首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The evolution of mitochondria from ancestral bacteria required that new protein transport machinery be established. Recent controversy over the evolution of these new molecular machines hinges on the degree to which ancestral bacterial transporters contributed during the establishment of the new protein import pathway. Reclinomonas americana is a unicellular eukaryote with the most gene-rich mitochondrial genome known, and the large collection of membrane proteins encoded on the mitochondrial genome of R. americana includes a bacterial-type SecY protein transporter. Analysis of expressed sequence tags shows R. americana also has components of a mitochondrial protein translocase or "translocase in the inner mitochondrial membrane complex." Along with several other membrane proteins encoded on the mitochondrial genome Cox11, an assembly factor for cytochrome c oxidase retains sequence features suggesting that it is assembled by the SecY complex in R. americana. Despite this, protein import studies show that the RaCox11 protein is suited for import into mitochondria and functional complementation if the gene is transferred into the nucleus of yeast. Reclinomonas americana provides direct evidence that bacterial protein transport pathways were retained, alongside the evolving mitochondrial protein import machinery, shedding new light on the process of mitochondrial evolution.  相似文献   

2.
Many mitochondrial proteins are synthesized with N-terminal presequences in the cytosol. The presequence translocase of the inner mitochondrial membrane (TIM23) translocates preproteins into and across the membrane and associates with the matrix-localized import motor. The TIM23 complex consists of three core components and Tim21, which interacts with the translocase of the outer membrane (TOM) and the respiratory chain. We have identified a new subunit of the TIM23 complex, the inner membrane protein Mgr2. Mitochondria lacking Mgr2 were deficient in the Tim21-containing sorting form of the TIM23 complex. Mgr2 was required for binding of Tim21 to TIM23(CORE), revealing a binding chain of TIM23(CORE)-Mgr2/Tim21-respiratory chain. Mgr2-deficient yeast cells were defective in growth at elevated temperature, and the mitochondria were impaired in TOM-TIM23 coupling and the import of presequence-carrying preproteins. We conclude that Mgr2 is a coupling factor of the presequence translocase crucial for cell growth at elevated temperature and for efficient protein import.  相似文献   

3.
4.
Mitochondrial protein traffic requires coordinated operation of protein translocator complexes in the mitochondrial membrane. The TIM23 complex translocates and inserts proteins into the mitochondrial inner membrane. Here we analyze the intermembrane space (IMS) domains of Tim23 and Tim50, which are essential subunits of the TIM23 complex, in these functions. We find that interactions of Tim23 and Tim50 in the IMS facilitate transfer of precursor proteins from the TOM40 complex, a general protein translocator in the outer membrane, to the TIM23 complex. Tim23–Tim50 interactions also facilitate a late step of protein translocation across the inner membrane by promoting motor functions of mitochondrial Hsp70 in the matrix. Therefore, the Tim23–Tim50 pair coordinates the actions of the TOM40 and TIM23 complexes together with motor proteins for mitochondrial protein import.  相似文献   

5.
N-terminal targeting signals (presequences) direct proteins across the TOM complex in the outer mitochondrial membrane and the TIM23 complex in the inner mitochondrial membrane. Presequences provide directionality to the transport process and regulate the transport machineries during translocation. However, surprisingly little is known about how presequence receptors interact with the signals and what role these interactions play during preprotein transport. Here, we identify signal-binding sites of presequence receptors through photo-affinity labeling. Using engineered presequence probes, photo cross-linking sites on mitochondrial proteins were mapped mass spectrometrically, thereby defining a presequence-binding domain of Tim50, a core subunit of the TIM23 complex that is essential for mitochondrial protein import. Our results establish Tim50 as the primary presequence receptor at the inner membrane and show that targeting signals and Tim50 regulate the Tim23 channel in an antagonistic manner.  相似文献   

6.
7.
Translocation of nuclear encoded preproteins into the mitochondrial matrix requires the coordinated action of two translocases: one (Tom) located in the outer mitochondrial membrane and the other (Tim) located in the inner membrane. These translocases reversibly cooperate during protein import. We have previously constructed a chimeric precursor (pPGPrA) consisting of an authentic mitochondrial precursor at the N terminus (Delta(1)-pyrroline-5-carboxylate dehydrogenase, pPut) linked, through glutathione S-transferase, to protein A. When pPGPrA is expressed in yeast, it becomes irreversibly arrested during translocation across the outer and inner mitochondrial membranes. Consequently, the two membranes of mitochondria become progressively "zippered" together, forming long stretches in which they are in close contact (Schülke, N., Sepuri, N. B. V., and Pain, D. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 7314-7319). We now demonstrate that trapped PGPrA intermediates hold the import channels stably together and inhibit mitochondrial protein import and cell growth. Using IgG-Sepharose affinity chromatography of solubilized zippered membranes, we have isolated a multisubunit complex that contains all Tom and Tim components known to be essential for import of matrix-targeted proteins, namely Tom40, Tom22, Tim17, Tim23, Tim44, and matrix-localized Hsp70. Further characterization of this complex may shed light on structural features of the complete mitochondrial import machinery.  相似文献   

8.
The mitochondrial presequence translocase interacts with presequence‐containing precursors at the intermembrane space (IMS) side of the inner membrane to mediate their translocation into the matrix. Little is known as too how these matrix‐targeting signals activate the translocase in order to initiate precursor transport. Therefore, we analysed how signal recognition by the presequence translocase initiates reorganization among Tim‐proteins during import. Our analyses revealed that the presequence receptor Tim50 interacts with Tim21 in a signal‐sensitive manner in a process that involves the IMS‐domain of the Tim23 channel. The signal‐driven release of Tim21 from Tim50 promotes recruitment of Pam17 and thus triggers formation of the motor‐associated form of the TIM23 complex required for matrix transport.  相似文献   

9.
The mitochondrial genome of Trypanosoma brucei does not contain genes encoding tRNAs; instead this protozoan parasite must import nuclear-encoded tRNAs from the cytosol for mitochondrial translation. Previously, it has been shown that mitochondrial tRNA import requires ATP hydrolysis and a proteinaceous mitochondrial membrane component. However, little is known about the mitochondrial membrane proteins involved in tRNA binding and translocation into the mitochondrion. Here we report the purification of a mitochondrial membrane complex using tRNA affinity purification and have identified several protein components of the putative tRNA translocon by mass spectrometry. Using an in vivo tRNA import assay in combination with RNA interference, we have verified that two of these proteins, Tb11.01.4590 and Tb09.v1.0420, are involved in mitochondrial tRNA import. Using Protein C Epitope -Tobacco Etch Virus-Protein A Epitope (PTP)-tagged Tb11.01.4590, additional associated proteins were identified including Tim17 and other mitochondrial proteins necessary for mitochondrial protein import. Results presented here identify and validate two novel protein components of the putative tRNA translocon and provide additional evidence that mitochondrial tRNA and protein import have shared components in trypanosomes.  相似文献   

10.
Yamamoto H  Esaki M  Kanamori T  Tamura Y  Nishikawa Si  Endo T 《Cell》2002,111(4):519-528
Based on the results of site-specific photocrosslinking of translocation intermediates, we have identified Tim50, a component of the yeast TIM23 import machinery, which mediates translocation of presequence-containing proteins across the mitochondrial inner membrane. Tim50 is anchored to the inner mitochondrial membrane, exposing the C-terminal domain to the intermembrane space. Tim50 interacts with the N-terminal intermembrane space domain of Tim23. Functional defects of Tim50 either by depletion of the protein or addition of anti-Tim50 antibodies block the protein translocation across the inner membrane. A translocation intermediate accumulated at the TOM complex is crosslinked to Tim50. We suggest that Tim50, in cooperation with Tim23, facilitates transfer of the translocating protein from the TOM complex to the TIM23 complex  相似文献   

11.
Mitochondria import the vast majority of their proteins from the cytosol. The mitochondrial import motor of the TIM23 translocase drives the translocation of precursor proteins across the outer and inner membrane in an ATP-dependent reaction. Tim44 at the inner face of the translocation pore recruits the chaperone mtHsp70, which binds the incoming precursor protein. This reaction is assisted by the cochaperones Tim14 and Mge1. We have identified a novel essential cochaperone, Tim16. It is related to J-domain proteins and forms a stable subcomplex with the J protein Tim14. Depletion of Tim16 has a marked effect on protein import into the mitochondrial matrix, impairs the interaction of Tim14 with the TIM23 complex and leads to severe structural changes of the import motor. In conclusion, Tim16 is a constituent of the TIM23 preprotein translocase, where it exerts crucial functions in the import motor.  相似文献   

12.
Tim23p (translocase of the inner membrane) is an essential import component located in the mitochondrial inner membrane. To determine how the Tim23 protein itself is transported into mitochondria, we used chemical cross-linking to identify proteins adjacent to Tim23p during its biogenesis. In the absence of an inner membrane potential, Tim23p is translocated across the mitochondrial outer membrane, but not inserted into the inner membrane. At this intermediate stage, we find that Tim23p forms cross-linked products with two distinct protein complexes of the intermembrane space, Tim8p-Tim13p and Tim9p-Tim10p. Tim9p and Tim10p cross-link to the COOH-terminal domain of the Tim23 protein, which carries all of the targeting signals for Tim23p. Therefore, our results suggest that the Tim9p-Tim10p complex plays a key role in Tim23p import. In contrast, Tim8p and Tim13p cross-link to the hydrophilic NH(2)-terminal segment of Tim23p, which does not carry essential import information and, thus, the role of Tim8p-Tim13p is unclear. Tim23p contains two matrix-facing, positively charged loops that are essential for its insertion into the inner membrane. The positive charges are not required for interaction with the Tim9p-Tim10p complex, but are essential for cross-linking of Tim23p to components of the inner membrane insertion machinery, including Tim54p, Tim22p, and Tim12p.  相似文献   

13.
We analysed the import pathway of Tim23 and of Tim17, components of the mitochondrial import machinery for matrix-targeted preproteins. Tim23 contains two independent import signals. One is located within the first 62 amino acid residues of the hydrophilic domain that, in the assembled protein, is exposed to the intermembrane space. This signal mediates translocation of Tim23 across the outer membrane independently of the membrane potential, DeltaPsi. A second import signal is located in the C-terminal membrane-integrated portion of Tim23. It mediates translocation across the outer membrane and insertion into the inner membrane in a strictly DeltaPsi-dependent fashion. Structurally, Tim17 is related to Tim23 but lacks a hydrophilic domain. It contains an import signal in the C-terminal half and its import requires DeltaPsi. The DeltaPsi-dependent import signals of Tim23 and Tim17 are located at corresponding sites in these two homologous proteins. They exhibit features reminiscent of the positively charged N-terminal presequences of matrix-targeted precursors. Import of Tim23 and its insertion into the inner membrane requires Tim22 but not functional Tim23. Thus, biogenesis of the Tim23.17 complex depends on the Tim22 complex, which is the translocase identified as mediating the import of carrier proteins.  相似文献   

14.
All small Tim proteins of the mitochondrial intermembrane space contain two conserved CX(3)C motifs, which form two intramolecular disulfide bonds essential for function, but only the cysteine-reduced, but not oxidized, proteins can be imported into mitochondria. We have shown that Tim10 can be oxidized by glutathione under cytosolic concentrations. However, it was unknown whether oxidative folding of other small Tims can occur under similar conditions and whether oxidative folding competes kinetically with mitochondrial import. In the present study, the effect of glutathione on the cysteine-redox state of Tim9 was investigated, and the standard redox potential of Tim9 was determined to be approx. -0.31 V at pH 7.4 and 25 degrees C with both the wild-type and Tim9F43W mutant proteins, using reverse-phase HPLC and fluorescence approaches. The results show that reduced Tim9 can be oxidized by glutathione under cytosolic concentrations. Next, we studied the rate of mitochondrial import and oxidative folding of Tim9 under identical conditions. The rate of import was approx. 3-fold slower than that of oxidative folding of Tim9, resulting in approx. 20% of the precursor protein being imported into an excess amount of mitochondria. A similar correlation between import and oxidative folding was obtained for Tim10. Therefore we conclude that oxidative folding and mitochondrial import are kinetically competitive processes. The efficiency of mitochondrial import of the small Tim proteins is controlled, at least partially in vitro, by the rate of oxidative folding, suggesting that a cofactor is required to stabilize the cysteine residues of the precursors from oxidation in vivo.  相似文献   

15.
Mitochondria and the nucleus are key features that distinguish eukaryotic cells from prokaryotic cells. Mitochondria originated from a bacterium that was endosymbiotically taken up by another cell more than a billion years ago. Subsequently, most mitochondrial genes were transferred and integrated into the host cell's genome, making the evolution of pathways for specific import of mitochondrial proteins necessary. The mitochondrial protein translocation machineries are composed of numerous subunits. Interestingly, many of these subunits are at least in part derived from bacterial proteins, although only few of them functioned in bacterial protein translocation. We propose that the primitive α-proteobacterium, which was once taken up by the eukaryote ancestor cell, contained a number of components that were utilized for the generation of mitochondrial import machineries. Many bacterial components of seemingly unrelated pathways were integrated to form the modern cooperative mitochondria-specific protein translocation system.  相似文献   

16.
The Tim8 and Tim13 proteins in yeast are known to exist in the mitochondrial intermembrane space and to form a hetero-oligomeric complex involved in the import of the mitochondrial inner membrane protein Tim23, the central component of the TIM23 translocase. Here, we have isolated tim8 and tim13 mutants in Neurospora crassa and have shown that mitochondria lacking the Tim8-Tim13 complex were deficient in the import of the outer membrane beta-barrel proteins Tom40 and porin. Cross-linking studies showed that the Tom40 precursor contacts the Tim8-Tim13 complex. The complex is involved at an early point in the Tom40 assembly pathway because cross-links can only be detected during the initial stages of Tom40 import. In mitochondria lacking the Tim8-Tim13 complex, the Tom40 precursor appears in a previously characterized early intermediate of Tom40 assembly more slowly than in wild type mitochondria. Thus, our data suggest a model in which one of the first steps in Tom40 assembly may be interaction with the Tim8-Tim13 complex. As in yeast, the N. crassa Tim23 precursor was imported inefficiently into mitochondria lacking the Tim8-Tim13 complex when the membrane potential was reduced. Tim23 import intermediates could also be cross-linked to the complex, suggesting a dual role for the Tim8-Tim13 intermembrane space complex in the import of proteins found in both the outer and inner mitochondrial membranes.  相似文献   

17.
Modular structure of the TIM23 preprotein translocase of mitochondria   总被引:1,自引:0,他引:1  
The TIM23 complex mediates import into mitochondria of nuclear encoded preproteins with a matrix-targeting signal. It is composed of the integral membrane proteins Tim17 and Tim23 and the peripheral membrane protein Tim44, which recruits mitochondrial Hsp70 to the sites of protein import. We have analyzed the functions of these constituents using a combined genetic and biochemical approach. Depletion of either Tim17 or Tim23 led to loss of import competence of mitochondria and to a reduction in the number of preprotein-conducting channels. Upon depletion of Tim44, mitochondria also lost their ability to import proteins but maintained normal numbers of import channels. In the absence of Tim44 precursor protein was specifically recognized. The presequence was translocated in a Delta psi-dependent manner across the inner membrane and cleaved by matrix-processing peptidase. However, the preprotein did not move further into the matrix but rather underwent retrograde sliding out of the TIM23 complex. Thus, the TIM23 complex is composed of functionally independent modules. Tim17 and Tim23 are necessary for initiating translocation, whereas Tim44 and mitochondrial Hsp70 are indispensable for complete transport of preproteins and for unfolding of folded domains of preproteins.  相似文献   

18.
Mitochondria import nuclear-encoded precursor proteins to four different subcompartments. Specific import machineries have been identified that direct the precursor proteins to the mitochondrial outer membrane, inner membrane or matrix, respectively. However, a machinery dedicated to the import of mitochondrial intermembrane space (IMS) proteins has not been found so far. We have identified the essential IMS protein Mia40 (encoded by the Saccharomyces cerevisiae open reading frame YKL195w). Mitochondria with a mutant form of Mia40 are selectively inhibited in the import of several small IMS proteins, including the essential proteins Tim9 and Tim10. The import of proteins to the other mitochondrial subcompartments does not depend on functional Mia40. The binding of small Tim proteins to Mia40 is crucial for their transport across the outer membrane and represents an initial step in their assembly into IMS complexes. We conclude that Mia40 is a central component of the protein import and assembly machinery of the mitochondrial IMS.  相似文献   

19.
The role of Tim9p in the assembly of the TIM22 import complexes   总被引:4,自引:0,他引:4  
Tim9p is located in the soluble 70-kDa Tim9p–Tim10p complex and the 300-kDa membrane complex in the mitochondrial TIM22 protein import system, which mediates the import of inner membrane proteins. From a collection of temperature-sensitive mutants, we have analyzed two in detail. tim9–3 contained two mutations and tim9–19 contained one mutation, all located near the 'twin CX3C' motif that is conserved in the small Tim proteins. As a result, the import components in the tim9–3 mutant mitochondria were severely reduced and assembled into complexes of aberrant sizes. Protein import was severely reduced and Tim9p and Tim10p binding to in vitro imported ADP/ATP carrier was impaired. In the tim9–19 mutant mitochondria, the 300-kDa membrane complex was assembled, although the soluble 70-kDa Tim9p–Tim10p complex was not detectable. Protein import was decreased only two-fold. When coexpressed in Escherichia coli , tim9–19 and TIM10 proteins failed to assemble into a 70-kDa complex. Our findings suggest that residues near the 'twin CX3C' motif are important for the assembly of Tim9p in both the Tim9p–Tim10p complex and the 300-kDa membrane complex.  相似文献   

20.
Tim44 is a protein of the mitochondrial inner membrane and serves as an adaptor protein for mtHsp70 that drives the import of preproteins in an ATP-dependent manner. In this study we have modified the interaction of Tim44 with mtHsp70 and characterized the consequences for protein translocation. By deletion of an 18-residue segment of Tim44 with limited similarity to J-proteins, the binding of Tim44 to mtHsp70 was weakened. We found that in the yeast Saccharomyces cerevisiae the deletion of this segment is lethal. To investigate the role of the 18-residue segment, we expressed Tim44Delta18 in addition to the endogenous wild-type Tim44. Tim44Delta18 is correctly targeted to mitochondria and assembles in the inner membrane import site. The coexpression of Tim44Delta18 together with wild-type Tim44, however, does not stimulate protein import, but reduces its efficiency. In particular, the promotion of unfolding of preproteins during translocation is inhibited. mtHsp70 is still able to bind to Tim44Delta18 in an ATP-regulated manner, but the efficiency of interaction is reduced. These results suggest that the J-related segment of Tim44 is needed for productive interaction with mtHsp70. The efficient cooperation of mtHsp70 with Tim44 facilitates the translocation of loosely folded preproteins and plays a crucial role in the import of preproteins which contain a tightly folded domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号