首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small nucleolus-related bodies which occur in the nucleoplasm of "micronuclei" lacking nucleolar organizers have been studied by immunofluorescence microscopy. These bodies stained specifically with three different antibodies directed against proteins that are normally associated with the dense fibrillar component of functional nucleoli, but not with antibodies specific for certain proteins of the granular component or the fibrillar centers. Our data show that, in the absence of rRNA genes, the various constituent proteins characteristic of the dense fibrillar component spontaneously assemble into spherical entities but that the subsequent fusion of these bodies into larger structures is prevented in these micronuclei. The similarity between these nucleolus-related bodies of micronuclei and the prenucleolar bodies characteristic of early stages of nucleologenesis during mitotic telophase is discussed.  相似文献   

2.
The formation of daughter nuclei and the reformation of nucleolar structures was studied after microinjection of antibodies to RNA polymerase I into dividing cultured cells (PtK2). The fate of several nucleolar proteins representing the three main structural subcomponents of the nucleolus was examined by immunofluorescence and electron microscopy. The results show that the RNA polymerase I antibodies do not interfere with normal mitotic progression or the early steps of nucleologenesis, i.e., the aggregation of nucleolar material into prenucleolar bodies. However, they inhibit the telophasic coalescence of the prenucleolar bodies into the chromosomal nucleolar organizer regions, thus preventing the formation of new nucleoli. These prenucleolar bodies show a fibrillar organization that also compositionally resembles the dense fibrillar component of interphase nucleoli. We conclude that during normal nucleologenesis the dense fibrillar component forms from preformed entities around nucleolar organizer regions, and that this association seems to be dependent on the presence of an active form of RNA polymerase I.  相似文献   

3.
4.
AgNOR proteins from morphologically intact isolated nucleoli.   总被引:1,自引:0,他引:1  
M Vandelaer  M Thiry  G Goessens 《Life sciences》1999,64(22):2039-2047
AgNOR staining has been proposed as a useful tool for the diagnosis and prognosis of cancer. The AgNOR proteins, however, have not yet been clearly identified and characterized, possibly due to the partial character of the results obtained when studying the proteins extracted from altered nucleoli isolated by "standard" methods. In the present study, we analysed, on western blots, the AgNOR staining profiles obtained with protein extracts from Ehrlich tumor cell nucleoli isolated by a recent procedure that preserves the nucleolar ultrastructure. In addition to the well-known C23 and B23 protein bands, we readily detected an extra band at approximately 125 Kda. By immunoblotting, we showed that this polypeptide may be related to the nucleolar phosphoprotein pp135 evidenced in rat-cell nucleoli. By immunoelectron microscopy, we detected this protein in the dense fibrillar component and fibrillar center of the nucleoli as well as the coiled bodies. The distribution coincides with the cytochemical AgNOR staining pattern obtained at the ultrastructural level.  相似文献   

5.
6.
The dependence of nucleolar reformation on RNA synthesis that resumes in late anaphase or early telophase has been investigated in synchronously dividing Amoeba proteus. RNA synthesis was completely inhibited throughout all stages of mitosis and the early hours of interphase with high concentrations of actinomycin D. In such cells, nucleolus-like bodies that bind azure B and pyronin were apparent in the reformed nuclei. The bodies appear as dense, fibrous masses with loosely associated, finely fibrillar material. There are no characteristic granular regions in the reformed structures. It is suggested that the bodies probably represent mainly nucleolar protein and residual RNA which can bring about the reorganization of nucleoli in the absence of postmitotic RNA synthesis.  相似文献   

7.
8.
9.
10.
Scattering of the silver-stained proteins of nucleolar organizer regions (Ag-NOR proteins) was produced by actinomycin D in Ishikawa cells. Scattering of Ag-NOR proteins was found only in cells treated with actinomycin D and various other agents had no effect. Scattering was dose-dependent up to 10(-2) micrograms/ml of actinomycin D, but it was not found at higher concentrations that caused marked inhibition of total DNA and RNA synthesis. Actinomycin D (10(-2) micrograms/ml) caused the following changes: (i) nucleolar segregation and (ii) emergence of dense fibrillar bodies in the nucleoplasm. Ag-NOR proteins were observed on the fibrillar centers and surrounding fibrillar components in control nucleoli, on the fibrillar and amorphous zones in segregated nucleoli, and on the dense fibrillar bodies emerging in the nucleoplasm. The scattering of Ag-NOR proteins was due to the argyrophilic nature of the dense fibrillar bodies. Actinomycin D (10(-1) micrograms/ml) also caused similar morphological alterations in the nucleolus and nucleoplasm, but Ag-NOR proteins were observed only on nucleolar remnants.  相似文献   

11.
The nucleoli of dictyate-stage growing oocytes in rat ovaries were examined both with routine electron microscopy and electron microscopy after silver nitrate and ammoniacal silver nitrate (Ag-AS) staining. The nucleoli of the unilaminar follicular oocytes consist of twisted strands of dense fibrillar components, aggregates of granular components, and small fibrillar centers. After Ag-AS staining, silver grains are numerous on the dense fibrillar strands, fewer on the fibrillar centers, and very sporadic on the granular aggregates. The same stainability of three nucleolar components with the Ag-AS method was also confirmed in the nucleoli segregated by actinomycin D. During the transition of growing oocytes from bilaminar to plurilaminar follicle stage, the nucleolar dense fibrillar strands gradually conglomerate and are transformed into large and compact spherules. The stainability of dense fibrillar components with the Ag-AS method was lost along with this nucleolar transformation. These results may provide some new clues on the functional significance of Ag-AS-positive proteins in the nucleoli.  相似文献   

12.
We investigated distribution of the nucleolar phosphoprotein Nopp140 within mammalian cells, using immunofluorescence confocal microscopy and immunoelectron microscopy. During interphase, three-dimensional image reconstructions of confocal sections revealed that nucleolar labelling appeared as several tiny spheres organized in necklaces. Moreover, after an immunogold labelling procedure, gold particles were detected not only over the dense fibrillar component but also over the fibrillar centres of nucleoli in untreated and actinomycin D-treated cells. Labelling was also consistently present in Cajal bodies. After pulse-chase experiments with BrUTP, colocalization was more prominent after a 10- to 15-min chase than after a 5-min chase. During mitosis, confocal analysis indicated that Nopp140 organization was lost. The protein dispersed between and around the chromosomes in prophase. From prometaphase to telophase, it was also detected in numerous cytoplasmic nucleolus-derived foci. During telophase, it reappeared in the reforming nucleoli of daughter nuclei. This strongly suggests that Nopp140 could be a component implicated in the early steps of pre-rRNA processing.  相似文献   

13.
Fibrillarin: a new protein of the nucleolus identified by autoimmune sera   总被引:40,自引:0,他引:40  
Autoimmune serum from a patient with scleroderma was shown by indirect immunofluorescence to label nucleoli in a variety of cells tested including: rat kangaroo PtK2, Xenopus A6, 3T3, HeLa, and human peripheral blood lymphocytes. Immunoblot analysis of nucleolar proteins with the scleroderma antibody resulted in the labeling of a single protein band of 34 kD molecular weight with a pI of 8.5. Electron microscopic immunocytochemistry demonstrated that the protein recognized by the scleroderma antiserum was localized exclusively in the fibrillar region of the nucleolus which included both dense fibrillar and fibrillar center regions. Therefore, we have named this protein "fibrillarin". Fibrillarin was found on putative chromosomal nucleolar organizer regions (NORs) in metaphase and anaphase, and during telophase fibrillarin was found to be an early marker for the site of formation of the newly forming nucleolus. Double label indirect immunofluorescence and immunoelectron microscopy on normal, actinomycin D-segregated, and DRB-treated nucleoli showed that fibrillarin and nucleolar protein B23 were predominantly localized to the fibrillar and granular regions of the nucleolus, respectively. RNase A and DNase I digestion of cells in situ demonstrated that fibrillarin was partially removed by RNase and completely removed by DNase. These results suggest that fibrillarin is a widely occurring basic nonhistone nucleolar protein whose location and nuclease sensitivity may indicate some structural and/or functional role in the rDNA-containing dense fibrillar and fibrillar center regions of the nucleolus.  相似文献   

14.
The nucleolus is the site of ribosomal RNA synthesis, processing and ribosome maturation. Various small ribonucleoproteins also undergo maturation in the nucleolus, involving RNA modification and RNA-protein assembly. Such steps and other activities of small ribonucleoproteins also take place in Cajal (coiled) bodies. Events of ribosome biogenesis are found solely in the nucleolus, which is the final destination of small nucleolar RNAs after their traffic through Cajal bodies. However, nucleoli are just a stopping point in the intricate cellular traffic for small nuclear RNAs and other ribonucleoproteins.  相似文献   

15.
Bismuth staining of a nucleolar protein   总被引:1,自引:0,他引:1  
A major nucleolar protein in Chinese hamster ovary cells with a molecular weight (MW) of 100 kD has been found to stain selectively with the bismuth tartrate technique of Locke & Huie [19]. After glutaraldehyde fixation and bismuth staining of electrophoretic transfers of total nucleolar proteins separated by SDS-PAGE, a single band corresponding to the 100 kD protein is revealed. When the technique is applied to whole cells, small punctate regions of the nucleoli are strongly stained. At the ultrastructural level, bismuth selectively contrasts the fibrillar centers and the adjoining cords of the dense fibrillar component. The remainder of the dense fibrillar component is not stained. It is proposed that the high phosphorylation level of the 100 kD protein is responsible for its glutaraldehyde-insensitive bismuth staining. The concentration of this protein in certain localized regions of the nucleolus suggests that it plays a metabolic rather than a structural role.  相似文献   

16.
17.
18.
The reconstruction of the nucleolus after mitosis was analyzed by electron microscopy in cultured mammalian (L929) cells in which nucleolar RNA synthesis was inhibited for a 3 h period either after or before mitosis. When synchronized mitotic cells were plated into a concentration of actinomycin D sufficient to block nucleolar RNA synthesis preferentially, nucleoli were formed at telophase as usual. 3 h after mitosis, these nucleoli had fibrillar and particulate components and possessed the segregated appearance characteristic of nucleoli of actinomycin D-treated cells. Cells in which actinomycin D was present for the last 3 h preceding mitosis did not form nucleoli by 3 h after mitosis though small fibrillar prenucleolar bodies were detectable at this time. These bodies subsequently grew in size and eventually acquired a particulate component. It took about a full cell cycle before nucleoli of these cells were completely normal in appearance. Thus, nucleolar RNA synthesis after mitosis is not necessary for organization of nucleoli after mitosis. However, inhibition of nucleolar RNA synthesis before mitosis renders the cell incapable of forming nucleoli immediately after mitosis. If cells are permitted to resume RNA synthesis after mitosis, they eventually regain nucleoli of normal morphology.  相似文献   

19.
Nucleoli, the sites of rRNA synthesis, rRNA processing, and the assembly of ribosomes, are dynamic organelles that, in most cells, disperse and reform during mitosis. The mechanisms that regulate nucleolar formation are unknown as is the relationship between nucleolar morphology and the pathway of ribosome biogenesis. In this report we describe the in vitro formation of nucleolus-like particles (NLPs) from soluble extracts of nucleoli. NLPs, which reached sizes comparable to nucleoli (1-3 microns), were found to contain 40% of the nucleolar DNA, RNA, and protein. The ultrastructure of NLPs resembled that of a number of in vivo structures including compact nucleoli, prenucleolar bodies, and pseudonucleoli. The particles were composed of two morphologically distinct regions. The core resembled the dense fibrillar component (DFC) of nucleoli while the cortex resembled the granular component (GC) of nucleoli. The cortex of NLPs contained numerous 15-20 nm osmophilic granules that resembled the preribosomes found in the GC of nucleoli. The distribution of nucleolar proteins in NLPs also resembled that in nucleoli. BN46/51, a component of the GC of nucleoli, was restricted to the GC-like cortex of NLPs. A mAb that bound to the DFC of nucleoli, bound only to the DFC-like core of NLPs while a second mAb that bound to both the DFC and GC of nucleoli, bound to both the core and cortex of NLPs. Thus solubilized components of nucleoli can reassociate in vitro to produce particles that resemble nucleoli in their size, ultrastructure, and protein distribution.  相似文献   

20.
The intranucleolar distribution of phosphoproteins B23 and C23 was visualized simultaneously by post-embedding immunoelectron microscopy in HeLa cell nucleoli, using specific antibodies. The data show that proteins B23 and C23 co-localize to the same nucleolar compartments, i.e., the dense fibrillar component and the granular component. Neither of the two antibodies is significantly associated with the fibrillar centers in these cells, although the fibrillar centers appear positive after silver staining. These findings suggest that other unidentified components must be responsible for the silver staining observed in the fibrillar centers of interphase nucleoli. The results are discussed in the light of previously reported data obtained by preembedding immunolabeling techniques and by silver staining, which both suggested a localization of protein C23 inside the fibrillar centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号