首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Objective: Urate forms a coordination complex with Fe3+ which does not support electron transport. The only enzymatic source of urate is xanthine oxidoreductase. If a major purpose of xanthine oxidoreductase is the production of urate to function as an iron chelator and antioxidant, a system for coupling the activity of this enzyme to the availability of catalytically-active metal would be required. We tested the hypothesis that there is an association between iron availability and urate production in healthy humans by correlating serum concentrations of ferritin with uric acid levels.

Materials and methods: The study population included 4932 females and 4794 males in the National Health and Nutrition Examination Survey III. They were 20 years of age or older and in good health.

Results: Serum concentrations of ferritin correlated positively with uric acid levels in healthy individuals (R2=0.41, p<0.001). This association was independent of an effect of gender, age, race/ethnic group, body mass, and alcohol consumption.

Conclusions: The relationship between serum ferritin and uric acid predicts hyperuricemia and gout in groups with iron accumulation. This elevation in the production of uric acid with increased concentrations of iron could possibly reflect a response of the host to diminish the oxidative stress presented by available metal as the uric acid assumes the empty or loosely bound coordination sites of the iron to diminish electron transport and subsequent oxidant generation.  相似文献   

2.
The iron chelator deferoxamine has been reported to inhibit both xanthine oxidase (XO) and xanthine dehydrogenase activity, but the relationship of this effect to the availability of iron in the cellular and tissue environment remains unexplored. XO and total xanthine oxidoreductase activity in cultured V79 cells was increased with exposure to ferric ammonium sulfate and inhibited by deferoxamine. Lung XO and total xanthine oxidoreductase activities were reduced in rats fed an iron-depleted diet and increased in rats supplemented with iron, without change in the ratio of XO to total oxidoreductase. Intratracheal injection of an iron salt or silica-iron, but not aluminum salts or silica-zinc, significantly increased rat lung XO and total xanthine oxidoreductase activities, immunoreactive xanthine oxidoreductase, and the concentration of urate in bronchoalveolar fluid. These results suggest the possibility that the production of uric acid, a major chelator of iron in extracellular fluid, is directly influenced by iron-mediated regulation of the expression and/or activity of its enzymatic source, xanthine oxidase.  相似文献   

3.
Xanthine oxidase is able to mobilize iron from ferritin. This mobilization can be blocked by 70% by superoxide dismutase, indicating that part of its action is mediated by superoxide (O2-). Uric acid induced the release of ferritin iron at concentrations normally found in serum. The O2(-)-independent mobilization of ferritin iron by xanthine oxidase cannot be attributed to uric acid, because uricase did not influence the O2(-)-independent part and acetaldehyde, a substrate for xanthine oxidase, also revealed an O2(-)-independent part, although no uric acid was produced. Presumably the amount of uric acid produced by xanthine oxidase and xanthine is insufficient to release a measurable amount of iron from ferritin. The liberation of iron from ferritin by xanthine oxidase has important consequences in ischaemia and inflammation. In these circumstances xanthine oxidase, formed from xanthine dehydrogenase, will stimulate the formation of a non-protein-bound iron pool, and the O2(-)-produced by xanthine oxidase, or granulocytes, will be converted by 'free' iron into much more highly toxic oxygen species such as hydroxyl radicals (OH.), exacerbating the tissue damage.  相似文献   

4.
1. Kinetic properties of xanthine:NAD+ oxidoreductase from liver of two uricotelic species of vertebrates (hen Gallus gallus and snake Natrix natrix) are compared. 2. Hen enzyme is saturated by hypoxanthine and xanthine at higher concentrations than the snake enzyme. For both species the enzyme-saturating concentration and hydroxylation rate of hypoxanthine are higher than those of xanthine, and the rate of uric acid production in the hypoxanthine----xanthine----uric acid reaction sequence is independent of the initial hypoxanthine concentration. 3. Km's for xanthine are the same, but Km for NAD+ of the hen enzyme is approximately 5-fold lower. The enzyme from both species is inhibited by NADH only slightly and at high non-physiological concentrations.  相似文献   

5.
Tumor lysis syndrome (TLS) is a serious complication in patients with hematological malignancies. Massive lysis of tumor cells can lead to hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcaemia. These metabolic disturbances may result in renal failure, because of precipitation of uric acid crystals and calcium phosphate salts in the kidney. The standard prophylaxis or treatment of hyperuricemia consists of decreasing uric acid production with allopurinol and facilitating its excretion by urinary alkalinization and hyperhydration. By inhibiting the enzyme xanthine oxidase, allopurinol blocks the conversion of hypoxanthine and xanthine into uric acid. An alternative treatment is urate oxidase which oxidates uric acid into allantoin. Allantoin is 5–10 times more soluble than uric acid and is therefore excreted easily. In several clinical trials rasburicase, the recombinant form of urate oxidase, has shown to be very effective in preventing and treating hyperuricemia. Rasburicase, in contrast with the non‐recombinant form of urate oxidase uricozyme, is associated with a low incidence of hypersensitivity reactions. In addition to the demonstrated clinical benefit, rasburicase also proved to be a cost‐effective option in the management of hyperuricemia.  相似文献   

6.
Tumor lysis syndrome (TLS) is a serious complication in patients with hematological malignancies. Massive lysis of tumor cells can lead to hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcaemia. These metabolic disturbances may result in renal failure, because of precipitation of uric acid crystals and calcium phosphate salts in the kidney. The standard prophylaxis or treatment of hyperuricemia consists of decreasing uric acid production with allopurinol and facilitating its excretion by urinary alkalinization and hyperhydration. By inhibiting the enzyme xanthine oxidase, allopurinol blocks the conversion of hypoxanthine and xanthine into uric acid. An alternative treatment is urate oxidase which oxidates uric acid into allantoin. Allantoin is 5-10 times more soluble than uric acid and is therefore excreted easily. In several clinical trials rasburicase, the recombinant form of urate oxidase, has shown to be very effective in preventing and treating hyperuricemia. Rasburicase, in contrast with the non-recombinant form of urate oxidase uricozyme, is associated with a low incidence of hypersensitivity reactions. In addition to the demonstrated clinical benefit, rasburicase also proved to be a cost-effective option in the management of hyperuricemia.  相似文献   

7.
Down syndrome (DS, trisomy 21) is the leading cause of chromosomal-related intellectual disability. At an early age, adults with DS develop with the neuropathological hallmarks of Alzheimer’s disease, associated with a chronic oxidative stress. To investigate if non-protein bound iron (NPBI) can contribute to building up a pro-oxidative microenvironment, we evaluated NPBI in both plasma and erythrocytes from DS and age-matched controls, together with in vivo markers of lipid peroxidation (F2-isoprostanes, F2-dihomo-isoprostanes, F4-neuroprostanes) and in vitro reactive oxygen species (ROS) formation in erythrocytes. The serum iron panel and uric acid were also measured. Second, we explored possible correlation between NPBI, lipid peroxidation and cognitive performance. Here, we report NPBI increase in DS, which correlates with increased serum ferritin and uric acid. High levels of lipid peroxidation markers and intraerythrocyte ROS formations were also reported. Furthermore, the scores of Raven’s Colored Progressive Matrices (RCPM) test, performed as a measure of current cognitive function, are inversely related to NPBI, serum uric acid, and ferritin. Likewise, ROS production, F2-isoprostanes, and F4-neuroprostanes were also inversely related to cognitive performance, whereas serum transferrin positively correlated to RCPM scores. Our data reveal that increased availability of free redox-active iron, associated with enhanced lipid peroxidation, may be involved in neurodegeneration and cognitive decline in DS. In this respect, we propose chelation therapy as a potential preventive/therapeutic tool in DS.  相似文献   

8.
The O2-utilizing (type O, oxidase) form of xanthine oxidoreductase is primarily responsible for its ferroxidase activity. This form of xanthine oxidoreductase has 1000 times the ferroxidase activity of the serum ferroxidase caeruloplasmin. It has the ability to catalyse the oxidative incorporation of iron into transferrin at very low Fe2+ and O2 concentrations. Furthermore, the pH optimum of the ferroxidase activity of the enzyme is compatible with the conditions of pH that normally exist in the intestinal mucosa, where it has been proposed that xanthine oxidoreductase may facilitate the absorption of ionic iron. Modification of the molybdenum (Mb) centres of the enzyme in vitro by treatment with cyanide, methanol or allopurinol completely abolishes its ferroxidase activity. The feeding of dietary tungsten to rats, which prevents the incorporation of molybdenum into newly synthesized intestinal xanthine oxidoreductase, results in the progressive loss of the ferroxidase activity of intestinal-mucosa homogenates. Removal of the flavin centres from the enzyme also results in the complete loss of ferroxidase activity; however, the ferroxidase activity of the flavin-free form of the enzyme can be restored with artificial electron acceptors that interact with the molybdenum or non-haem iron centres. The presence of superoxide dismutase or catalase in the assay system results in little inhibition of the ferroxidase activity of xanthine oxidoreductase.  相似文献   

9.
The course of the reaction sequence hypoxanthine leads to xanthine leads to uric acid, catalysed by the NAD+-dependent activity of xanthine oxidoreductase, was investigated under conditions either of immediate oxidation of the NADH formed or of NADH accumulation. The enzymic preparation was obtained from rat liver, and purified 75-fold (as compared with the 25000 g supernatant) on a 5'-AMP-Sepharose 4B column; in this preparation the NAD+-dependent activity accounted for 100% of total xanthine oxidoreductase activity. A spectrophotometric method was developed for continuous measurements of changes in the concentrations of the three purines involved. The time course as well as the effects of the concentrations of enzyme and of hypoxanthine were examined. NADH produced by the enzyme lowered its activity by 50%, resulting in xanthine accumulation and in decreases of uric acid formation and of hypoxanthine utilization. The inhibition of the Xanthine oxidoreductase NAD+-dependent activity by NADH is discussed as a possible factor in the regulation of IMP biosynthesis by the 'de novo' pathway or (from unchanged hypoxanthine) by ther salvage pathway.  相似文献   

10.
In order to evaluate the safety, pharmacological properties, and urate‐lowering efficacy of febuxostat, a non‐purine, selective inhibitor of xanthine oxidase, a Phase 1, 2‐week, multiple‐dose, placebo‐controlled, dose‐escalation study was conducted in 154 healthy adults of both sexes. Daily febuxostat doses in the range 10 mg to 120 mg resulted in proportional mean serum urate reductions ranging from 25% to 70% and in proportional increases in maximum febuxostat plasma concentrations and area under plasma concentration versus time curves. Accompanying the hypouricemic effect were increases in serum xanthine concentrations, decreases in urinary uric acid excretion, and increases in urinary xanthine and hypoxanthine excretion, confirming inhibition of xanthine oxidase activity by febuxostat. Hepatic conjugation and oxidative metabolism were the major pathways of elimination of febuxostat from the body, and renal elimination did not appear to play a significant role. Although not uncommon, adverse events were mild and self‐limited, and no deaths or serious adverse events were observed. Febuxostat is a safe and potent hypouricemic agent in healthy humans.  相似文献   

11.
Considerable evidence suggests that the release of iron from ferritin is a reductive process. A role in this process has been proposed for two hepatic enzymes, namely xanthine oxidoreductase and an NADH oxidoreductase. The abilities of xanthine and NADH to serve as a source of reducing power for the enzyme-mediated release of ferritin iron (ferrireductase activity) were compared with turkey liver and rat liver homogenates. The maximal velocity (Vmax.) for the reaction with NADH was 50 times greater than with xanthine; however, the substrate concentration required to achieve half-maximal velocity (Km) was 1000 times less with xanthine than with NADH. NADPH could be substituted for NADH with little loss in activity. Dicoumarol did not inhibit the reaction with NADH or NADPH, demonstrating that the ferrireductase activity with those substrates was not the result of the liver enzyme 'DT-diaphorase' [NAD(P)H dehydrogenase (quinone)]. A flavin nucleotide was required for ferrireductase activity with rat and turkey liver cytosol when xanthine, NADH or NADPH was used as the reducing substrate. FMN yielded twice the activity with NADH or NADPH, whereas FAD was twice as effective with xanthine as substrate. Kinetic comparisons, differences in lability and partial chromatographic resolution of the ferrireductase activities with the two types of reducing substrates strongly indicate that the ferrireductase activities with xanthine and NADH are catalysed by separate enzyme systems contained in liver cytosol. Complete inhibition by allopurinol of the ferrireductase activity endogenous to undialysed liver cytosol preparations and the ability of xanthine to restore equivalent activity to dialysed preparations indicate that the source of reducing power for the endogenous activity is xanthine. These studies suggest that xanthine, NADH or NADPH can serve as a source of reducing power for the enzyme-mediated reduction of ferritin iron, with a flavin nucleotide serving as the shuttle of electrons from the enzymes to the ferritin iron.  相似文献   

12.
The course of the reaction sequence hypoxanthine----xanthine----uric acid catalysed by xanthine:oxygen oxidoreductase from milk was investigated on the basis of u.v. spectra taken during the course of hypoxanthine and xanthine oxidations. It was found that xanthine accumulated in the reaction mixture when hypoxanthine was used as a substrate. The time course of the concentrations of hypoxanthine, xanthine intermediate and uric acid product was simulated numerically. The mathematical model takes into account the competition of substrate, intermediate and product and the accumulation of the intermediate at the enzyme. This type of analysis permits the kinetic parameters of the enzyme for hypoxanthine and xanthine to be obtained.  相似文献   

13.
Polarographic study of the mobilization of ferritin ironPolarographic study allows to propose a model for mobilization of ferritin iron: an equilibrium exists between iron core and small quantities of iron outside the protein.These iron atoms would be lying on electron acceptor sites including SH groups. The number of sites is dependent on iron content of ferritin.Therefore, the iron could be removed by the action of reducing agents such as xanthine oxidase or ascorbic acid, and then chelated by a complexing agent.  相似文献   

14.
转录因子是一类在生物生命活动过程中起到调控作用的重要因子,参与了各种信号转导和调控过程,可以直接或间接结合在顺式作用元件上,实现调控目标基因转录效率的抑制或增强,从而使植物在应对逆境胁迫下做出反应。 WRKY转录因子在大多数植物体内都有分布,是一类进化非常保守的转录因子家族,参与植物生长发育以及响应逆境胁迫的生理过程。众多研究表明,WRKY转录因子在植物中能够应答各种生物胁迫,如细菌、病毒和真菌等;多种非生物胁迫,包括高温、冷害、高光和高盐等;以及在各种植物激素,包括茉莉酸( JA)、水杨酸( SA)、脱落酸( ABA)和赤霉素( GA)等,在其信号传递途径中都起着重要作用。 WRKY转录因子家族蛋白至少含有一段60个氨基酸左右的高度保守序列,被称为WRKY结构域,其中WRKYGQK多肽序列是最为保守的,因此而得名。该转录因子的WRKY结构域能与目标基因启动子中的顺式作用元件W ̄box( TTGAC序列)特异结合,从而调节目标基因的表达,其调控基因表达主要受病原菌、虫咬、机械损伤、外界胁迫压力和信号分子的诱导。该文介绍了植物WRKY转录因子在植物应对冷害、干旱、高盐等非生物胁迫与病菌、虫害等生物胁迫反应中的重要调控功能,并总结了WRKY转录因子在调控这些逆境胁迫反应过程中的主要生理机制。  相似文献   

15.
Allopurinol (4-hydroxypyrazolo (3,4-d)-pyrimidine) is a potent xanthine oxidase inhibitor which inhibits the oxidation of naturally occurring oxypurines, thus decreasing uric acid formation. The clinical and metabolic effects of this agent were studied in 80 subjects with primary and secondary gout and other disorders of uric acid metabolism. Allopurinol has been universally successful in lowering the serum uric acid concentration and uric acid excretion to normal levels, while not significantly affecting the clearance of urate or other aspects of renal function. Oxypurine excretion increased concomitantly with the fall in urine uric acid. The agent is particularly valuable in the management of problems of gout with azotemia, acute uric acid nephropathy and uric acid urolithiasis. The minor side effects, clinical indications and theoretical complications are discussed.  相似文献   

16.
Although dietary, genetic, or disease-related excesses in urate production may contribute to hyperuricemia, impaired renal excretion of uric acid is the dominant cause of hyperuricemia in the majority of patients with gout. The aims of this review are to highlight exciting and clinically pertinent advances in our understanding of how uric acid is reabsorbed by the kidney under the regulation of urate transporter (URAT)1 and other recently identified urate transporters; to discuss urate-lowering agents in clinical development; and to summarize the limitations of currently available antihyperuricemic drugs. The use of uricosuric drugs to treat hyperuricemia in patients with gout is limited by prior urolothiasis or renal dysfunction. For this reason, our discussion focuses on the development of the novel xanthine oxidase inhibitor febuxostat and modified recombinant uricase preparations.  相似文献   

17.
Summary In Aspergillus nidulans uric acid can be produced from xanthine via purine hydroxylase I (xanthine dehydrogenase) or via the xanthine alternative pathway (Darlington and Scazzocchio, Biochem. Biophys. Acta, 166, 569–571; 1968). A mutation defective in the xanthine alternative pathway of Aspergillus nidulans is described. By combining this mutation with hxB-20 which results in complete loss of purine hydroxylase I and II activities, but which conserves cross-reacting material, it is possible to block completely uric acid production and thus investigate which are the effective in vivo inducers of three enzymes under the control of the positive regulatory gene uaY: adenine deaminase, purine hydroxylase I (measured as cross-reacting material) and urate oxidase. It is concluded that uric acid is the only effective physiological inducer, while its 2 and 8 thio-analogues serve as gratuitous inducers.  相似文献   

18.
Type I diabetes in rodents is associated with a spectrum of liver mitochondrial abnormalities ranging from evidence of oxidative stress and altered antioxidant defenses to frank defects in respiration rates and respiratory control ratios. To better address the myriad changes in redox metabolism in these mitochondria, we have applied new chromatographic techniques that enable simultaneous analysis of multiple components of pathways of interest (e.g., purine catabolites and oxidation by-products). We report here a portion of these results, which, in conjunction with other reported data, suggest that purine catabolism may contribute to mitochondrial antioxidant defenses by producing the antioxidant urate. In liver mitochondria from diabetic rats, increases in uric acid (threefold) and its direct precursor xanthine (sixfold) were observed in moderate diabetes, but levels fell essentially to normal in severe disease. Failure to maintain elevated xanthine and uric acid occurred contemporaneously with progressive mitochondrial dysfunction. Regression analysis revealed altered precursor-product relationships between xanthine, its precursors, and uric acid. An independent set of studies in isolated rat liver mitochondria showed that mitochondrial respiration was associated with essentially uniform decreases (approximately 30%) in all purine catabolites measured (urate, xanthine, hypoxanthine, guanine, guanosine, and xanthosine). That result suggests the potential for steady production of urate. Taken together, the two studies raise the possibility that purine catabolism may be a previously unappreciated component of the homeostatic response of mitochondria to oxidant stress and may play a critical role in slowing progressive mitochondrial dysfunction in certain disease states.  相似文献   

19.
In order to evaluate the safety, pharmacological properties, and urate-lowering efficacy of febuxostat, a non-purine, selective inhibitor of xanthine oxidase, a Phase 1, 2-week, multiple-dose, placebo-controlled, dose-escalation study was conducted in 154 healthy adults of both sexes. Daily febuxostat doses in the range 10 mg to 120 mg resulted in proportional mean serum urate reductions ranging from 25% to 70% and in proportional increases in maximum febuxostat plasma concentrations and area under plasma concentration versus time curves. Accompanying the hypouricemic effect were increases in serum xanthine concentrations, decreases in urinary uric acid excretion, and increases in urinary xanthine and hypoxanthine excretion, confirming inhibition of xanthine oxidase activity by febuxostat. Hepatic conjugation and oxidative metabolism were the major pathways of elimination of febuxostat from the body, and renal elimination did not appear to play a significant role. Although not uncommon, adverse events were mild and self-limited, and no deaths or serious adverse events were observed. Febuxostat is a safe and potent hypouricemic agent in healthy humans.  相似文献   

20.
1. Chicken pancreas has been shown to synthesize and secrete uric acid. Uric acid synthesis from xanthine in vitro by isolated pancreatic acinii is saturable and dependent on the activity of xanthine dehydrogenase. 2. Chicken pancreas is unable to synthesize uric acid de novo but the variety of substrates which support urate synthesis suggests that it occurs by the purine degradation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号