首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 865 毫秒
1.
2.
We have used electron microscopy of thin sections and experiments on isolated viroplasms to compare the properties of four strains of cauliflower mosaic virus (CaMV), three of which were partially or completely deleted in open reading frame (ORF) II. Our results confirm that this gene is required for aphid transmissibility and show that the product of ORF II influences the firmness with which virions are held within the viroplasm. Analysis of the proteins in the viroplasms showed that a mutant with a partial deletion in ORF II produced a protein smaller than the normal ORF product. This smaller protein was non-functional with respect both to aphid transmissibility and properties of the viroplasms.  相似文献   

3.
Transmission of cauliflower mosaic virus (CaMV) by aphids requires two viral nonstructural proteins, the open reading frame (ORF) II and ORF III products (P2 and P3). An interaction between a C-terminal domain of P2 and an N-terminal domain of P3 is essential for transmission. Purified particles of CaMV are efficiently transmitted only if aphids, previously fed a P2-containing solution, are allowed to acquire a preincubated mixture of P3 and virions in a second feed, thus suggesting a direct interaction between P3 and coat protein. Herein we demonstrate that P3 directly interacts with purified viral particles and unassembled coat protein without the need for any other factor and that P3 mediates the association of P2 with purified virus particles. The interaction domain of P3 is located in its C-terminal half, downstream of the P3-P2 interaction domain but overlapping a region which binds nucleic acids. Mutagenesis of P3 which interferes with the interaction between P3 and virions is correlated with the loss of transmission by aphids. Taken together, our results demonstrate that P3 plays a crucial role in the formation of the CaMV transmissible complex by serving as a bridge between P2 and virus particles.  相似文献   

4.
Infection of young turnip leaves with an aphid-transmissible isolate, Cabb B-JI, of cauliflower mosaic virus (CaMV) causes synthesis of an Mr 18 000 polypeptide (p18) which co-purifies with virus inclusion bodies. This polypeptide is not detectable in leaves infected with either of two aphid non-transmissible isolates. Campbell and CM4-184. Construction in vitro, of hybrid genomes between Cabb B-JI and Campbell isolates demonstrates that aphid transmissibility and presence of p18 is dependent on the small genome fragment from the BstEII site to the XhoI site. A deletion made in this fragment within open reading frame (ORF) II causes loss of aphid transmissibility and also terminates production of p18. We conclude that aphid transmissibility and the presence of p18 are related to the expression of ORF II of the CaMV genome.  相似文献   

5.
Cauliflower mosaic virus (CaMV) open reading frame III (ORF III) codes for a virion-associated protein (Vap), which is one of two viral proteins essential for aphid transmission. However, unlike the aphid transmission factor encoded by CaMV ORF II, Vap is also essential for systemic infection, suggesting that it is a multifunctional protein. To elucidate the additional function or functions of Vap, we tested the replication of noninfectious ORF III-defective mutants in transfected turnip protoplasts. PCR and Western blot analyses revealed that CaMV replication had occurred with an efficiency similar to that of wild-type virus and without leading to reversions. Electron microscopic examination revealed that an ORF III frameshift mutant formed normally structured virions. These results demonstrate that Vap is dispensable for replication in single cells and is not essential for virion morphogenesis. Analysis of inoculated turnip leaves showed that the ORF III frameshift mutant does not cause any detectable local infection. These results are strongly indicative of a role for Vap in virus movement.  相似文献   

6.
The acquisition and transmission of cauliflower mosaic virus (CaMV) by six aphid species and three clones of aphids was studied and compared with that of turnip mosaic virus (TuMV) with Myzus persicae. Two clones of Aphis fabae were unable to transmit CaMV, but the other species, Acyrthosiphon pisum, Brevicoryne brassicae, Megoura viciae, M. persicae and Rhopalosiphum padi transmitted in a bior multi-phasic manner. There was no statistical evidence of a bimodal transmission pattern. R. padi is recorded as a vector of CaMV for the first time. The transmission efficiency of CaMV varied with time of acquisition and suggested that accumulation of the virus occurred with two peaks of efficiency within the anterior region of the insect gut. The time at which these two peaks occurred varied between the species, but the basic pattern was common to all transmitting aphid species in this study. This pattern contrasted with that of TuMV. The transmission data are discussed in terms of bimodal transmission, the influence of feeding behaviour, the role of a helper protein associated with both TuMV and CaMV and the evidence for site specific attachment of CaMV.  相似文献   

7.
《Research in virology》1990,141(6):677-683
The cauliflower mosaic virus (CaMV) hybrid SΔII, partially deleted in ORFII, loses its transmissibility by the aphid Myzus persicae on 5-min acquisition feed. We have also shown that it is not transmitted after 8-h acquisition feed. The same occurs with Brevicoryne brassicae. Therefore, the aphid transmission factor (ATF) is involved in both means of transmission and in both aphid species. M. persicae can acquire CaMV Cabb-S strain in less than 20 s. M. persicae is a more efficient vector during a short feed than during a long feed, contrary to B. brassicae which transmits better during a long feed.  相似文献   

8.
Antiserum was prepared against a synthetic peptide corresponding to the N-terminal 20 amino acids of the protein encoded by cauliflower mosaic virus (CaMV) open reading frame VII (ORF VII). This antiserum was used to detect the expression of CaMV ORF VII either in Saccharomyces cerevisiae transformed by an expression vector containing CaMV ORF VII or in CaMV-infected plants. Only in S. cerevisiae has a 14-kilodalton protein been detected.  相似文献   

9.
10.
11.
The cauliflower mosaic virus (CaMV) has an icosahedral capsid composed of the viral protein P4. The viral product P3 is a multifunctional protein closely associated with the virus particle within host cells. The best-characterized function of P3 is its implication in CaMV plant-to-plant transmission by aphid vectors, involving a P3-virion complex. In this transmission process, the viral protein P2 attaches to virion-bound P3, and creates a molecular bridge between the virus and a putative receptor in the aphid's stylets. Recently, the virion-bound P3 has been suggested to participate in cell-to-cell or long-distance movement of CaMV within the host plant. Thus, as new data accumulate, the importance of the P3-virion complex during the virus life-cycle is becoming more and more evident. To provide a first insight into the knowledge of the transmission process of the virus, we determined the 3D structures of native and P3-decorated virions by cryo-electron microscopy and computer image processing. By difference mapping and biochemical analysis, we show that P3 forms a network around the capsomers and we propose a structural model for the binding of P3 to CaMV capsid in which its C terminus is anchored deeply in the inner shell of the virion, while the N-terminal extremity is facing out of the CaMV capsid, forming dimers by coiled-coil interactions. Our results combined with existing data reinforce the hypothesis that this coiled-coil N-terminal region of P3 could coordinate several functions during the virus life-cycle, such as cell-to-cell movement and aphid-transmission.  相似文献   

12.
Emerging evidence suggests that viral infection modifies host plant traits that in turn alter behaviour and performance of vectors colonizing the plants in a way conducive for transmission of both nonpersistent and persistent viruses. Similar evidence for semipersistent viruses like cauliflower mosaic virus (CaMV) is scarce. Here we compared the effects of Arabidopsis infection with mild (CM) and severe (JI) CaMV isolates on the feeding behaviour (recorded by the electrical penetration graph technique) and fecundity of the aphid vector Myzus persicae. Compared to mock-inoculated plants, feeding behaviour was altered similarly on CM- and JI-infected plants, but only aphids on JI-infected plants had reduced fecundity. To evaluate the role of the multifunctional CaMV protein P6-TAV, aphid feeding behaviour and fecundity were tested on transgenic Arabidopsis plants expressing wild-type (wt) and mutant versions of P6-TAV. In contrast to viral infection, aphid fecundity was unchanged on all transgenic lines, suggesting that other viral factors compromise fecundity. Aphid feeding behaviour was modified on wt P6-CM-, but not on wt P6-JI-expressing plants. Analysis of plants expressing P6 mutants identified N-terminal P6 domains contributing to modification of feeding behaviour. Taken together, we show that CaMV infection can modify both aphid fecundity and feeding behaviour and that P6 is only involved in the latter.  相似文献   

13.
Z Kiss-László  S Blanc    T Hohn 《The EMBO journal》1995,14(14):3552-3562
A splicing event essential for the infectivity of a plant pararetrovirus has been characterized. Transient expression experiments using reporter constructs revealed a splice donor site in the leader sequence of the cauliflower mosaic virus (CaMV) 35S RNA and three additional splice donor sites within open reading frame (ORF) I. All four donors use the same splice acceptor within ORF II. Splicing between the leader and ORF II produces an mRNA from which ORF III and, in the presence of the CaMV translational transactivator, ORF IV can be translated efficiently. The other three splicing events produce RNAs encoding ORF I-II in-frame fusions. All four spliced CaMV RNAs were detected in CaMV-infected plants. Virus mutants in which the splice acceptor site in ORF II is inactivated are not infectious, indicating that splicing plays an essential role in the CaMV life cycle. The results presented here suggest a model for viral gene expression in which RNA splicing is required to provide appropriate substrate mRNAs for the specialized translation mechanisms of CaMV.  相似文献   

14.
Carnation etched ring virus (CERV) DNA comprises 7932 bp. CERV primer binding sites and overall genome organization are similar to those of the related cauliflower mosaic virus (CaMV). The six open reading frames of CERV showed amino acid homology (50-80%) with CaMV ORFs I-VI; no homologues of CaMV ORFs VII or VIII were found. CERV ORFs 1-5 interface each other with the sequence ATGA. The comparison of CERV ORF5 with CaMV ORFV highlighted regions which show homologies to retrovirus gag/pol protease, RNase H and DNA polymerase domains; the possibility that the DNA polymerase domain comprises two subdomains, operating off different templates, is discussed. Both CERV and CaMV ORFs I have sequence homology to tobacco mosaic virus P30 and plastocyanin.  相似文献   

15.
L Dixon  J Jiricny  T Hohn 《Gene》1986,41(2-3):225-231
Mutation of the initiation codon of the dispensible open reading frame, ORF VII, of cauliflower mosaic virus (CaMV) delayed the appearance of disease symptoms, but the mutants reverted with high frequency. This suggests a role of this start codon in viral expression. Oligonucleotide-directed mutagenesis, utilizing a novel, repair-resistant deoxyguanosine analogue, 2'-deoxy-7-deazainosine (dDI), highly improved the yield of mutants.  相似文献   

16.
Host-to-host transmission--a key step in plant virus infection cycles--is ensured predominantly by vectors, especially aphids and related insects. A deeper understanding of the mechanisms of virus acquisition, which is critical to vector-transmission, might help to design future virus control strategies, because any newly discovered molecular or cellular process is a potential target for hampering viral spread within host populations. With this aim in mind, an aphid membrane-feeding assay was developed where aphids transmitted two non-circulative viruses [cauliflower mosaic virus (CaMV) and turnip mosaic virus] from infected protoplasts. In this assay, virus acquisition occurs exclusively from living cells. Most interestingly, we also show that CaMV is less efficiently transmitted by aphids in the presence of oryzalin--a microtubule-depolymerising drug. The example presented here demonstrates that our technically simple "virus-acquisition phenotyping assay" (VAPA) provides a first opportunity to implement correlative studies relating the physiological state of infected plant cells to vector-transmission efficiency.  相似文献   

17.
We report a survey of four viruses (beet western yellows luteovirus (BWYV), cauliflower mosaic caulimovirus (CaMV), turnip mosaic potyvirus (TuMV), turnip yellow mosaic tymovirus (TYMV)) in five natural populations of Brassica oleracea in Dorset (UK). All four viruses were common; 43% of plants were infected with BWYV, 60% with CaMV, 43% with TuMV and 18% with TYMV. For each virus there were significant differences in the proportion of infected plants among populations, which were not completely explained by differences in the age of plants. Multiple virus infections were prevalent, with 54% of plants having two or more virus types. There were statistically significant associations between pairs of viruses. The CaMV was positively associated with the other three viruses, and BWYV was also positively associated with TuMV. There was no detectable association between BWYV and TYMV, whereas TuMV and TYMV were negatively associated. We suggest these associations result from BWYV, CaMV and TuMV having aphid vectors in common, as aphids are attracted to plants that already have a virus infection. Infected plants were distributed randomly or were very weakly aggregated within populations. The implications of widespread multiple virus infections in natural plant populations are discussed with respect to the release of transgenic plants expressing virus-derived genes.  相似文献   

18.
Studies have indicated that cauliflower mosaic virus (CaMV) gene expression is mediated by the translation of polycistronic 35S pregenomic RNA, but the involvement of some minor subgenomic RNA species is also suspected. We examined the involvement of the 35S promoter in the expression of CaMV open reading frames (ORFs) I and IV using both 35S RNA-driven and promoter-less ORF I- and ORF IV-β-glucuronidase (GUS) fusion constructs. In addition to the 35S promoter-dependent expression of both ORF I- and IV-GUS fusions, we detected the 35S promoter-independent expression of both fusion genes via subgenomic mRNAs, which were detected by Northern blotting in the protoplasts transfected with the 35S promoter-driven constructs as well as in those transfected with the promoter-less constructs. These results suggest the involvement of subgenomic RNAs in the expression of CaMV ORFs I and IV, and the operation of a dual strategy in the expression of two viral genes.  相似文献   

19.
Expression of a putative plant viral gene in Escherichia coli   总被引:2,自引:0,他引:2  
  相似文献   

20.
It is possible to replace the CaMV (cauliflower mosaic virus) ORF (open reading frame) II with foreign sequences without interfering with virus viability. Such recom-binants can induce the synthesis of substantial amounts of a foreign protein in infected plants and confer new properties to these plants. However, so far only three genes have been successfully cloned and expressed in this way. The expression mechanism of CaMV demands precise replacement of ORF II and probably certain structural features of the viral 35S RNA, which should not be disturbed by inserted sequences. Since these features are largely unknown, it cannot at present be pre-dicted whether an insert will be tolerated. It is more likely that larger inserts will disturb the viral gene expression mechanism than smaller ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号