首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Objectives

To demonstrate that miR-9 inhibits autophagy by down-regulating Beclin1 and thus enhances the sensitivity of A549 cells to cisplatin.

Results

MiR-9 inhibited Beclin1 expression by binding to its 3′UTR. The inhibition decreased the cisplatin-induced autophagy in A549 cells, evidenced by the decreased expression of LC3II and GFP-LC3 puncta and the increased expression of P62. Upregulation of miR-9 level enhanced the sensibility of A549 cells to cisplatin and increased the cisplatin-induced apoptosis. Overexpression of Beclin1 reversed above effects of miR-9 mimics, cisplatin-induced autophagy was increased and apoptosis was decreased.

Conclusions

MiR-9 inhibits autophagy via targeting Beclin1 3′UTR and thus enhances cisplatin sensitivity in A549 cells.
  相似文献   

2.
3.

Background

Our previous study showed that the NS1 protein of highly pathogenic avian influenza A virus H5N1 induced caspase-dependent apoptosis in human alveolar basal epithelial cells (A549), supporting its function as a proapoptotic factor during viral infection, but the mechanism is still unknown.

Results

To characterize the mechanism of NS1-induced apoptosis, we used a two-hybrid system to isolate the potential NS1-interacting partners in A549 cells. We found that heat shock protein 90 (Hsp90) was able to interact with the NS1 proteins derived from both H5N1 and H3N2 viruses, which was verified by co-immunoprecitation assays. Significantly, the NS1 expression in the A549 cells dramatically weakened the interaction between Apaf-1 and Hsp90 but enhanced its interaction with cytochrome c (Cyt c), suggesting that the competitive binding of NS1 to Hsp90 might promote the Apaf-1 to associate with Cyt c and thus facilitate the activation of caspase 9 and caspase 3.

Conclusions

The present results demonstrate that NS1 protein of Influenza A Virus interacts with heat hock protein Hsp90 and meidates the apoptosis induced by influenza A virus through the caspase cascade.
  相似文献   

4.

Introduction

Cellular metabolism is altered during cancer initiation and progression, which allows cancer cells to increase anabolic synthesis, avoid apoptosis and adapt to low nutrient and oxygen availability. The metabolic nature of cancer enables patient cancer status to be monitored by metabolomics and lipidomics. Additionally, monitoring metabolic status of patients or biological models can be used to greater understand the action of anticancer therapeutics.

Objectives

Discuss how metabolomics and lipidomics can be used to (i) identify metabolic biomarkers of cancer and (ii) understand the mechanism-of-action of anticancer therapies. Discuss considerations that can maximize the clinical value of metabolic cancer biomarkers including case–control, prognostic and longitudinal study designs.

Methods

A literature search of the current relevant primary research was performed.

Results

Metabolomics and lipidomics can identify metabolic signatures that associate with cancer diagnosis, prognosis and disease progression. Discriminatory metabolites were most commonly linked to lipid or energy metabolism. Case–control studies outnumbered prognostic and longitudinal approaches. Prognostic studies were able to correlate metabolic features with future cancer risk, whereas longitudinal studies were most effective for studying cancer progression. Metabolomics and lipidomics can help to understand the mechanism-of-action of anticancer therapeutics and mechanisms of drug resistance.

Conclusion

Metabolomics and lipidomics can be used to identify biomarkers associated with cancer and to better understand anticancer therapies.
  相似文献   

5.
6.

Objectives

To investigate the biocompatibility of human gastric carcinoma cells (SGC-7901) with organic two-photon nanoparticles (NPs).

Results

Different concentrations of NPs were incubated with SGC-7901 cells for different times. The levels of cell apoptosis, reactive oxygen species (ROS), intracellular calcium, and mitochondrial membrane potential (MMP) were measured by staining the SGC-7901 cells with Annexin V-FITC/PI, 2′,7′-dichlorofluorescin diacetate, Fluo-3 AM, and Rhodamine 123, followed by the flow cytometry assay. NPs at <4 µg/ml, did not have any significant effect on apoptosis, necrosis, generation of ROS, increase of intracellular Ca2+ concentration or decrease of MMP in SGC-7901 cells, but >4 µg/ml had a major effects on all the above mentioned parameters.

Conclusion

2,5,2′,5′-Tetra(4-N,N-diphenylamine styryl) biphenyl NPs can be used at an appropriate concentration as a safe drug carrier or imaging marker and may serve as an effective tool for developing a photodynamic cancer therapy.
  相似文献   

7.

Background

Peripheral T-cell lymphomas (PTCLs) are often aggressive tumors and resistant to conventional chemotherapy. Dysregulation of extrinsic apoptosis plays an important role on tumor cell sensitivity to chemotherapeutic agents. Cellular FLICE inhibitory protein (c-FLIP) is a key regulator of extrinsic apoptotic pathway.

Methods

c-FLIP expression was assessed by real-time PCR and compared according to clinical parameters in patients with PTCLs. The relation of c-FLIP to tumor cell apoptosis mediated by histone deacetylases inhibitors (HDACIs) and the possible mechanism were examined in T-lymphoma cell lines and in a murine xenograft model.

Results

c-FLIP was overexpressed and associated with decreased tumor TRAIL/DR5 expression, elevated serum lactate dehydrogenase level and high-risk International Prognostic Index of the patients. In vitro, molecular silencing of c-FLIP by specific small-interfering RNA increased TRAIL/DR5 expression, enhanced T-lymphoma cell apoptosis and sensitized cells to chemotherapeutic agents. However, HDACIs valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) could downregulate c-FLIP expression and triggered extrinsic apoptosis of T-lymphoma cells, through inhibiting NF-κB signaling and interrupting P50 interaction with c-FLIP promoter. As Class I HDACIs, both VPA and SAHA inhibited HDAC1, resulting in P50 inactivation and c-FLIP downregulation. In vivo, oral VPA treatment significantly retarded tumor growth and induced in situ apoptosis, consistent with inhibition of HDAC1/P50/c-FLIP axis and increase of TRAIL/DR5 expression.

Conclusions

c-FLIP overexpression in PTCLs protected tumor cells from extrinsic apoptosis and contributed to tumor progression. Although linking to chemoresistance, c-FLIP indicated tumor cell sensitivity to HDACIs, providing a potential biomarker of targeting apoptosis in treating PTCLs.
  相似文献   

8.
9.

Objective

To design and synthesize a novel near-infrared (NIR) fluorescent probe based on indocyanine Green (ICG), that can be applied in imaging living cells.

Results

A highly fluorescent novel NIR fluorescent probe (IR-793) was synthesized in two steps. IR-793 had better fluorescence and optical stability than ICG. In addition, no obvious cytotoxicity effect of IR-793 was observed and cell viability was above 75% at the maximum concentration (120 nM). IR-793 also exhibited good performance in imaging living A549 cells.

Conclusion

IR-793, a novel NIR fluorescent probe that is stable, low-cost, highly fluorescent and low cytotoxicity, has been designed and synthesized for imaging living cells.
  相似文献   

10.

Background

Au/CuS core/shell nanoparticles (NPs) were designed as a new type of transducer agent for photothermal therapy (PTT), with attractive features of easy preparation, low cost and small size for targeting. This paper studied for the first time the intrinsic antimicrobial activity of Au/CuS NPs to B. anthracis spores and cells in addition to its PTT effect.

Results

It was found that Au/CuS NPs were highly efficient in inactivating B. anthracis cells, but not effective to the spores. Treatment with NPs at ~0.83 μM for 30 min achieved a 7 log reduction in viable cells. The antimicrobial effect was both NPs concentration and treatment time dependent. SEM imaging and the efflux of DNA test demonstrated the damage of cell membrane after NPs treatment, yet further research is necessary to fully understand the precise inactivation mechanism.

Conclusions

The Au/CuS NPs had strong antimicrobial activity to B. anthracis cells, which showed a great potential to be an effective antimicrobial agent to bacterial cells.
  相似文献   

11.

Objectives

To explore the effects of Lin28A on progression of osteocarcinoma (OS) cells.

Results

Lin28A mRNA and protein expressions were significantly increased in OS tissues compared with that in normal adjacent tissues. Expressions of Lin28A and long noncoding RNA MALAT1 were positively correlated. Patients with higher Lin28A expression had shorter overall survival. Moreover, Lin28A knockdown inhibited OS cells proliferation, migration, invasion and promoted cell apoptosis; Lin28A was found to harbor binding sites on MALAT1 sequences and associated with MALAT1, and increased MALAT1 stability and expression. Notably, the inhibition of Lin28A knockdown was attenuated or even reversed by MALAT1 overexpression.

Conclusions

RNA binding protein Lin28A could facilitate OS cells progression by associating with the long noncoding RNA MALAT1.
  相似文献   

12.

Introduction

Histologically lung cancer is classified into four major types: adenocarcinoma (Ad), squamous cell carcinoma (SqCC), large cell carcinoma (LCC), and small cell lung cancer (SCLC). Presently, our understanding of cellular metabolism among them is still not clear.

Objectives

The goal of this study was to assess the cellular metabolic profiles across these four types of lung cancer using an untargeted metabolomics approach.

Methods

Six lung cancer cell lines, viz., Ad (A549 and HCC827), SqCC (NCl-H226 and NCl-H520), LCC (NCl-H460), and SCLC (NCl-H526), were analyzed using liquid chromatography quadrupole time-of-flight mass spectrometry, with normal human small airway epithelial cells (SAEC) as the control group. The principal component analysis (PCA) was performed to identify the metabolic signatures that had characteristic alterations in each histological type. Further, a metabolite set enrichment analysis was performed for pathway analysis.

Results

Compared to the SAEC, 31, 27, 34, 34, 32, and 39 differential metabolites mainly in relation to nucleotides, amino acid, and fatty acid metabolism were identified in A549, HCC827, NCl-H226, NCl-H520, NCl-H460, and NCl-H526 cells, respectively. The metabolic signatures allowed the six cancerous cell lines to be clearly separated in a PCA score plot.

Conclusion

The metabolic signatures are unique to each histological type, and appeared to be related to their cell-of-origin and mutation status. The changes are useful for assessing the metabolic characteristics of lung cancer, and offer potential for the establishment of novel diagnostic tools for different origin and oncogenic mutation of lung cancer.
  相似文献   

13.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

14.

Background

The adhesion of Plasmodium falciparum parasitized red blood cell (PRBC) to human endothelial cells (EC) induces inflammatory processes, coagulation cascades, oxidative stress and apoptosis. These pathological processes are suspected to be responsible for the blood-brain-barrier and other organs' endothelial dysfunctions observed in fatal cases of malaria. Atorvastatin, a drug that belongs to the lowering cholesterol molecule family of statins, has been shown to ameliorate endothelial functions and is widely used in patients with cardiovascular disorders.

Methods

The effect of this compound on PRBC induced endothelial impairments was assessed using endothelial co-culture models.

Results

Atorvastatin pre-treatment of EC was found to reduce the expression of adhesion molecules and P. falciparum cytoadherence, to protect cells against PRBC-induced apoptosis and to enhance endothelial monolayer integrity during co-incubation with parasites.

Conclusions

These results might suggest a potential interest use of atorvastatin as a protective treatment to interfere with the pathophysiological cascades leading to severe malaria.
  相似文献   

15.
16.

Objective

In this study, transfection efficiency of human papillomavirus (HPV) E7 DNA and protein constructs into HEK-293T normal cell line, and A549 and TC-1 tumor cell lines was evaluated by four delivery systems including supercharge GFP, hPP10 cell penetrating peptide, TurboFect and Lipofectamine using fluorescence microscopy and flow cytometry.

Results

The results indicated that Lipofectamine 2000 and TurboFect produced more effective transfection for GFP and E7-GFP DNA constructs in HEK-293T cells compared to in A549 and TC-1 cells (p?<?0.05). In contrast, the supercharge GFP was efficient for E7 DNA and E7 protein delivery in both normal cell (~?83.94 and ~?77.01% for HEK-293T), and cancer cells (~?71.69 and ~?67.19% for TC-1, and ~?73.86 and ~?67.49% for A549), respectively. Indeed, in these cell lines, transfection efficiency by +36 GFP reached ~?60–80%. Moreover, the hPP10 produced the best transfection result for E7-GFP protein in HEK-293T cells (~?63.66%) compared to TurboFect (~?32.95%); however, the efficiency level of hPP10 was only ~?17.51 and ~?16.36% in TC-1 and A549 cells.

Conclusions

Our data suggested that the supercharge GFP is the most suitable transfection vehicle for DNA and protein delivery into TC-1 and A549 tumor cell lines compared to other carriers.
  相似文献   

17.

Objectives

To investigate the biological functions of microRNA-144-3p with respect to proliferation and apoptosis of human salivary adenoid carcinoma cell lines via mTOR.

Results

After transfection of microRNA-144-3p agomir, cell viability assays confirmed that the salivary adenoid carcinoma cell (SACC) proliferation was inhibited and apoptosis was induced. Dual luciferase reporter assay validated that the mammalian target of rapamycin (mTOR) was a direct target of miR-144-3p. Western blot, immunofluorescent analysis and a xenograft mouse model of adenoid cystic carcinoma indicated that miR-144-3p was a tumor suppressor and repressed mTOR expression and signaling in SACCs.

Conclusions

MicroRNA-144-3p inhibits proliferation and induces apoptosis of human salivary adenoid carcinoma cells by downregulating mTOR expression in vitro and in vivo.
  相似文献   

18.

Background

Given the seriousness of chemotherapy-induced ovarian injury in female cancer patients, the preservation of fertility, including through the use of cryopreservation technology and pharmaceuticals, requires investigation. Previous studies have shown that damage to the ovaries is related to oxidative stress caused by anticancer drugs. Therefore, superoxide dismutase (SOD) may represent a key factor in the pharmacological protection of the ovaries. The aim of our study was to identify the effects of mangafodipir, a manganese chelate and SOD-mimetic, on suppression of apoptosis in granulosa cells and primordial follicle activation induced by anticancer drugs.

Methods

Cell viability assays using methyltrichlorosilane solutions and immunoblotting for cleaved caspase-3 were performed in in vitro experiments with the simultaneous addition of mangafodipir to human non-luteinized granulosa cell line (HGrC) cultures treated with hydrogen peroxide (H2O2), cisplatin, or paclitaxel. Count and morphological analyses of follicles at each developing stage in the ovaries and immunohistochemistry for cleaved caspase-3, Ki67 and 4-hydroxynonenal, a marker for oxidative stress, were also performed using mangafodipir-injected 6-week-old female ICR mice treated with cisplatin or paclitaxel. Further, mangafodipir was injected into 6-week-old female BALB/c mice inoculated with ES-2 to analyze whether mangafodipir inhibits the anti-tumor effects of cisplatin or paclitaxel treatment.

Results

Mangafodipir attenuated apoptosis induced by H2O2 and anticancer drugs in vitro. Mangafodipir also decreased the expression of 4-hydroxynonenal and reduced cisplatin- and paclitaxel-induced apoptosis in granulosa cells in vivo. In addition, mangafodipir inhibited the loss of primordial follicles. Tumor xenograft studies in mice showed that mangafodipir did not affect anticancer drug antitumor effects.

Conclusions

Oxidative stress might be one of the mechanisms of cisplatin- and paclitaxel-induced the loss of primordial follicles. Mangafodipir can reduce cisplatin- and paclitaxel-induced apoptosis in granulosa cells and primordial follicle activation partially via its SOD activity. At the same time, mangafodipir might have other potential mechanisms to inhibit the activation of primordial follicles. Further, mangafodipir attenuated the ovarian damage caused by cisplatin and paclitaxel without affecting their antitumor activities. Mangafodipir, therefore, though its efficacy might be limited, may be a new option for the preservation of fertility during anticancer treatment.
  相似文献   

19.

Objectives

To explore the functional effects of miR-1284 on gastric cancer cells.

Results

Overexpression of miR-1284 significantly reduced SGC-7901 cell proliferation, but improved apoptosis. However, miR-1284 suppression displayed the inversed impacts. Furthermore, the protein levels of p27, Bax, procaspase-3 and active caspase-3 were up-regulated by miR-1284 overexpression, but were down-regulated by miR-1284 suppression. The level of Bcl-2 was down-regulated by miR-1284 overexpression, while it was up-regulated by miR-1284 suppression. The level of p21 was unaffected.

Conclusion

These results suggest that miR-1284 overexpression might be a suppressor for gastric cancer via controlling of cell proliferation and apoptosis.
  相似文献   

20.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号