首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any central control, instead arising from local interactions among individuals. A well-studied example is the formation of recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation of foraging by harvester ant (Pogonomyrmex barbatus) colonies. This species forages for scattered seeds that one ant can retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations. Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated in response to current food availability throughout the colony's foraging area. Ants use the rate of brief antennal contacts inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information, describing a process at the level of individual ants that predicts the overall foraging activity of the colony.  相似文献   

2.
Recruitment to food or nest sites is well known in ants; the recruiting ants lay a chemical trail that other ants follow to the target site, or they walk with other ants to the target site. Here we report that a different process determines foraging direction in the harvester ant Pogonomyrmex barbatus. Each day, the colony chooses from among up to eight distinct foraging trails; colonies use different trails on different days. Here we show that the patrollers regulate the direction taken by foragers each day by depositing Dufour's secretions onto a sector of the nest mound about 20 cm long and leading to the beginning of a foraging trail. The patrollers do not recruit foragers all the way to food sources, which may be up to 20 m away. Fewer foragers traveled along a trail if patrollers had no access to the sector of the nest mound leading to that trail. Adding Dufour's gland extract to patroller-free sectors of the nest mound rescued foraging in that direction, while poison gland extract did not. We also found that in the absence of patrollers, most foragers used the direction they had used on the previous day. Thus, the colony's 30-50 patrollers act as gatekeepers for thousands of foragers and choose a foraging direction, but they do not recruit and lead foragers all the way to a food source.  相似文献   

3.
The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4–8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony’s trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.  相似文献   

4.
The allocation of foragers in red wood ants   总被引:1,自引:0,他引:1  
Abstract. 1. We studied how colonies of the red wood ant, Formica polyctena , adjust the numbers of foragers allocated to different foraging trails. In a series of field experiments, foragers were marked and transferred from one nest to another, related nest, where they joined the foraging force. Transferred workers acted as a reserve of uncommitted, available foragers.
2. Previous work shows that each individual forager habitually uses one trail. We found that for an uncommitted forager, the influence of recruitment initially is stronger than that of directional fidelity. Transferred workers were likely to use trails leading to new food sources. When transferred to a new nest, foragers were not likely to use a trail in the same direction as their original trail in the donor nest.
3. After a week, transferred foragers tended to develop route fidelity. Even after bait was no longer present, they continued to use the trail that had formerly led to a bait source.
4. We examined how colonies adjust numbers on a trail by experimentally depleting some trails. Colonies usually did not compensate for depletion: foragers were not recruited to depleted trails.
5. In general, the dynamics of foraging in this species facilitate a consistent foraging effort rather than rapid adjustments of forager allocation.  相似文献   

5.
Summary: The ant Messor barbarus is a major seed predator on annual grasslands of the Mediterranean area. This paper is an attempt to relate the foraging ecology of this species to resource availability and to address several predictions of optimal foraging theory under natural conditions of seed harvesting.¶Spatial patterns of foraging trails tended to maximise acquisition of food resources, as trails led the ants to areas where seeds were more abundant locally. Moreover, harvesting activity concentrated on highly frequented trails, on which seeds were brought into the nest in larger numbers and more efficiently, at a higher mean rate per worker.¶The predictions of optimal foraging theory that ants should be more selective in both more resource-rich and more distant patches were tested in the native seed background. We confirm that selectivity of ants is positively related to trail length and thus to distance from the nest of foraged seeds. Conversely, we fail to find a consistent relationship between selectivity and density or species diversity of seed patches. We discuss how selectivity assessed at the colony level may depend on factors other than hitherto reported behavioural changes in seed choice by individual foragers.  相似文献   

6.
Many animals, including humans, organize their foraging activity along well-defined trails. Because trails are cleared of obstacles, they minimize energy expenditure and allow fast travel. In social insects such as ants, trails might also promote social contacts and allow the exchange of information between workers about the characteristics of the food. When the trail traffic is heavy, however, traffic congestion occurs and the benefits of increased social contacts for the colony can be offset by a decrease of the locomotory rate of individuals. Using a small laboratory colony of the leaf-cutting ant Atta colombica cutting a mix of leaves and Parafilm, we compared how foraging changed when the width of the bridge between the nest and their foraging area changed. We found that the rate of ants crossing a 5 cm wide bridge was more than twice as great as the rate crossing a 0.5 cm bridge, but the rate of foragers returning with loads was less than half as great. Thus, with the wide bridge, the ants had about six times lower efficiency (loads returned per forager crossing the bridge). We conclude that crowding actually increased foraging efficiency, possibly because of increased communication between laden foragers returning to the nest and out-going ants. Received 15 December 2006; revised 16 February 2007; accepted 19 February 2007.  相似文献   

7.
Ants are ordinarily faced with a succession of bifurcations along their foraging networks. Given that there is no directionality in pheromone trails, each bifurcation is potentially an opportunity for error in the trajectory of laden workers to the nest, which could entail considerable inefficiencies in the transportation of food to the colony. Leaf-cutting ants (Atta and Acromyrmex) commonly show intense traffic and complex foraging trail systems, which make them ideal organisms to study worker behavior in trail bifurcations. The behavior of leaf-cutting ants of the genus Acromyrmex in trail bifurcations is still largely unexplored. Thus, this study aimed to assess the behavior of Acromyrmex crassispinus workers on trail bifurcations and to investigate whether differences in ant flow on foraging trails influence the error rate of nestbound laden workers at trail bifurcation. There was a negative relationship between ant flow and error rate of nestbound laden workers. Most workers walked in the central part of the foraging trails but occupied a broader area of the foraging trail when the ant flow was high. The results of this study provide valuable insight into the organization of traffic flow in A. crassispinus and its impacts on the foraging strategy of the species.  相似文献   

8.
Animals principally forage to try to maximize energy intake per unit of feeding time, developing different foraging strategies. Temperature effects on foraging have been observed in diverse ant species; these effects are limited to the duration of foraging or the number of foragers involved. The harvester ant Messor barbarus L. 1767 has a specialized foraging strategy that consists in the formation of worker trails. Because of the high permeability of their body integument, we presume that the length, shape, and type of foraging trails of M. barbarus must be affected by temperature conditions. From mid-June to mid-August 1999, we tested the effect on these trail characteristics in a Mediterranean forest. We found that thermal stress force ants to use a foraging pattern based on the variation of the workers trail structure. Ants exploit earlier well-known sources using long physical trails, but as temperatures increases throughout the morning, foragers reduce the length of the foraging column gradually, looking for alternative food sources in nonphysical trails. This study shows that animal forage can be highly adaptable and versatile in environments with high daily variations.  相似文献   

9.
The stochasticity in food quality and availability, and physical trail characteristics experienced by leaf-cutter ants, may favour individual flexibility in load-mass selection so as to forage effectively. The present study aimed to confirm previous evidence, from Atta cephaoltes foragers, of variable load-mass selection in response to steep inclines and declines in the leaf-cutter ant Acromyrmex octospinosus. The foraging trail gradient of a captive colony of Ac. octospinosus was manipulated by altering the position of a foraging platform relative to the nest box. The results indicate an effect of steep gradients on walking speed and variation in load mass in relation to gradient as a result of individual plasticity, not recruitment of different-sized individuals. Ants selected heavier loads when returning to the nest vertically downwards than when returning horizontally or vertically upwards. These results are discussed with reference to foraging performance. Walking speed was considerably reduced on upward returns to the nest, but was also slower when travelling vertically downwards compared with horizontal trails, suggesting vertical trails per se impact on the time costs of foraging. Differences in load-mass selection were evident from the onset of foraging and did not change significantly over the course of 24 h, suggesting this behaviour was based on individual experience, rather than colony-level information feedback. The present study has demonstrated that Ac. octospinosus foragers are capable of individual flexibility in load-mass selection in response to a physical trail characteristic that is pertinent to their natural habitat and is a factor seldom considered in theoretical foraging models.  相似文献   

10.
Many social insects use pheromones to communicate and coordinatetheir activities. Investigation of intraspecific differencesin pheromone use is a new area of social insect research. Forexample, interindividual variation in alarm pheromone contenthas been found in physical castes of polymorphic ants. Manyant species use multiple trail pheromones. Here we present novelresearch into trail pheromone variations between behavioralsubcastes of pharaoh ants, Monomorium pharaonis. Monomoriumpharaonis is attracted to trail pheromones found in its poisonglands (monomorines) and Dufour's glands (faranal). We showthat the most abundant monomorines, I (M1) and III (M3), canbe readily detected in pheromone trails. A behaviorally distinctsubcaste known as "pathfinder" foragers can relocate long-livedpheromone trails. Chemical analysis showed that pathfinder foragershad low M3:M1 ratios (mean 3.09 ± 1.53, range 1.03–7.10).Nonpathfinder foragers had significantly greater M3:M1 ratios(38.3 ± 60.0, range 3.54–289). We found that M3:M1ratio did not differ between foragers of different age but wascorrelated with behavioral subcaste at all ages. The relativeabundance of M3:M1 on foraging trails ranged from 3.03–41.3over time during pheromone trail build-up. M3:M1 ratio alsovaried spatially throughout trail networks, being lowest ontrail sections closest to a food source (M3:M1 = 1.9–3.61)and highest near the nest (M3:M1 = 67–267). Our resultsindicate a functional role for differences in pheromone trailcomposition, whereby pathfinder foragers might preferentiallymark sections of pheromone trail networks for future exploration.  相似文献   

11.
Summary Workers of the giant tropical ant,Paraponera clavata, use trail pheromones for orientation and recruitment of nestmates. However, chemical markings may not always be sufficient for successful navigation in complex three-dimensional terrain, and additional orientation cues may be required. Behavioral field experiments were performed to investigate the significance of visual landmarks for homing foragers. Animals which were prevented from seeing the canopy were unable to navigate back to the nest, even though trail pheromones were still present. In contrast, foragers found their way back to the nest after their trail pheromones had been abolished but their visual scenes remained unchanged. This emphasizes the important role of visual landmarks during spatial orientation in homingP. clavata foragers. Individually foraging scouts were discovered in the understory of the forest floor up to 30 m away from their nest. They were rewarded, and displaced between 0.8 m and 13.6 m. Fifteen out of 16 animals had no difficulties in finding the nest entrance despite the altered appearance of local and distant landmarks at the release site. Apparently the scouts were able to recognize the visual scenes at the release site, and used them for reference to locate the nest entrance. In contrast, ants displaced from their nest to sites around 4 m away had more difficulties to re-find the nest.  相似文献   

12.
Waste management in the leaf-cutting ant Atta colombica   总被引:1,自引:0,他引:1  
Unlike most leaf-cutting ants, which have underground wastedumps, the leaf-cutting ant Atta colombica dumps waste in aheap outside the nest. Waste is hazardous, as it is contaminatedwith pathogens. We investigated the organization of the workforceinvolved in outside-nest tasks (foraging, waste disposal) andquantified task switching and heap location to test hypothesesthat these tasks are organized to minimize contact between the heap and foraging entrances and trails. Waste management isan important task: 11% of externally working ants were eithertransporting waste or manipulating waste on the heap, and theother 89% were foragers. There is strict division of laborbetween foragers and waste workers, with no task switching.Waste management also has division of labor and is undertakenby transporters that carry waste to the heap margins and heapworkers that manage the heap. Waste heaps are always locateddownhill from nest entrances. The distance to the waste heapis positively related to colony size and negatively relatedto slope. Foraging trails avoid the heap, with 92% of trailsgoing away from the heap. This avoidance behavior is costly,increasing foraging trail length by at least 6%. Waste managementin A. colombica is a sophisticated system that encompassesboth work and spatial organization. This organization is probablyadaptive in reducing disease transmission. Division of labor separates waste management from foraging, reducing the likelihoodof foragers becoming contaminated with waste. The downhilllocation of heaps reduces waste entering entrances during rain.The orientation of foraging trails reduces the possibilityof foragers becoming accidentally contaminated with waste.  相似文献   

13.
Summary Most studies on leaf-cutting ant foraging examined forest species that harvest dicot leaves. We investigated division of labor and task partitioning during foraging in the grass-cutting ant Atta vollenweideri. Workers of this species harvest grass fragments and transport them to the nest for distances up to 150 m along well-established trunk trails. We recorded the behavior of foraging ants while cutting and monitored the transport of individually-marked fragments from the cutting site until they reached the nest. A. vollenweideri foragers showed division of labor between cutting and carrying, with larger workers cutting the fragments, and smaller ones transporting them. This division was less marked when plants were located very close to the nest and no physical trail was present, i.e., the cutter often transported its own fragment back to the nest. On long foraging trails, the transport of fragments was a partitioned task, i.e., workers formed transport chains composed of 2 to 5 carriers. This sequential load transport occurred more often on long than on short trails. The first carriers in a transport chain covered only short distances before dropping their fragments, and they were observed to turn back and revisit the patch. The last carriers covered the longest distance. The probability of dropping the carried fragment on the trail was independent of both worker and fragment size, and there was no particular location on the trail for dropping, i.e., fragments were not cached. Transport time of fragments transported by a chain was longer than for those transported by single workers all the way to the nest, i.e., sequential transport did not save foraging time. Two hypotheses concerning the possible adaptive value of transport chains are discussed. The first one argues that sequential transport may lead to an increased material transport rate compared to individual transport. The second one considers sequential transport as a way to enhance the information flow among foragers, thus leading to a quicker build-up of workers at particular harvesting places. It is suggested that rather than increasing the gross transport rate of material, transport via chains may favor the transfer of information about the kind of resource being actually harvested.Received 19 December 2002; revised 14 March 2003; accepted 19 March 2003  相似文献   

14.
We investigated how the formicine ant Gigantiops destructor can use vector information to navigate within the cluttered environment of the rain forest. Displaced foragers use skylight information to move in the theoretical feeder-to-nest direction, whether they are prevented from updating their path-integrator during foraging or captured at the departure from their nest, i.e. with a current accumulator state very close to zero. Only ants that have collected food are able to download a long-term stored reference vector pointing in the nest direction, irrespective of the current accumulator state of their path-integrator stored in a working memory and independent of familiar landmarks. Depending on the release sites, ants that became lost at a maximum distance of 50 cm could still hit and recognize their familiar route, or they engaged in a systematic search for it centered on the release sites. In contrast to Cataglyphis desert ants, Gigantiops ants do not rely primarily on the current accumulator state of their egocentric path integrator. Such a long-term vector-based navigation primed by food capture is well adapted for a tropical ant foraging during periods spanning several hours. This could prevent the numerous cumulative errors in the evaluation of the angles steered that might result from a continuously running path-integrator operating during complex foraging patterns performed at ground or arboreal levels and during passive displacement in response to heavy rain.  相似文献   

15.
1. Physically complex substrates impart significant costs on cursorial central‐place foragers in terms of time spent outside the nest and total distance travelled. Ants foraging in trees navigate varied surfaces to access patchy resources, thus providing an appropriate model system for examining interactions between foraging efficiency and substrates. 2. We expected that the speed of recruitment, body size distribution and species richness of foraging arboreal ants would differ predictably among common substrate types occurring on tropical tree trunks. We measured changes in ant abundance and species composition over time at baits placed on bare tree bark, moss‐covered bark, and vine‐like vegetation appressed to bark. We also measured average body size and body size frequency on the three substrate types. Ants discovered baits sooner and accumulated at baits relatively faster when using vine substrates as the primary foraging trail. Average body size was smaller on vine substrates than on bark. Experimental removal of vine and moss substrates nullified these differences. Contrary to our predictions, species richness and body size distributions did not differ among the three substrate types, due in part to the frequent presence of a few common ground‐nesting species at baits on bare bark. 3. Our results collectively indicate that linear substrates facilitate access of foraging ants to patchy resources. Ant use of vine‐like substrates appears to be opportunistic; vine use is not confined to certain species nor constrained by body size.  相似文献   

16.
Creating a routing backbone is a fundamental problem in both biology and engineering. The routing backbone of the trail networks of arboreal turtle ants (Cephalotes goniodontus) connects many nests and food sources using trail pheromone deposited by ants as they walk. Unlike species that forage on the ground, the trail networks of arboreal ants are constrained by the vegetation. We examined what objectives the trail networks meet by comparing the observed ant trail networks with networks of random, hypothetical trail networks in the same surrounding vegetation and with trails optimized for four objectives: minimizing path length, minimizing average edge length, minimizing number of nodes, and minimizing opportunities to get lost. The ants’ trails minimized path length by minimizing the number of nodes traversed rather than choosing short edges. In addition, the ants’ trails reduced the opportunity for ants to get lost at each node, favoring nodes with 3D configurations most likely to be reinforced by pheromone. Thus, rather than finding the shortest edges, turtle ant trail networks take advantage of natural variation in the environment to favor coherence, keeping the ants together on the trails.  相似文献   

17.
Apterostigma collare Emery is a highly derived fungus-growing ant within the Tribe Attini whose small, fungal nests are found in tropical rain forests. This study focuses on determining the colony structure of A. collare, specifically searching for evidence of polydomy or independence. We surveyed and observed nests in the field, and performed foraging bioassays and dissected nests in the laboratory. We determined the size and contents of nests in field populations. Nests found near other nests were not statistically different in size compared to nests found alone. There was also no statistical difference between near and lone nests regarding the presence of a queen in the nest. Most nests contained one queen with brood and workers, regardless of their proximity to other nests. Observations also were made of foraging and trail-marking behaviors. Foraging activity observed in the field revealed that workers left the nest area and followed trails upwards into the canopy, but they did not interact with foragers from other nearby nests. In a laboratory foraging arena, foragers marked a trail to a food source by dragging the gaster. Bioassays showed that A. collare workers preferred their own foraging trails, but not those of other conspecific colonies. All results suggest that each nest represents an independent colony, supporting a previous report that nests found in close proximity do not constitute a polydomous colony. Received 19 July 2006; revised 23 March 2007; accepted 6 June 2007.  相似文献   

18.
1. In Argentina, six species of Pseudacteon parasitoids (Phoridae) attack Solenopsis richteri, one of the two species of South American fire ant that are exotic pests in North America. 2. The presence of these Pseudacteon species significantly reduces the number of ants at food resources in the field, as well as foraging activity generally. 3. Some Pseudacteon not only attack ants walking on trails or at feeding sites, but also at mound entrances, inhibiting workers from leaving to forage. 4. The average size of foraging ants (which prescribes their suitability as hosts) decreased in the presence of phorids. 5. The number of attacking phorids was correlated positively with the number of ants walking towards the food on the trail before the attack. 6. Solenopsis richteri workers responded to manipulations of food size and presence or absence of parasitoids in a risk-adjusting way, i.e. although more foragers were recruited to larger food items, attacking phorids reduced ant foraging activity by the same factor regardless of the size of the food offered. 7. The data suggest that S. richteri colonies juggle the needs to harvest food efficiently, reduce competition, and avoid excess risks from parasitoids in complex ways.  相似文献   

19.
Social insect colonies operate without central control or any global assessment of what needs to be done by workers. Colony organization arises from the responses of individuals to local cues. Red harvester ants (Pogonomyrmex barbatus) regulate foraging using interactions between returning and outgoing foragers. The rate at which foragers return with seeds, a measure of food availability, sets the rate at which outgoing foragers leave the nest on foraging trips. We used mimics to test whether outgoing foragers inside the nest respond to the odor of food, oleic acid, the odor of the forager itself, cuticular hydrocarbons, or a combination of both with increased foraging activity. We compared foraging activity, the rate at which foragers passed a line on a trail, before and after the addition of mimics. The combination of both odors, those of food and of foragers, is required to stimulate foraging. The addition of blank mimics, mimics coated with food odor alone, or mimics coated with forager odor alone did not increase foraging activity. We compared the rates at which foragers inside the nest interacted with other ants, blank mimics, and mimics coated with a combination of food and forager odor. Foragers inside the nest interacted more with mimics coated with combined forager/seed odors than with blank mimics, and these interactions had the same effect as those with other foragers. Outgoing foragers inside the nest entrance are stimulated to leave the nest in search of food by interacting with foragers returning with seeds. By using the combined odors of forager cuticular hydrocarbons and of seeds, the colony captures precise information, on the timescale of seconds, about the current availability of food.  相似文献   

20.
1. Ants using trails to forage have to select between two alternative routes at bifurcations, using two, potentially conflicting, sources of information to make their decision: individual experience to return to a previous successful foraging site (i.e. fidelity) and ant traffic. In the field, we investigated which of these two types of information individuals of the leaf‐cutting ant Acromyrmex lobicornis Emery use to decide which foraging route to take. 2. We measured the proportion of foraging ants returning to each trail of bifurcations the following day, and for 4–7 consecutive days. We then experimentally increased ant traffic on one trail of the bifurcation by adding additional food sources to examine the effect of increased ant traffic on the decision that ants make. 3. Binomial tests showed that for 62% of the trails, ant fidelity was relatively more important than ant traffic in deciding which bifurcation to follow, suggesting the importance of previous experience. 4. When information conflict was generated by experimentally increasing ant traffic along the trail with less foraging activity, most ants relied on ant traffic to decide. However, in 33% of these bifurcations, ants were still faithful to their trail. Thus, there is some degree of flexibility in the decisions that A. lobicornis make to access food resources. 5. This flexible fidelity results in individual variation in the response of workers to different levels of ant traffic, and allows the colony to simultaneously exploit both established and recently discovered food patches, aiding efficient food gathering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号