首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Listeria monocytogenes can be isolated from a range of food products and may cause food-borne outbreaks or sporadic cases of listeriosis. L. monocytogenes is divided into three genetic lineages and 13 serotypes. Strains of three serotypes (1/2a, 1/2b, and 4b) are associated with most human cases of listeriosis. Of these, strains of serotypes 1/2b and 4b belong to lineage 1, whereas strains of serotype 1/2a and many other strains isolated from foods belong to lineage 2. L. monocytogenes is isolated from foods by selective enrichment procedures and from patients by nonselective methods. The aim of the present study was to investigate if the selective enrichment procedure results in a true representation of the subtypes of L. monocytogenes present in a sample. Eight L. monocytogenes strains (four lineage 1 strains and four lineage 2 strains) and one Listeria innocua strain grew with identical growth rates in the nonselective medium brain heart infusion (BHI), but differed in their growth rate in the selective medium University of Vermont medium I (UVM I). When coinoculated in UVM I, some strains completely outgrew other strains. This outcome was dependent on the lineage of L. monocytogenes rather than the individual growth rate of the strains. When inoculated at identical cell densities in UVM I, L. innocua outcompeted L. monocytogenes lineage 1 strains but not lineage 2 strains. In addition, lineage 2 L. monocytogenes strains outcompeted lineage 1 L. monocytogenes strains in all combinations tested, indicating a bias in strains selected by the enrichment procedures. Bias also occurred when coinoculating two lineage 2 or lineage 1 strains; however, it did not appear to correlate with origin (clinical versus food). Identical coinoculation experiments in BHI suggested that the selective compounds in UVM I and II influenced this bias. The results of the present study demonstrate that the selective procedures used for isolation of L. monocytogenes may not allow a true representation of the types present in foods. Our results could have a significant impact on epidemiological studies, as lineage 1 strains, which are often isolated from clinical cases of listeriosis, may be suppressed during enrichment by other L. monocytogenes lineages present in a food sample.  相似文献   

2.
Multiple Listeria monocytogenes strains can be present in the same food sample; moreover, infection with more than one L. monocytogenes strain can also occur. In this study we investigated the impact of strain competition on the growth and in vitro virulence potential of L. monocytogenes. We identified two strong competitor strains, whose growth was not (or only slightly) influenced by the presence of other strains and two weak competitor strains, which were outcompeted by other strains. Cell contact was essential for growth inhibition. In vitro virulence assays using human intestinal epithelial Caco2 cells showed a correlation between the invasion efficiency and growth inhibition: the strong growth competitor strains showed high invasiveness. Moreover, invasion efficiency of the highly invasive strain was further increased in certain combinations by the presence of a low invasive strain. In all tested combinations, the less invasive strain was outcompeted by the higher invasive strain. Studying the effect of cell contact on in vitro virulence competition revealed a complex pattern in which the observed effects depended only partially on cell-contact suggesting that competition occurs at two different levels: i) during co-cultivation prior to infection, which might influence the expression of virulence factors, and ii) during infection, when bacterial cells compete for the host cell. In conclusion, we show that growth of L. monocytogenes can be inhibited by strains of the same species leading potentially to biased recovery during enrichment procedures. Furthermore, the presence of more than one L. monocytogenes strain in food can lead to increased infection rates due to synergistic effects on the virulence potential.  相似文献   

3.
To evaluate the role of seafoods in the epidemiology of human listeriosis and the role of the processing environment as a source of Listeria monocytogenes in seafood products, 305 L. monocytogenes isolates were characterized by multilocus enzyme electrophoresis using 21 genetic loci and restriction enzyme analysis of total DNA. Forty-four isolates were recovered from patients in Norway; 93 were isolated from seafoods, seafood-processing environments, and seawater from 55 different producers; and the remaining 168 isolates originated from six seafood-processing plants and one transport terminal examined in detail for L. monocytogenes. The patient isolates fell into 11 electrophoretic types, with four of them being responsible for 77% of the listeriosis cases in 1992 to 1996. Isolates from Norwegian seafoods and processing environments showed great genetic diversity, indicating that seafoods and seafood-processing environments do not offer a niche for specific L. monocytogenes strains. On the other hand, isolates from individual processing plants were genetically more homogenous, showing that plants are likely to be colonized with specific subclones of L. monocytogenes. The isolation of identical subclones of L. monocytogenes from both human patients and seafoods, including ready-to-eat products, suggests that such products may have been possible sources for listeriosis cases in Norway.  相似文献   

4.
A total of 32 Listeria monocytogenes strains (16 from a recent outbreak of invasive listeriosis and 16 from two outbreaks of noninvasive listeriosis, all three occurring in Italy) were characterized by PCR-ribotyping, arbitrarily primed PCR (AP-PCR), and the recently developed infrequent-restriction-site PCR (IRS-PCR). The discriminatory ability of the techniques, first evaluated on 29 unrelated L. monocytogenes food isolates using Simpson's index of diversity, was 0.714 for PCR-ribotyping, 0.690 for AP-PCR, and 0.919 for IRS-PCR. IRS-PCR was also more capable of distinguishing among strains from the invasive listeriosis outbreak: three different clusters were identified by IRS-PCR compared to two clusters identified by both PCR-ribotyping and AP-PCR. Within each of the two outbreaks of noninvasive listeriosis, the patterns were practically identical, as demonstrated by all three techniques. Only IRS-PCR succeeded in clearly discriminating the strains related to noninvasive listeriosis from all of the other strains included in this study, including those from the outbreak of invasive listeriosis. This finding may suggest the presence of unique differences in their DNA sequences.  相似文献   

5.
Listeria monocytogenes contamination of ready-to-eat foods has been implicated in numerous outbreaks of food-borne listeriosis. However, the health hazards posed by L. monocytogenes detected in foods may vary, and speculations exist that strains actually implicated in illness may constitute only a fraction of those that contaminate foods. In this study, examination of 34 serogroup 4 (putative or confirmed serotype 4b) isolates of L. monocytogenes obtained from various foods and food-processing environments, without known implication in illness, revealed that many of these strains had methylation of cytosines at GATC sites in the genome, rendering their DNA resistant to digestion by the restriction endonuclease Sau3AI. These strains also harbored a gene cassette with putative restriction-modification system genes as well as other, genomically unlinked genetic markers characteristic of the major epidemic-associated lineage of L. monocytogenes (epidemic clone I), implicated in numerous outbreaks in Europe and North America. This may reflect a relatively high fitness of strains with these genetic markers in foods and food-related environments relative to other serotype 4b strains and may partially account for the repeated involvement of such strains in human food-borne listeriosis.  相似文献   

6.
Listeriosis is caused by the food-borne pathogen Listeria monocytogenes, which can be found in seafood and processing plants. To evaluate the risk to human health associated with seafood production in New Zealand, multi-virulence-locus sequence typing (MVLST) was used to define the sequence types (STs) of 31 L. monocytogenes isolates collected from seafood-processing plants, 15 from processed foods, and 6 from human listeriosis cases. The STs of these isolates were then compared with those from a collection of seafood isolates and epidemic strains from overseas. A total of 17 STs from New Zealand clustered into two lineages: seafood-related isolates in lineages I and II and all human isolates in lineage II. None of the New Zealand STs matched previously described STs from other countries. Isolates (belonging to ST01-N and ST03-N) from mussels and their processing environments, however, were identical to those of sporadic listeriosis cases in New Zealand. ST03-N isolates (16 from mussel-processing environments, 2 from humans, and 1 from a mussel) contained an inlA premature stop codon (PMSC) mutation. Therefore, the levels of invasiveness of 22 isolates from ST03-N and the three other common STs were compared using human intestinal epithelial Caco-2 cell lines. STs carrying inlA PMSCs, including ST03-N isolates associated with clinical cases, had a low invasion phenotype. The close relatedness of some clinical and environmental strains, as revealed by identical MVLST profiles, suggests that local and persistent environmental strains in seafood-processing environments pose a potential health risk. Furthermore, a PMSC in inlA does not appear to give L. monocytogenes a noninvasive profile.  相似文献   

7.
Listeria monocytogenes is responsible for serious invasive illness associated with consumption of contaminated food and places a significant burden on public health and the agricultural economy. We recently developed a multilocus genotyping (MLGT) assay for high-throughput subtype determination of L. monocytogenes lineage I isolates based on interrogation of single nucleotide polymorphisms (SNPs) via multiplexed primer extension reactions. Here we report the development and validation of two additional MLGT assays that address the need for comprehensive DNA sequence-based subtyping of L. monocytogenes. The first of these novel MLGT assays targeted variation segregating within lineage II, while the second assay combined probes for lineage III strains with probes for strains representing a recently characterized fourth evolutionary lineage (IV) of L. monocytogenes. These assays were based on nucleotide variation identified in >3.8 Mb of comparative DNA sequence and consisted of 115 total probes that differentiated 93% of the 100 haplotypes defined by the multilocus sequence data. MLGT reproducibly typed the 173 isolates used in SNP discovery, and the 10,448 genotypes derived from MLGT analysis of these isolates were consistent with DNA sequence data. Application of the MLGT assays to assess subtype prevalence among isolates from ready-to-eat foods and food-processing facilities indicated a low frequency (6.3%) of epidemic clone subtypes and a substantial population of isolates (>30%) harboring mutations in inlA associated with attenuated virulence in cell culture and animal models. These mutations were restricted to serogroup 1/2 isolates, which may explain the overrepresentation of serotype 4b isolates in human listeriosis cases.  相似文献   

8.

Background

Leptospirosis is one of the most important neglected tropical infectious diseases worldwide. Icterohaemorrhagiae has been throughout recent history, and still is, the predominant serogroup of this pathogen in China. However, very little in detail is known about the serovars or genotypes of this serogroup.

Methodology/Principal Findings

In this study, 120 epidemic strains from five geographically diverse regions in China collected over a 50 year period (1958~2008), and 8 international reference strains characterized by 16S rRNA sequencing and MLST analysis. 115, 11 and 2 strains were identified as L. interrogans, L. borgpetersenii, and L. kirschneri, respectively. 17 different STs were identified including 69 ST1 strains, 18 ST17, 18 ST128, 9 ST143 and 2 ST209. The remaining 12 strains belonged to 12 different STs. eBURST analysis demonstrated that, among the clonal complexes isolated (CCs), CC1 accounted for 73.3% (88/120) strains representing three STs: ST1, ST128 and ST98. ST1 was the most likely ancestral strain of this CC, followed by singleton CC17 (17/120) and CC143 (11/120). Further analysis of adding 116 serogroup Icterohaemorrhagiae strains in the MLST database and studies previously described using global eBURST analysis and MST dendrogram revealed relatively similar ST clustering patterns with five main CCs and 8 singletons among these 244 strains. CC17 was found to be the most prevalent clone of pathogenic Leptospira circulating worldwide. This is the first time, to our knowledge, that ST1 and ST17 strains were distributed among 4 distinct serovars, indicating a highly complicated relationship between serovars and STs.

Conclusions/Significance

Our studies demonstrated a high level of genetic diversity in the serogroup Icterohaemorrhagiae strains. Distinct from ST17 or ST37 circulating elsewhere, ST1 included in CC1, has over the past 50 years or so, proven to be the most prevalent ST of pathogenic leptospires isolated in China. Moreover, the complicated relationship between STs and serovars indicates an urgent need to develop an improved scheme for Leptospira serotyping.  相似文献   

9.
10.
11.
The aim of this study was to investigate the basis of the putative persistence of Listeria monocytogenes in a new industrial facility dedicated to the processing of ready-to-eat (RTE) Iberian pork products. Quaternary ammonium compounds, which included benzalkonium chloride (BAC), were repeatedly used as surface disinfectants in the processing plant. Clean and disinfected surfaces were sampled to evaluate if resistance to disinfectants was associated with persistence. Of the 14 isolates obtained from product contact and non-product contact surfaces, only five different pulsed-field gel electrophoresis (PFGE) types were identified during the 27-month study period. Two of these PFGE types (S1 and S10-1) were previously identified to be persistent and BAC-resistant (BACr) strains in a geographically separate slaughterhouse belonging to the same company. The remaining three PFGE types, which were first identified in this study, were also BACr. Whole-genome sequencing and in silico multilocus sequence typing (MLST) analysis of five BACr isolates of the different PFGE types identified in this study showed that the isolate of the S1 PFGE type belonged to MLST sequence type 31 (ST31), a low-virulence type characterized by mutations in the inlA and prfA genes. The isolates of the remaining four PFGE types were found to belong to MLST ST121, a persistent type that has been isolated in several countries. The ST121 strains contained the BAC resistance transposon Tn6188. The disinfection-resistant L. monocytogenes population in this RTE pork product plant comprised two distinct genotypes with different multidrug resistance phenotypes. This work offers insight into the L. monocytogenes subtypes associated with persistence in food processing environments.  相似文献   

12.
Relative air humidity fluctuations could potentially affect the development and persistence of pathogenic microorganisms in their environments. This study aimed to characterize the impact of relative air humidity (RH) variations on the survival of Listeria monocytogenes, a bacterium persisting on food processing plant surfaces. To assess conditions leading to the lowest survival rate, four strains of L. monocytogenes (EGDe, CCL500, CCL128, and LO28) were exposed to different RH conditions (75%, 68%, 43% and 11%) with different drying kinetics and then rehydrated either progressively or instantaneously. The main factors that affected the survival of L. monocytogenes were RH level and rehydration kinetics. Lowest survival rates between 1% and 0.001% were obtained after 3 hours of treatment under optimal conditions (68% RH and instantaneous rehydration). The survival rate was decreased under 0.001% after prolonged exposure (16h) of cells under optimal conditions. Application of two successive dehydration and rehydration cycles led to an additional decrease in survival rate. This preliminary study, performed in model conditions with L. monocytogenes, showed that controlled ambient RH fluctuations could offer new possibilities to control foodborne pathogens in food processing environments and improve food safety.  相似文献   

13.
L. monocytogenes are facultative intracellular bacterial pathogens that cause food borne infections in humans. Very little is known about the gastrointestinal phase of listeriosis due to the lack of a small animal model that closely mimics human disease. This paper describes a novel mouse model for oral transmission of L. monocytogenes. Using this model, mice fed L. monocytogenes-contaminated bread have a discrete phase of gastrointestinal infection, followed by varying degrees of systemic spread in susceptible (BALB/c/By/J) or resistant (C57BL/6) mouse strains. During the later stages of the infection, dissemination to the gall bladder and brain is observed. The food borne model of listeriosis is highly reproducible, does not require specialized skills, and can be used with a wide variety of bacterial isolates and laboratory mouse strains. As such, it is the ideal model to study both virulence strategies used by L. monocytogenes to promote intestinal colonization, as well as the host response to invasive food borne bacterial infection.  相似文献   

14.
单增李斯特菌是一种重要的人兽共患食源性胞内致病菌,广泛存在于自然环境中且易污染动物性食品,人及动物感染后可引起严重的李斯特菌病,死亡率高达30%。单增李斯特菌通常对多种药物敏感,然而,因不合理使用抗菌药或消毒剂形成的选择压力导致李斯特菌多重耐药情况的报道日渐增多。外排泵蛋白是细菌中一类重要的蛋白,可参与机体多种生物学过程,包括影响细菌对抗生素敏感性、促进有毒化合物泵出、影响细菌毒力等。本文综述了近年来关于单增李斯特菌耐药外排泵的功能及调控机制的研究进展,为深入理解李斯特菌耐药等环境适应机制及有效控制该病原污染传播和筛选抗感染药物新靶点提供理论基础。  相似文献   

15.
Listeria monocytogenes, the etiologic agent of listeriosis, remains a serious public health concern, with its frequent occurrence in food environments coupled with a high mortality rate. Among the 13 serovars, human listeriosis is mostly associated with the serovar 4b, 1/2b, and 1/2a strains. To investigate the diversity of L. monocytogenes, the intracellular and extracellular proteins of 12 strains were analyzed by two-dimensional gel electrophoresis. These strains had different origins, belonged to different serovars (4b, 1/2a, and 1/2b), and presented with different levels of virulence in chicken embryos. The clustering of the strains in two groups based on proteomic patterns is in agreement with the L. monocytogenes phylogenetic lineages. Statistical analysis did not allow for identification of proteins specific to the isolate origin or the virulence level of the strains, but 26 and 21 protein spots were shown to be significantly overexpressed and underexpressed, respectively, in the six strains of serovar 1/2a (lineage II) compared to strains of serovar 1/2b or 4b. Moreover, a penicillin-binding protein was specific for serovar 1/2b and two protein spots identified as a serine protease were specific to serovar 4b. These protein spots, identified through peptide mass fingerprinting using matrix-assisted laser desorption ionization-time of flight mass spectrometry, were essentially found in the extracellular proteome and may have uses as potential markers for serotyping and risk analysis.  相似文献   

16.
The information about disease burden and epidemiology of invasive listeriosis in Asia is scarce. From 2000 to 2013, a total of 338 patients with invasive listeriosis (bacteremia, meningitis, and peritonitis) were treated at four medical centers in Taiwan. The incidence (per 10,000 admissions) of invasive listeriosis increased significantly during the 14-year period among the four centers (0.15 in 2000 and >1.25 during 2010–2012) and at each of the four medical centers. Among these patients, 45.9% were elderly (>65 years old) and 3.3% were less than one year of age. More than one-third (36.7%) of the patients acquired invasive listeriosis in the spring (April to June). Among the 132 preserved Listeria monocytogenes isolates analyzed, the most frequently isolated PCR serogroup-sequence type (ST) was IIb-ST87 (23.5%), followed by IIa-ST378 (19.7%) and IIa-ST155 (12.1%). Isolation of PCR serogroups IIb and IVb increased significantly with year, with a predominance of IIb-ST87 isolates (23.5%) and IIb-ST 228 isolates emerging in 2013. A total of 12 different randomly amplified polymorphic DNA (RAPD) patterns (Patterns I to XII) were identified among the 112 L. monocytogenes isolates belonging to eight main PCR serogroup-STs. Identical RAPD patterns were found among the isolates exhibiting the same PCR serogroup-ST. In conclusion, our study revealed that during 2000–2013, listeriosis at four medical centers in Taiwan was caused by heterogeneous strains and that the upsurge in incidence beginning in 2005 was caused by at least two predominant clones.  相似文献   

17.
18.
A total of 153 strains of Listeria monocytogenes isolated from different sources (72 from sheep, 12 from cattle, 18 from feedstuffs, and 51 from humans) in Spain from 1989 to 2000 were characterized by pulsed-field gel electrophoresis. The strains of L. monocytogenes displayed 55 pulsotypes. The 84 animal, 51 human, and 18 feedstuff strains displayed 31, 29, and 7 different pulsotypes, respectively, indicating a great genetic diversity among the Spanish L. monocytogenes isolates studied. L. monocytogenes isolates from clinical samples and feedstuffs consumed by the diseased animals were analyzed in 21 flocks. In most cases, clinical strains from different animals of the same flock had identical pulsotypes, confirming the existence of a listeriosis outbreak. L. monocytogenes strains with pulsotypes identical to those of clinical strains were isolated from silage, potatoes, and maize stalks. This is the first study wherein potatoes and maize stalks are epidemiologically linked with clinical listeriosis.  相似文献   

19.
Listeria monocytogenes is a significant food-borne human and veterinary pathogen. Contaminated silage commonly leads to disease in livestock, but the pervasive nature of the bacterium can make it difficult to identify the source of infection. An investigation of bovine listeriosis that occurred on a Pacific Northwest dairy farm (“farm A”) revealed that the clinical strain was closely related to fecal strains from asymptomatic cows, and that farm environment was heavily contaminated with a diversity of L. monocytogenes strains. In addition, the farm A clinical strain was closely related to clinical and environmental strains obtained 1 year prior from a second Northwest dairy farm (“farm B”). To investigate the source(s) of contamination on farm A, environmental samples were collected from farm A at two time points. Pulsed-field gel electrophoresis characterization of 538 isolates obtained from that farm identified 57 different AscI pulsovars. Fecal isolates obtained from individual cows were the most genetically diverse, with up to 94% of fecal samples containing more than one pulsovar. The maximum numbers of pulsovars and serotypes isolated from a fecal sample of one cow were 6 and 4, respectively. Serotype 1/2a was isolated most frequently at both time points. Microarray genotyping of bovine listeriosis, fecal, and silage strains from both farms identified four probes that differentiated listeriosis strains from environmental strains; however, no probe was common to both bovine listeriosis strains.  相似文献   

20.
Listeria monocytogenes is an intracellular bacterium that elicits robust CD8+ T-cell responses. Despite the ongoing development of L. monocytogenes-based platforms as cancer vaccines, our understanding of how L. monocytogenes drives robust CD8+ T-cell responses remains incomplete. One overarching hypothesis is that activation of cytosolic innate pathways is critical for immunity, as strains of L. monocytogenes that are unable to access the cytosol fail to elicit robust CD8+ T-cell responses and in fact inhibit optimal T-cell priming. Counterintuitively, however, activation of known cytosolic pathways, such as the inflammasome and type I IFN, lead to impaired immunity. Conversely, production of prostaglandin E2 (PGE2) downstream of cyclooxygenase-2 (COX-2) is essential for optimal L. monocytogenes T-cell priming. Here, we demonstrate that vacuole-constrained L. monocytogenes elicit reduced PGE2 production compared to wild-type strains in macrophages and dendritic cells ex vivo. In vivo, infection with wild-type L. monocytogenes leads to 10-fold increases in PGE2 production early during infection whereas vacuole-constrained strains fail to induce PGE2 over mock-immunized controls. Mice deficient in COX-2 specifically in Lyz2+ or CD11c+ cells produce less PGE2, suggesting these cell subsets contribute to PGE2 levels in vivo, while depletion of phagocytes with clodronate abolishes PGE2 production completely. Taken together, this work demonstrates that optimal PGE2 production by phagocytes depends on L. monocytogenes access to the cytosol, suggesting that one reason cytosolic access is required to prime CD8+ T-cell responses may be to facilitate production of PGE2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号