and OLE were 181 +/- 70% (SD), 222 +/- 69% and 297 +/- 67%, respectively. An ANOVA using a latin square design for analysis of carry over effects showed that these CK increases were not significantly different (p greater than 0.05). However, the increase in serum CK following the first exercise (379 +/- 90%), regardless of what it was (OAF, TAF, or OLE), was significantly greater (p less than 0.05) than those following bouts 2 and 3 (155 +/- 29%; 167 +/- 54%). Regression analysis indicated that post-exercise serum CK elevation was not related to the amount of muscle mass involved in the exercise (r = 0.30, p greater than 0.05) nor to muscle tension developed (r = 0.28, p greater than 0.05). We conclude that post-exercise serum CK elevation is not necessarily related to the muscle mass involved in the exercise. Because each exercise involved the use of different muscle groups, factors outside the exercising muscle may contribute to post-exercise serum enzyme activity.  相似文献   

8.
While exercise heat stress and hydration status are known to independently influence heart rate variability (HRV), the combined effect of these physiological stressors is unknown. Thus, heat-acclimated subjects (n=5) performed exercise heat trials (40 °C, 20% relative humidity) in the euhydrated and hypohydrated state (3.9±0.7% body weight loss). During each trial, cardiac cycle R–R interval data were collected for 45 min at rest (pre-) and after (post-) completing 90 min of cycle ergometer exercise. Pre- and post-exercise RRI data were analyzed by Fast Fourier Power Spectral analysis to determine the high-frequency (HF), low-frequency (LF), very low-frequency (VLF), and total power (TP) components of HRV. Overall HRV was decreased by both hypohydration and exercise heat stress. Hypohydration reduced TP, LF, VLF, and LF:HF ratio (P<0.05) while HF was significantly higher. The change in both LF and HF power (pre- vs. post-exercise) were blunted during hypohydration compared to euhydration. These data suggest that dehydration alone positively influences the parasympathetic (HF) control of HRV, but the reduction in overall HRV and the blunted oscillations in LF and HF power following exercise heat stress support an overall deleterious effect of dehydration on autonomic cardiac stability.  相似文献   

9.
This study examined the effects of heat acclimation and subject gender on treadmill exercise in comfortable (20 degrees C, 40% rh), hot-dry (49 degrees C, 20% rh), and hot-wet (35 degrees C, 79% rh) environments while subjects were hypo- or euhydrated. Six male and six female subjects, matched for maximal aerobic power and percent body fat, completed two exercise tests in each environment both before and after a 10-day heat acclimation program. One exercise test was completed during euhydration and one during hypohydration (-5.0% from baseline body weight). In general, no significant (P greater than 0.05) differences were noted between men and women at the completion of exercise for rectal temperature (Tre), mean skin temperature (Tsk), or heat rate (HR) during any of the experimental conditions. Hypohydration generally increased Tre and HR values and decreased sweat rate values while not altering Tsk values. In the hypohydration experiments, heat acclimation significantly reduced Tre (0.19 degrees C) and HR (13 beats X min-1) values in the comfortable environment, but only HR values were reduced in hot-dry (21 beats X min-1) and hot-wet (21 beats X min-1) environments. The present findings indicated that men and women respond in a physiologically similar manner to hypohydration during exercise. They also indicated that for hypohydrated subjects heat acclimation decreased thermoregulatory and cardiovascular strain in a comfortable environment, but only cardiovascular strain decreased in hot environments.  相似文献   

10.
The purpose of this study was to determine the effect of leucine supplementation on indices of muscle damage following eccentric-based resistance exercise. In vitro, the amino acid leucine has been shown to reduce proteolysis and stimulate protein synthesis. Twenty-seven untrained males (height 178.6 ± 5.5 cm; body mass 77.7 ± 13.5 kg; age 21.3 ± 1.6 years) were randomly divided into three groups; leucine (L) (n = 10), placebo (P) (n = 9) and control (C) (n = 8). The two experimental groups (L and P) performed 100 depth jumps from 60 cm and six sets of ten repetitions of eccentric-only leg presses. Either leucine (250 mg/kg bm) or placebo was ingested 30 min before, during and immediately post-exercise and the morning of each recovery day following exercise. Muscle function was determined by peak force during an isometric squat and by jump height during a static jump at pre-exercise (PRE) and 24, 48, 72, and 96 h post-exercise (24, 48, 72, 96 h). Additionally, at these time points each group’s serum levels of creatine kinase (CK) and myoglobin (Mb) along with perceived feelings of muscle soreness were determined. None of the C group dependent variables was altered by the recurring testing procedures. Peak force was significantly decreased across all time points for both experimental groups. The L group experienced an attenuated drop in mean peak force across all post-exercise time points compared to the P group. Jump height significantly decreased from PRE for both the L and P group at 24 h and 48 h. CK and Mb was significantly elevated from PRE for both experimental groups at 24 h. Muscle soreness increased across all time points for the both the L and P group, and the L group experienced a significantly higher increase in mean muscle soreness post-exercise. Following exercise-induced muscle damage, high-dose leucine supplementation may help maintain force output during isometric contractions, however, not force output required for complex physical tasks thereby possibly limiting its ergogenic effectiveness.  相似文献   

11.
To determine the effects of acute heat stress, heat acclimation and hypohydration on the gastric emptying rate of water (W) during treadmill exercise, ten physically fit men ingested 400 ml of W before each of three 15 min bouts of exercise (treadmill, approximately 50% VO2max) on five separate occasions. Stomach contents were aspirated after each exercise bout. Before heat acclimation (ACC), experiments were performed in a neutral (18 degrees C), hot (49 degrees C) and warm (35 degrees C) environment. Subjects were euhydrated for all experiments before ACC. After ACC, the subjects completed two more experiments in the warm (35 degrees C) environment; one while euhydrated and a final one while hypohydrated (-5% of body weight). The volume of ingested water emptied into the intestines at the completion of each exercise bout was inversely correlated (P less than 0.01) with the rectal temperature (r = -0.76). The following new observations were made: 1) exercise in a hot (49 degrees C) environment impairs gastric emptying rate as compared with a neutral (18 degrees C) environment, 2) exercise in a warm (35 degrees C) environment does not significantly reduce gastric emptying before or after heat acclimation, but 3) exercise in a warm environment (35 degrees C) when hypohydrated reduces gastric emptying rate and stomach secretions. Reductions in gastric emptying appear to be related to the severity of the thermal strain induced by an exercise/heat stress.  相似文献   

12.
The purpose of this study was to determinewhether hypohydration reduces skeletal muscle endurance and whetherincreased H+ andPi might contribute to performancedegradation. Ten physically active volunteers (age 21-40 yr)performed supine single-leg, knee-extension exercise to exhaustion in a1.5-T whole body magnetic resonance spectroscopy (MRS) system wheneuhydrated and when hypohydrated (4% body wt).31P spectra were collected at arate of one per second at rest, exercise, and recovery, and weregrouped and averaged to represent 10-s intervals. The desired hydrationlevel was achieved by having the subjects perform 2-3 h ofexercise in a warm room (40°C dry bulb, 20% relative humidity)with or without fluid replacement 3-8 h before the experiment.Time to fatigue was reduced (P < 0.05) by 15% when the subjects were hypohydrated [213 ± 12 vs. 251 ± 15 (SE) s]. Muscle strength was generally notaffected by hypohydration. Muscle pH andPi/-ATP ratio were similarduring exercise and at exhaustion, regardless of hydration state. The time constants for phosphocreatine recovery were also similar betweentrials. In summary, moderate hypohydration reduces muscle endurance,and neither H+ norPi concentration appears to berelated to these reductions.

  相似文献   

13.
This study determined whether 1) exhaustion from heat strain occurs at the same body temperatures during exercise in the heat when subjects are euhydrated as when they are hypohydrated, 2) aerobic fitness influences the body temperature at which exhaustion from heat strain occurs, and 3) curves could be developed to estimate exhaustion rates at a given level of physiological strain. Seventeen heat-acclimated men [maximal oxygen uptake (VO2max) from 45 to 65 ml.kg-1.min-1] attempted two heat stress tests (HSTs): one when euhydrated and one when hypohydrated by 8% of total body water. The HSTs consisted of 180 min of rest and treadmill walking (45% VO2max) in a hot-dry (ambient temperature 49 degrees C, relative humidity 20%) environment. The required evaporative cooling (Ereq) exceeded the maximal evaporative cooling capacity of the environment (Emax); thus thermal equilibrium could not be achieved and 27 of 34 HSTs ended by exhaustion from heat strain. Our findings concerning exhaustion from heat strain are 1) hypohydration reduced the core temperature that could be tolerated; 2) aerobic fitness, per se, did not influence the magnitude of heat strain that could be tolerated; 3) curves can be developed to estimate exhaustion rates for a given level of physiological strain; and 4) exhaustion was rarely associated with a core temperature up to 38 degrees C, and it always occurred before a temperature of 40 degrees C was achieved. These findings are applicable to heat-acclimated individuals performing moderate-intensity exercise under conditions where Ereq approximates or exceeds Emax and who have high skin temperatures.  相似文献   

14.
Plasma volume (PV) at different levels of hypohydration was determined using radio-iodinated serum albumin-125 in 28 heat acclimated male volunteers in hot dry condition in a climatic chamber. The heat acclimated subjects were hypohydrated to varying degrees i.e. 1%, 2%, 3% and 4% body mass deficit by moderate work in hot conditions in a climatic chamber maintained at 45 degrees C dry bulb temperature and 30% relative humidity. A rehydration study was carried out in only those subjects who were hypohydrated to 3% and 4% body mass and they were brought back to a 2% level of hypohydration by giving a calculated amount of water. A significant decrease in PV was observed at 3% and 4% hypohydration only. The magnitude of the decrease was the same in both the groups and not related to the level of hypohydration. With partial rehydration in the 3% hypohydrated group PV was restored fully, while in the 4% hypohydrated group restoration was incomplete, indicating that at this hypohydration level some of the replenished water that entered in plasma may have moved to the intracellular compartment which may have contributed more at 4% hypohydration. It is suggested that with higher levels of thermal hypohydration significant reduction in the intracellular compartment may result in accentuated physiological strain during work in the heat.  相似文献   

15.
The serotonin system may contribute to reduced human performance when hypohydrated in the heat. This study determined whether branched-chain amino acid (BCAA) supplementation could sustain exercise and cognitive performance in the heat (40 degrees C dry bulb, 20% relative humidity) when hypohydrated by 4% of body mass. Seven heat-acclimated men completed two experimental trials, each consisting of one preparation and one test day. On day 1, a low-carbohydrate diet was eaten and subjects performed exhaustive cycling (morning) and treadmill exercise in the heat (afternoon) to lower muscle glycogen and achieve the desired hypohydration level. On day 2, subjects consumed an isocaloric BCAA and carbohydrate (BC) or carbohydrate-only drink during exercise. Experimental trials included 60 min of cycle ergometry (50% peak oxygen uptake) followed by a 30-min time trial in the heat. A cognitive test battery was completed before and after exercise, and blood samples were taken. BC produced a 2.5-fold increase (P < 0.05) in plasma BCAA and lowered (P < 0.05) the ratios of total tryptophan to BCAA and large neutral amino acid. Blood prolactin, glucose, lactate, and osmolality were not different between trials but increased over time. Cardiovascular and thermoregulatory data were also similar between trials. BC did not alter time-trial performance, cognitive performance, mood, perceived exertion, or perceived thermal comfort. We conclude that BCAA does not alter exercise or cognitive performance in the heat when subjects are hypohydrated.  相似文献   

16.
This investigation compared percent fat obtained via underwater weighing using measured and predicted residual lung volume (RLV) in euhydrated and hypohydrated collegiate wrestlers (N = 67). RLV was measured using O(2) rebreathing or O(2) dilution and predicted using 3 equations-Equation 1: (0.019 x height [cm]) + (0.0115 x age [years]) - 2.24; Equation 2: (0.017 x age [years]) + (0.06858 x height [in.]) - 3.477; and Equation 3: (0.0275 age [years]) + (0.0189 height [cm]) - 2.6139. Percent fat determined using RLV Equation 2 did not differ from the value obtained using measured RLV in the euhydrated (10.9 +/- 5.1 vs. 11.5 +/- 5.6% fat) or hypohydrated (10.8 +/- 5.1 vs. 12.3 +/- 5.6% fat) trials. All other percent fat values differed (p < 0.05) from the value obtained using measured RLV in euhydrated subjects. The use of RLV Equation 2 may be a practical alternative to measured RLV in determining percent fat in euhydrated and hypohydrated collegiate wrestlers.  相似文献   

17.
During exercise-heat stress, ad libitum drinking frequently fails to match sweat output, resulting in deleterious changes in hormonal, circulatory, thermoregulatory, and psychological status. This condition, known as voluntary dehydration, is largely based on perceived thirst. To examine the role of preexercise dehydration on thirst and drinking during exercise-heat stress, 10 healthy men (21 +/- 1 yr, 57 +/- 1 ml x kg(-1) x min(-1) maximal aerobic power) performed four randomized walking trials (90 min, 5.6 km/h, 5% grade) in the heat (33 degrees C, 56% relative humidity). Trials differed in preexercise hydration status [euhydrated (Eu) or hypohydrated to -3.8 +/- 0.2% baseline body weight (Hy)] and water intake during exercise [no water (NW) or water ad libitum (W)]. Blood samples taken preexercise and immediately postexercise were analyzed for hematocrit, hemoglobin, serum aldosterone, plasma osmolality (P(osm)), plasma vasopressin (P(AVP)), and plasma renin activity (PRA). Thirst was evaluated at similar times using a subjective nine-point scale. Subjects were thirstier before (6.65 +/- 0.65) and drank more during Hy+W (1.65 +/- 0.18 liters) than Eu+W (1.59 +/- 0.41 and 0.31 +/- 0.11 liters, respectively). Postexercise measures of P(osm) and P(AVP) were significantly greater during Hy+NW and plasma volume lower [Hy+NW = -5.5 +/- 1.4% vs. Hy+W = +1.0 +/- 2.5% (P = 0.059), Eu+NW = -0.7 +/- 0.6% (P < 0.05), Eu+W = +0.5 +/- 1.6% (P < 0.05)] than all other trials. Except for thirst and drinking, however, no Hy+W values differed from Eu+NW or Eu+W values. In conclusion, dehydration preceding low-intensity exercise in the heat magnifies thirst-driven drinking during exercise-heat stress. Such changes result in similar fluid regulatory hormonal responses and comparable modifications in plasma volume regardless of preexercise hydration state.  相似文献   

18.
Armstrong, Lawrence E., Carl M. Maresh, Catherine V. Gabaree, Jay R. Hoffman, Stavros A. Kavouras, Robert W. Kenefick, JohnW. Castellani, and Lynn E. Ahlquist. Thermal and circulatory responses during exercise: effects of hypohydration, dehydration, andwater intake. J. Appl. Physiol. 82(6):2028-2035, 1997.This investigation examined the distinct andinteractive effects of initial hydration state, exercise-induceddehydration, and water rehydration in a hot environment. On fouroccasions, 10 men performed a 90-min heat stress test (treadmillwalking at 5.6 km/h, 5% grade, 33°C, 56% relative humidity).These heat stress tests differed in pretest hydration [2euhydrated (EU) and 2 hypohydrated (HY) trials] and water intakeduring exercise [2 water ad libitum (W) and 2 no water (NW)trials]. HY + NW indicated greater physiological strain than allother trials (P < 0.05-0.001)in heart rate, plasma osmolality(Posm), sweat sensitivity(g / °C · min), and rectal temperature.Unexpectedly, final HY + W and EU + W responses for rectal temperature,heart rate, and Posm were similar,despite the initial 3.9 ± 0.2% hypohydration in HY + W. Weconcluded that differences in pretestPosm (295 ± 7 and 287 ± 5 mosmol/kg for HY + W and EU + W, respectively) resulted in greaterwater consumption (1.65 and 0.31 liter for HY + W and EU + W,respectively), no voluntary dehydration (0.9% body mass increase), andattenuated thermal and circulatory strain during HY + W.

  相似文献   

19.
Investigators have reported improved endurance performance and attenuated post-exercise muscle damage with carbohydrate-protein beverages (CHO+P) versus carbohydrate-only beverages (CHO). However, these benefits have been demonstrated only when CHO+P was administered in beverage-form, and exclusively in male subjects. Thus, the purposes of this study were to determine if an oral CHO+P gel improved endurance performance and post-exercise muscle damage compared to a CHO gel, and determine if responses were similar between genders. Thirteen cyclists (8 men, 5 women; VO(2)peak = 57.9 +/- 7.0 ml x kg(-1) x min(-1)) completed two timed cycle-trials to volitional exhaustion at 75% of VO(2)peak. At 15-minute intervals throughout these rides, subjects received CHO or CHO+P gels, which were matched for carbohydrate content (CHO = 0.15 g CHO x kg BW(-1); CHO+P = 0.15 g CHO + 0.038 g protein x kg BW(-1)). Trials were performed using a randomly counterbalanced, double-blind design. Subjects rode 13% longer (p < 0.05) when utilizing the CHO+P gel (116.6 +/- 28.5 minutes) versus the CHO gel (102.8 +/- 25.0 minutes). In addition, men (101.8 +/- 24.6; 114.8 +/- 26.2) and women (104.4 +/- 28.6; 119.6 +/- 34.9) responded similarly to the CHO and CHO+P trials, with no significant treatment-by-gender effect. Postexercise creatine kinease (CK) was not significantly different between treatments. However, CK increased significantly following exercise in the CHO trial (183 +/- 116; 267 +/- 214 U x L(-1)), but not the CHO+P trial (180 +/- 133; 222 +/- 141 U x L(-1)). Therefore, to prolong endurance performance and prevent increases in muscle damage, it is recommended that male and female cyclists consume CHO+P gels rather than CHO gels during and immediately following exercise.  相似文献   

20.
We examined the effects of active dehydration by exercise in a hot, humid environment on anaerobic muscular power using a test-retest (euhydrated and dehydrated) design. Seven subjects (age, 27.1 +/- 4.6 years; mass, 86.4 +/- 9.5 kg) performed upper and lower body Wingate anaerobic tests prior to and after a 1.5-hour recovery from a heat stress trial of treadmill exercise in a hot, humid environment (33.1 +/- 3.1C = 55.1 +/- 8.9% relative humidity) until a 3.1 +/- 0.3% body mass loss was achieved. Dehydration was confirmed by a significant body mass loss (P < 0.001), urine color increase (P = 0.004), and urine specific gravity increase (P = 0.041). Motivation ratings were not significantly different (P = 0.059), and fatigue severity was significantly (P = 0.009) increased 70% in the dehydrated compared to the euhydrated condition. Compared to the euhydrated condition, the dehydrated condition mean power was significantly (P = 0.014) decreased 7.17% in the upper body and 19.20% in the lower body. Compared to the euhydrated condition, the dehydrated condition peak power was significantly (P = 0.013) decreased 14.48% in the upper body and 18.36% in the lower body. No significant differences between the euhydrated and dehydrated conditions were found for decrease in power output (P = 0.219, power = 0.213). Our findings suggest that dehydration of 2.9% body mass decreases the ability to generate upper and lower body anaerobic power. Coaches and athletes must understand that sports performance requiring anaerobic strength and power can be impaired by inadequate hydration and may contribute to increased susceptibility to musculoskeletal injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号