首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 964 毫秒
1.
O Zak  P Aisen 《Biochemistry》1988,27(3):1075-1080
A wide variety of thermodynamic, kinetic, and spectroscopic studies have demonstrated differences between the two metal-binding sites of transferrin. In the present investigation, we have further assessed these differences with respect to the binding of gadolinium, evaluated by UV difference spectrophotometry, electron paramagnetic resonance (EPR) titration, EPR difference spectroscopy in conjunction with urea gel electrophoresis, and equilibrium dialysis. Combinations of these studies establish that only one site of the protein binds Gd(III) sufficiently firmly to be characterized. In order to reveal which of the two sites accepts Gd(III), we made use of monoferric transferrins preferentially loaded with Fe(III) at either site in EPR spectroscopic studies. Because of the overlap of signals, difference spectroscopy was required to distinguish resonances arising from Fe(III) and Gd(III) specifically complexed to the protein. When iron is bound to the C-terminal site, leaving the N-terminal site free for binding of gadolinium, the difference spectrum shows no evidence of specific binding. However, when iron is bound to the N-terminal site, the difference spectrum shows a resonance line at g' = 4.1 indicative of specific binding, thus implicating the C-terminal site in the binding of Gd(III). The effective stability constant for the binding of Gd(III) to this site of transferrin at pH 7.4 and ambient pCO2 is 6.8 X 10(6) M-1. At physiological pCO2, the formation of nonbinding carbonato complexes of Gd(III) precludes a substantial role for transferrin in the transport of the lanthanide in vivo.  相似文献   

2.
The binding of Gd(III) to rabbit IgG (immunoglobulin G) and the Fab (N-terminal half of heavy and light chain), (Bab')2 (N-terminal half of heavy and light chains joined by inter-chain disulphide bond), Fc (C-terminal half of heavy-chain dimer)and pFc' (C-terminal quarter of heavy-chain dimer) fragments was demonstrated by measurements of the enhancement of the solvent-water proton relaxation rates in the appropriate Gd(III) solutions. At pH 5.5 there are six specific Gd(III)-binding sites on the IgG. These six sites can be divided into two classes; two very 'tight' sites on the Fc fragment (Kd approx. 5 muM) and two weaker sites on each Fab region (Kd approx. 140 muM). Ca(II) does not apparently compete for these metal-binding sites. The metal-binding parameters for IgG can be explained as the sum of the metal binding to the isolated Fab and Fc fragments, suggesting that there is no apparent interaction between the Fab and Fc regions in the IgG molecule. The binding of Gd(III) to Fab and Fc fragments was also monitored by measuring changes in the electron-spin-resonance spectrum of Gd(III) in the presence of each fragment and also by monitoring the effects of Gd(III) on the protein fluorescence at 340 nm (excitation 295 nm). The fluorescence of Tb(III) solutions of 545 nm (excitation 295 nm) is enhanced slightly on addition of Fab or Fc.  相似文献   

3.
Investigations of metal-substituted human lactoferrins by fluorescence, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopy confirm the close similarity between lactoferrin and serum transferrin. As in the case of Fe(III)- and Cu(II)-transferrin, a significant quenching of apolactoferrin's intrinsic fluorescence is caused by the interaction of Fe(III), Cu(II), Cr(III), Mn(III), and Co(III) with specific metal binding sites. Laser excitation of these same metal-lactoferrins produces resonance Raman spectral features at ca. 1605, 1505, 1275, and 1175 cm-1. These bands are characteristic of tyrosinate coordination to the metal ions as has been observed previously for serum transferins and permit the principal absorption band (lambda max between 400 and 465 nm) in each of the metal-lactoferrins to be assigned to charge transfer between the metal ion and tyrosinate ligands. Furthermore, as in serum transferrin the two metal binding sites in lactoferrin can be distinguished by EPR spectroscopy, particularly with the Cr(III)-substituted protein. Only one of the two sites in lactoferrin allows displacement of Cr(III) by Fe(III). Lactoferrin is known to differ from serum transferrin in its enhanced affinity for iron. This is supported by kinetic studies which show that the rate of uptake of Fe(III) from Fe(III)--citrate is 10 times faster for apolactoferrin than for apotransferrin. Furthermore, the more pronounced conformational change which occurs upon metal binding to lactoferrin is corroborated by the production of additional EPR-detectable Cu(II) binding sites in Mn(III)-lactoferrin. The lower pH required for iron removal from lactoferrin causes some permanent change in the protein as judged by altered rates of Fe(III) uptake and altered EPR spectra in the presence of Cu(II). Thus, the common method of producing apolactoferrin by extensive dialysis against citric acid (pH 2) appears to have an adverse effect on the protein.  相似文献   

4.
The binding of gadolinium [Gd(III)] to a homogeneous rabbit anti-(type-III pneumococcal polysaccharide) IgG (immunoglobulin G) and its Fab (N-terminal half of heavy and light chain) and Fc (C-terminal half of heavy-chain dimer) fragments was demonstrated by measurements of solvent-water proton relaxation rates in the appropriate Gd(III) solutions. At pH 5.5 the binding of Gd(III) to the Fc fragment is much tighter (KD approx. 5 micronM) than binding to the Fab fragment (KD approx. 250 micronM). The binding of Gd(III) to the whole IgG molecule (KD approx. 4 micronM) is very similar to that for the Fc fragment alone. This specificity of binding to the Fc region allows the use of Gd(III) as a probe of the Fc conformation. The environment of the Gd(III) in the Fc region of whole IgG is not affected by the presence of octasaccharide derived by hydrolysis of type-III pneumococcal polysaccharide, but the corresponding 28-unit saccharide does cause detectable changes. The addition of 16-unit saccharide to anti-(SIII polysaccharide) IgG in the presence of Gd(III) does not change the solvent water proton relaxation rate, although aggregation does occur. The effects of the 28-unit saccharide may be explained therefore by a change in the tumbling time of the IgG. From a study of the effect of various antigen/antibody ratios, it is concluded that the 28-unit-saccharide-induced changes in the Gd(III) environment in the Fc region are caused by the specific geometrical structure of the antigen-antibody complexes formed, and not simply by occupancy of the combining sites on the antibody.  相似文献   

5.
The interaction of solvent water protons with the bound paramagnetic metal ions of beef heart cytochrome c oxidase has been examined. The observed proton relaxation rates of enzyme solutions had a negative temperature dependence, indicating a rapid exchange between solvent protons in the coordination sphere of the metal ions and bulk solvent. An analysis of the dependence of the proton relaxation rate on the observation frequency indicated that the correlation time, which modulates the interaction between solvent protons and the unpaired electrons on the metal ions, is due to the electron spin relaxation time of the heme irons of cytochrome c oxidase. This means that at least one of the hemes is exposed to solvent. The proton relaxation rate of the oxidized enzyme was found to be sensitive to changes in ionic strength and to changes in the spin states of the metal ions. Heme a3 was found to be relatively inaccessible to bulk solvent. Partial reduction of the enzyme caused a slight increase in the relaxation rate, which may be due to a change in the antiferromagnetic coupling between two of the bound paramagnetic centers. Further reduction resulted in a decreased relaxation rate, and the fully reduced enzyme was no longer sensitive to changes in ionic strength. The binding of cytochrome c to cytochrome c oxidase had little effect on the proton relaxation rates of oxidized cytochrome oxidase indicating that cytochrome c binding has little effect on solvent accessibility to the metal ion sites.  相似文献   

6.
The interactions of Pr(III) and Eu(III) with specifically nitrated derivatives of the basic bovine pancreatic trypsin inhibitor have been studied using optical spectroscopy and nuclear magnetic resonance (NMR) at 250 and 270 MHz. Stability constants for proton and metal binding to nitrotyrosines 10 and 21 determined optically are in good agreement with those from NMR. Observations of the Eu(III)-induced NMR shifts of the ring protons of nitrotyrosine 21 allowed calibration of the magnetic interactions for this binding site. The Pr(III)-induced shifts for several resolved nonexchangeable backbone proton resonances were compared with calculated shifts using the known x-ray structure. With several simplifying assumptions, the Pr(III)-induced shifts were used to assign one alpha-CH and five NH protons to compatible sets of backbone positions which are consistent with the known pH dependence and resistance to exchange with solvent D2O. Some of the more general aspects of lanthanide-induced shifts are discussed with reference to their use in proteins. Due to the complexities of the analysis of the shift data, the most straightforward use of this technique is in conjunction with the relaxation probe Gd(III) for measurement of intramolecular distances.  相似文献   

7.
The dependence on pH of the absorption and circular dichroic spectra of iron(III), cobalt(III) and copper(II) transferrins has been (re)investigated. In the alkaline region, the CD profiles of iron(III) and cobalt(III) transferrin are essentially pH independent up to pH 11; only for very high pH values (pH > 11) is breakdown of the cobalt(III) and iron(III) transferrin derivatives observed, without evidence of conformational rearrangements. By contrast, the CD profiles of copper transferrin show drastic changes in shape around pH 10; these spectral changes, which are fitted to a pKa of ~10.4, are interpreted in terms of a substantial rearrangement of the local environment of the copper ions at high pH. Although the CD spectra of copper transferrin at alkaline pH strictly resemble those observed upon addition of modifier anions, the mechanism of site destabilization in the two cases is different; at variance with the case of modifier anions, our results suggest that the high pH form of copper transferrin still contains the synergistic anion. A13C NMR experiment has confirmed this view. In the acidic region, iron(III) and cobalt(III) transferrins are stable down to pH ~6. For lower pH values progressive metal detachment is observed without evidence of conformational changes; around pH 4.5 most bound metals are released. In the case of the less stable copper-transferrin, metal removal from the specific binding sites is already complete around pH 6.0; in concomitance with release from the primary sites, binding of copper ions to secondary sites is observed. Additional information has been gained from CD experiments in the far UV. The pH dependent properties of iron(III), cobalt(III) and copper(II) transferrin are discussed in the frame of the present knowledge of transferrin chemistry, particular emphasis being attributed to the comparison between tripositive and bipositive metal derivatives.  相似文献   

8.
The boronic functionalities on the outer surface of the Gd(III) bis(m-boroxyphenylamide)DTPA complex (Gd(III)L) enable it to bind to fructosamine residues of oxygenated glycated human adult hemoglobin. The formation of the macromolecular adduct can be assessed by NMR spectroscopy via observation of the enhancement of the solvent water proton relaxation rate. Unexpectedly, a strong binding interaction was also observed for the oxygenated unglycated human adult hemoglobin, eventually displaying a much higher relaxation enhancement. From relaxation rate measurements it was found that two Gd(III)L complexes interact with one hemoglobin tetramer (KD = 1.0 x 10(-5) M and 4.6 x 10(-4) M, respectively), whereas no interaction has been observed with monomeric hemoproteins. A markedly higher affinity of the Gd(III)L complex has been observed for oxygenated and aquo-met human adult hemoglobin derivatives with respect to the corresponding deoxy derivative. Upon binding, a net change in the quaternary structure of hemoglobin has been assessed by monitoring the changes in the high-resolution 1H-NMR spectrum of the protein as well as in the Soret absorption band. On the basis of these observations and the 11B NMR results obtained with the diamagnetic La(III)L complex, we suggest that the interaction between the lanthanide complex and deoxygenated, oxygenated, and aquo-met derivatives of human adult hemoglobin takes place at the 2, 3-diphosphoglycerate (DPG) binding site, through the formation of N-->B coordinative bonds at His143beta and His2beta residues of different beta-chains. The stronger binding to the oxygenated form is then responsible for a shift of the allosteric equilibrium toward the high-affinity R-state. Accordingly, Gd(III)L affinity for oxygenated human fetal hemoglobin (lacking His143beta) is significantly lower than that observed for the unglycated human adult tetramer.  相似文献   

9.
M C Maurer  J J Sando  C M Grisham 《Biochemistry》1992,31(33):7714-7721
Water proton nuclear magnetic resonance (NMR) relaxation rates were used to identify metal sites on protein kinase C (PKC) isozymes alpha and beta using paramagnetic Gd3+ as a probe. The paramagnetic effect of Gd3+ on water proton relaxation was enhanced with PKC isozymes alpha and beta in the presence of diheptanoylphosphatidylcholine/1,2-dioleoyl-sn-glycerol (PC7/DO). The data are consistent with a single class of metal-binding sites on PKC beta and two classes of sites on PKC alpha: a single high-affinity site with a KD for Gd3+ of 0.2 microM and a larger class of sites with a lower affinity for Gd3+. Titration with Ca2+ abolished the observed enhancement of water proton relaxation by the PKC alpha.Gd3+ complex, consistent with displacement of Gd3+ by Ca2+. Titrations of the PKC alpha.Gd3+ complex with Co(NH3)4ATP, a substitution-inert analogue of ATP, caused a substantial decrease in the observed water proton relaxation enhancement, consistent with formation of a ternary enzyme.metal.substrate complex with a KPKC alpha.Gd.[CoATP] of 30-100 nM. Titration of the metal enzyme complex with a model peptide substrate derived from the pseudosubstrate sequence of PKC alpha caused a similar decrease in enhancement at stoichiometric concentrations consistent with the formation of a PKC alpha.Gd3+.peptide complex with a KPKC alpha.Gd.[peptide] of less than or equal to 13 nM. Titrations of the fully formed PKC alpha.Gd3+.peptide complex with Co(NH3)4ATP caused a further decrease in enhancement consistent with formation of a quaternary complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The metal binding sites of a gamma-carboxyglutamic acid-rich fragment derived from bovine prothrombin were examined using paramagnetic lanthanide ions to evaluate the role of gamma-carboxyglutamic acid resideus in metal binding. A gamma-carboxyglutamic acid-rich peptide, fragment 12-44, was isolated from a tryptic digest of prothrombin. Using 153Gd(III), fragment 12-44 was found to contain one high affinity metal binding site (KD = 0.55 microM) and four to six lower affinity metal binding sites (KD approximately 4 to 8 microM). The S-carboxymethyl derivative of fragment 12-44, in which the disulfide bond in fragment 12-44 was reduced and alkylated, contained no high affinity metal binding site and four or five lower affinity sites (KD = 8 microM). The effects of paramagnetic lanthanide ions on fragment 12-44 and its S-carboxymethyl derivative were studied by natural abundance 13C NMR spectroscopy. The 13C NMR spectrum of fragment 12-44 was recorded at 67.88 MHz and the resonances were assigned by comparison to the chemical shift of carbon resonances of amino acids and peptides previously studied. The proximity between bound metal ions and carbon atoms in fragment 12-44 was estimated using Gd(III), based upon the strategy that the magnitude of the change in the transverse relaxation rate of resonances of carbon nuclei induced by bound metal ions is related in part to the interatomic distances between bound metal and carbon nuclei. Titration of fragment 12-44 with Gd(III) resulted in the selective broadening of the gamma-carboxyl carbon, C gamma, C beta, and C alpha resonances of gamma-carboxyglutamic acid, and the C epsilon of the arginines. S-Carboxymethyl fragment 12-44, which lacked the high affinity metal binding site, showed markedly decreased perturbation of the C epsilon of the arginine residues upon titration with Gd(III). These studies indicate that gamma-carboxyglutamic acid residues in prothrombin fragment 12-44 participate in metal liganding. A high affinity metal binding site in fragment 12-44 is in close proximity of Arg 16 and Arg 25 and is stabilized by the disulfide bond. On the basis of these data, a model of the metal binding sites is proposed in which the high affinity site is composed of two gamma-carboxyglutamic acid residues which participate in intramolecular metal-dependent bridging of two regions of the polypeptide chain. The lower affinity metal binding sites, formed by single or paired adjacent gamma-carboxyglutamic acid residues, then may participate in intermolecular metal-dependent protein . protein or protein . membrane complex formation.  相似文献   

11.
Changes in the intrinsic fluorescence intensity of glutamine synthetase induced by lanthanide(III) ion binding demonstrate the existence of three types of sites for these ions. The sites are populated sequentially during titrations of the enzyme, and the first two have a stoichiometry of 1 per enzyme subunit. The number of water molecules coordinated to Eu(III) bound to the first site was determined by luminescence lifetime techniques to be 4.1 +/- 0.5. The hydration of Gd(III) bound to the same site was studied by magnetic field dependent water proton longitudinal relaxation rate measurements, and by water proton and deuteron relaxation measurements of one sample at single magnetic fields. The magnetic resonance techniques also yield a value of 4 for the hydration number.  相似文献   

12.
The interaction of aromatic donor molecules with manganese(III) protoporphyrin-apohorseradish peroxidase complex [Mn(III)HRP] was investigated by optical difference spectroscopy and relaxation rate measurements of 1H resonances of aromatic donor molecules (at 500 MHz). pH dependence of substrate proton resonance line-widths indicated that the binding was facilitated by protonation of an amino acid residue (with a pKa of 6.1), which is presumably distal histidine. Dissociation constants were evaluated from both optical difference spectroscopy and 1H-NMR relaxation measurements (pH 6.1). The dissociation constants of aromatic donor molecules were not affected by the presence of excess of I-, CN- and SCN-. From competitive binding studies it was shown that all these aromatic donor molecules bind to Mn(III)HRP at the same site, which is different from the binding site of I-, CN- and SCN-. Comparison of the dissociation constants between the different substrates suggests that hydrogen bonding of the donors with distal histidyl amino acid and hydrophobic interaction between the donors and active site contribute significantly towards the associating forces. Free energy, entropy and enthalpy changes associated with the Mn(III)HRP-substrate equilibrium have been evaluated. These thermodynamic parameters were found to be all negative. Distances of the substrate protons from the paramagnetic manganese ion of Mn(III)HRP were found to be in the range of 7.7 to 9.4 A. The Kd values, the thermodynamic parameters and the distances of the bound aromatic donor protons from metal center in the case of Mn(III)HRP were found to be very similar as in the case of native Fe(III)HRP.  相似文献   

13.
 The non-covalent interaction between human serum albumin (HSA) and DOTA-like Gd(III) complexes containing hydrophobic benzyloxymethyl (BOM) substituents has been thoroughly investigated by measuring the solvent proton relaxation rates of their aqueous solutions. The binding association constants (K A) to HSA are directly related to the number of hydrophobic substituents present on the surface of the complexes. Furthermore, an estimation of ΔH° and ΔS° has been obtained by the temperature dependence of K A. Assays performed with the competitor probes warfarin and ibuprofen established that the complexes interact with HSA through two nearly equivalent binding sites located in the subdomains IIA and IIIA of the protein. Strong relaxation enhancements, promoted by the formation of slowly tumbling paramagnetic adducts, have been measured at 20 MHz for complexes containing two and three hydrophobic substituents. The macromolecular adduct with the latter species has a relaxivity of 53.2±0.7 mM–1 s–1, which represents the highest value so far reported for a Gd(III) complex. The temperature dependence of the relaxivity for the paramagnetic adducts with HSA indicates long exchange lifetimes for the water molecules dipolarly interacting with the paramagnetic centre. This is likely to be related to the formation, upon hydrophobic interaction of the complexes with HSA, of a clathrate-like, second-coordination-sphere arrangement of water molecules. Besides affecting the dissociative pathway of the coordinated water molecule, this water arrangement may itself significantly contribute to enhancement of the bulk solvent relaxation rate. Received: 6 November 1995 / Accepted: 17 April 1996  相似文献   

14.
Apoconalbumin binds Mn(II) at two sites with association constants of K1 = 7 (+/- 1) X 10(4) and K2 = 0.4 (+/- 0.25) X 10(4) M-1. The binding is tighter in the presence of excess bicarbonate resulting in K1 = 1.8 (+/- 0.2) X 10(5) and K2 = 3 (+/- 2) X 10(4) M-1. The electron paramagnetic resonance spectrum (at both 9 and 35 GHz) of Mn(II) bound at the tight site reveals a rhombic distortion (lambda = E/D approximately equal to 0.25-0.31) in the protein ligand environment of the mental ion. An evaluation of the 1/pT1p, paramagnetic contribution to the longitudinal relaxation rate of solvent protons with Mn(II)-, Mn(III)-, and Fe(III)-derivatives of conalbumin revealed that the mental ion in each site of conalbumin is accessible to one water molecule. For Mn(II)-conalbumin and Mn(III)-conalbumin species, inner coordination sphere protons are rapidly exchanging with the bulk solvent, while slow exchange conditions prevail for Fe(III)-conalbumin.  相似文献   

15.
Human transferrin was labeled with 59Fe at one of its two metal-binding sites (designated A) at pH 6.0. 55Fe was then added to site B at pH 7.5. Both isotopes of iron were taken up in equal proportions by human reticulocytes. These experiments do not support the hypothesis that each binding site of transferrin has a different physiologic function.  相似文献   

16.
The binding of cations by parvalbumins was studied by the proton relaxation enhancement (PRE) method using the paramagnetic probes Gd(III) and Mn(II). Gd(III) appears as a specific probe of the primary sites CD and EF with the following binding parameters: n = 2, KdGd = 0.5 x 10(-11) M and epsilon b = 2.3. The low value of epsilon b is the result of a nearly complete dehydration of the protein bound ions. Competition experiments between Gd(III) and various diamagnetic cations show the following order of affinity for the EF and CD sites: Mg2+ less than Zn2+ less than Sr2+ less than Ca2+ less than Cd2+ less than La3+ less than or equal to Gd3+. Mn 2+ is a specific probe of a secondary site with the following binding parameters: n = 1, KdMn = 0.6 x 10(-3) M and epsilon b = 17. The high value of epsilon b suggests that the protein bound Mn(II) has retained most of its hydration shell. Competition experiments between (Mn(II) and different cations show similar affinities for this site: Ca2+ less than or equal to Mg2+ less than or equal to Cd2+ less than or equal to Mn2+. This secondary site is located near the EF primary site.  相似文献   

17.
The substitution of trivalent lanthanide ions for Ca(II) in the Ca(II)-DEPENDENT ACTIVATION OF BOVINE Factor X by the coagulant protein of Russell's viper venom was studied at pH 6.8. Factor X contains two high affinity metal binding sites which bind Gd(III), Sm(III), and Yb(III) with a Kd of about 4 X 10-7 M and four to six lower affinity metal binding sites which bind Gd(III), Sm(III) with a Kd of about 1.5 X 10-5M. In comparison, 1 mol of Factor X binds 2 mol of Ca(II) with a Kd of 3 X 10-4M and weakly binds many additional Ca(II) ions. No binding of Gd(III) to the venom protein was observed. Dy(III), Yb(III), Tb(III), Gd(III), Eu(III), La(III), AND Nd(III) cannot substitute for Ca(II) in the Ca(II)-dependent activation of Factor X by the venom protein at pH 6.8. Kinetic data consistent with the models of competitive inhibition of Ca(II) by Nd(III) yielded a Ki of 1 to 4 X 10-6M. The substitution of lanthanide ions for Ca(II) to promote protein complex formation of Factor X-metal-venom protein without the activation of Factor X facilitated the purification of the coagulant protein from crude venom by affinity chromatography. Using a column containing Factor X covalently bound to agarose which was equilibrated in 10 mM Nd(III), Tb(III), Gd(III), or La(III), the coagulant protein was purified 10-fold in 40% yield from crude venom and migrated as a single band on gel electrophoresis in sodium dodecyl sulfate. These data suggest that lanthanide ions complete with Ca(II) for the metal binding sites of Factor X and facilitate the formation of a nonproductive ternary complex of venom protein-Factor X-metal. Tb(III) fluorescence, with emission maxima at 490 and 545 nm, is enhanced 10,000-fold in the presence of Factor X. The study of the participation of an energy donor intrinsic to Factor X in energy transfer to Tb(III) may be useful in the characterization of the metal binding sites of Factor X.  相似文献   

18.
Reticulocyte binding of Fe(III)_-transferrin and transferrin complexes with other metal ions have been compared by different investigators. The functional relevance of this comparison is not clear, therefore transferrin complexes with Fe(III), Cu(II), Mn(II) and Zn(II) have been studied further by DEAE-cellulose chromatography and by measurement of transferrin and metal uptakes by rabbit reticulocytes.Human Fe-transferrin behaved as a weaker anion than apotransferrin during DEAE-cellulose chromatography; since Fe-transferrin has a higher negative charge than apotransferrin and behaves a as stronger anion in electrophoretic systems, the chromatographic result was the opposite of that anticipated. The lower affinity of human Fe-transferrin for DEAE-cellulose is probably caused by a redistribution of charged groups on the surface of transferrin molecules when Fe(III) ions are bound and is therefore considered to be dependent on molecular conformation. Apotransferrin and divalent metal-transferrin complexes were found to have nearly equal affinities for DEAE-cellulose, thus the effect on surface charge of human transferrin molecules induced by binding Fe(III) appeared to be limited to that metal ion.Iron uptake by reticulocytes was associated with increased binding of transferrin to the cell surface: uptake of divalent metals occured without a concomitant increase in transferrin uptake or evidence of a specific metal-transfer process. Cu-transferrin was rapidly dissociated during incubation with cells.The effect of Fe(III)_binding on human transferrin molecules was to alter the molecular affinity for charged surfaces, namely DEAE-cellulose and reticulocyte membranes. This was less apparent with rabbit transferrin. Transferrin complexes with divalent metals behaved as apotransferrin in the process of association with reticulocytes.  相似文献   

19.
E M Stephens  C M Grisham 《Biochemistry》1979,18(22):4876-4885
The interactions of gadolinium ion, lithium, and two substrate analogues, beta,gamma-imido-ATP (AMP-PNP) and tridentate CrATP, with the calcium ion transport adenosine triphosphatase (Ca2+-ATPase) of rabbit muscle sarcoplasmic reticulum have been examined by using 7Li+ NMR, water proton NMR, and Gd3+ EPR studies. Steady-state phosphorylation studies indicate that Gd3+ binds to the Ca2+ activator sites on the enzyme with an affinity which is approximately 10 times greater than that of Ca2+. 7Li+, which activates the Ca2+-ATPase in place of K+, has been found to be a suitable nucleus for probing the active sites of monovalent cation-requiring enzymes. 7Li+ nuclear relaxation studies demonstrate that the binding of Gd3+ ion to the two Ca2+ sites on Ca2+-ATPase increases the longitudinal relaxation rate (1/T1) of enzyme-bound Li+. The increase in 1/T1 was not observed in the absence of enzyme, indicating that the ATPase enhances the parmagnetic effect of Gd3+ on 1/T1 of 7Li+. Water proton relaxation studies also show that the ATPase binds Gd3+ at two tight-binding sites. Titrations of Gd3+ solutions with Ca2+-ATPase indicate that the tighter of the two Gd3+-binding sites (site 1) provides a ghigher enhancement of water relaxation than the other, weaker Gd3+ site (site 2) and also indicate that the average of the enhancements at the two sites is 7.4. These data, together with a titration of the ATPase with Gd3+ ion, yield enhancements, epsilonB, of 9.4 at site 1 and 5.4 at site 2. Analysis of the frequency dependence of 1/T1 of water indicates that the electron spin relaxation taus of Gd3+ is unusually long (2 X 10(-9) s) and suggests that the Ca2+-binding sites on the ATPase experience a reduced accessiblity of solvent water. This may indicate that the Ca2+ sites on the Ca2+-ATPase are buried or occluded within a cleft or channel in the enzyme. The analysis of the frequency dependence is also consistent with three exchangeable water protons on Gd3+ at site 1 and two fast exchanging water protons at site 2. Addition of the nonhydrolyzing substrate analogues, AMP-PNP and tridenate CrATP, to the enzyme-Gd3+ complex results in a decrease in the observed enhancement, with little change in the dipolar correlation time for Gd3+, consistent with a substrate-induced decrease in the number of fast-exchanging water protons on enzyme-bound Gd3+. From the effect of Gd3+ on 1/T1 of enzyme-bound Li+, Gd3+-Li+ separations of 7.0 and 9.1 A are calculated. On the assumption of a single Li+ site on the enzyme, these distances set an upper limit on the separation between Ca2+ sites on the enzyme of 16.1 A.  相似文献   

20.
N V Blough  B M Hoffman 《Biochemistry》1984,23(13):2875-2882
In mixed-metal [Mn,Fe] hybrid hemoglobins (Hb), the two chains of a single type, alpha or beta, are substituted with manganese protoporphyrin IX, which does not bind CO in either the Mn(II) or Mn(III) valency states. Thus, CO binding by the two ferrous subunits of a hybrid with Mn of either valency represents a simplified two-step Hb ligation process in which ligands bind to a single-chain type. Considering the [Mn(II),Fe(II)] hybrids, which are deoxy T-state analogues, at pH 6.6 both types bind CO with low affinity (alpha-Fe, 0.38 mmHg; beta-Fe, 0.71 mmHg) and noncooperatively (Hill coefficient n = 1). At elevated pH, both exhibit an increase in affinity (Bohr effect) and strong cooperativity, with the alpha-Fe hybrid having a higher degree of cooperativity (n approximately equal to 1.6) than beta-Fe (approximately equal to 1.3) at pH 9.0. The CO association constants for the Hb ligation routes in which the first two ligands bind to the same chain type are obtained from these measurements, and their pH dependence provides estimates of the proton release at each step. Through studies of CO on- and off-rates, the [Mn(III),Fe(II)] hybrids are used to obtain the pH dependence of the association constants for binding the fourth CO to the individual Hb chains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号