首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Twelve Tn5-induced mutants of Bradyrhizobium japonicum unable to grow chemoautotrophically with CO(2) and H(2) (Aut) were isolated. Five Aut mutants lacked hydrogen uptake activity (Hup). The other seven Aut mutants possessed wild-type levels of hydrogen uptake activity (Hup), both in free-living culture and symbiotically. Three of the Hup mutants lacked hydrogenase activity both in free-living culture and as nodule bacteroids. The other two mutants were Hup only in free-living culture. The latter two mutants appeared to be hypersensitive to repression by oxygen, since Hup activity could be derepressed under 0.4% O(2). All five Hup mutants expressed both ex planta and symbiotic nitrogenase activities. Two of the seven Aut Hup mutants expressed no free-living nitrogenase activity, but they did express it symbiotically. These two strains, plus one other Aut Hup mutant, had CO(2) fixation activities 20 to 32% of the wild-type level. The cosmid pSH22, which was shown previously to contain hydrogenase-related genes of B. japonicum, was conjugated into each Aut mutant. The Aut Hup mutants that were Hup both in free-living culture and symbiotically were complemented by the cosmid. None of the other mutants was complemented by pSH22. Individual subcloned fragments of pSH22 were used to complement two of the Hup mutants.  相似文献   

2.
A method has been developed for the rapid screening of Rhizobium japonicum colonies for hydrogenase activity based on their ability to reduce methylene blue in the presence of respiratory inhibitors and hydrogen. Hydrogen uptake-positive (Hup+) colonies derepressed for hydrogenase activity were visualized by their localized decolorization of filter paper disks impregnated with the dye. Appropriate responses were seen with a number of Hup+ and Hup wild-type strains of R. japonicum as well as Hup mutants. Its specificity was further confirmed in selected strains on the basis of comparisons with chemolithotrophic growth and the presence of other genetic markers. Utilization of the method in identifying Hup+ colonies among 16,000 merodiploid derivatives of the Hup mutant strain PJ17nal containing cloned DNA fragments of the Hup+ strain 122 DES has demonstrated its applicability as a screening procedure in the genetic analysis of the R. japonicum hydrogen uptake system.  相似文献   

3.
We adapted a method for the rapid screening of colonies of free-living Rhizobium japonicum for hydrogenase activity to determine the hydrogenase status of individual soybean nodules. Crude bacteroid suspensions from nodules containing strains known to be hydrogen uptake positive (Hup+) caused a localized decolorization of filter paper disks, whereas suspensions from nodules arising from inoculation with hydrogen uptake-negative (Hup) mutants or strains did not decolorize the disks. The reliability of the method was demonstrated by its successful application to 29 slow-growing rhizobia. The Hup phenotype on methylene blue filters agreed with that determined amperometrically with either methylene blue or oxygen as the electron acceptor.  相似文献   

4.
The existence of a hydrogen uptake host-regulated (Hup-hr) phenotype was established among the soybean bradyrhizobia. The Hup-hr phenotype is characterized by the expression of uptake hydrogenase activity in symbiosis with cowpea but not soybean. Uptake hydrogenase induction is not possible under free-living cultural conditions by using techniques developed for uptake hydrogenase-positive (Hup+) Bradyrhizobium japonicum. Hydrogen oxidation by Hup-hr phenotype USDA 61 in cowpea symbioses was significant because hydrogen evolution from nitrogen-fixing nodules was not detected. An examination for uptake hydrogenase activity in soybean and cowpea with 123 strains diverse in origin and serology identified 16 Hup+ and 28 Hup-hr phenotype strains; the remainder appeared to be Hup. The Hup-hr phenotype was associated with serogroups 31, 76, and 94, while strains belonging to serogroups 6, 31, 110, 122, 123, and 38/115 were Hup+. Hup+ strains of the 123 serogroup typed positive with USDA 129-specific antiserum. The presence of the uptake hydrogenase protein in cowpea bacteroids of Hup+ strains was demonstrated with immunoblot analyses by using antibodies against the 65-kDa subunit of uptake hydrogenase purified from strain SR470. However, the hydrogenase protein of Hup-hr strains was not detected. Results of Southern hybridization analyses with pHU1 showed the region of DNA with hydrogenase genes among Hup+ strains to be similar. Hybridization was also obtained with Hup-hr strains by using a variety of cloned DNA as probes including hydrogenase structural genes. Both hydrogenase structural genes also hybridized with the DNA of four Hup strains.  相似文献   

5.
A survey was conducted in 1980 on 972 isolates of Rhizobium japonicum obtained from 65 soybean field locations in 12 states. Isolates were examined for the hydrogenase (Hup) phenotype and somatic serogroup identity. Only 20% of the isolates were Hup+, with a majority of Hup isolates occurring in 10 of the 12 states. The most predominant serogroup was 31 (21.5%), followed by 123 (13.6%). Although most serogroups contained a majority of Hup isolates, marked differences occurred. None of the isolates in serogroup 135 were Hup+, but 93% of the isolates in serogroup 122 were Hup+. The serogroups with relatively high frequencies of Hup+ isolates (122 and 110) constitute only a small part (<5% each) of the R. japonicum field population in the 12 states.  相似文献   

6.
Some Rhizobium bacteria have H2-uptake (Hup) systems that oxidize H2 evolved from nitrogenase in leguminous root nodules. Pea (Pisum sativum L.) cultivars `JI1205' and `Alaska' produce high Hup (Hup++) and moderate Hup (Hup+) phenotypes, respectively, in Rhizobium leguminosarum 128C53. The physiological significance and biochemical basis of this host plant genetic effect are unknown. The purpose of this investigation was to advance basic Hup studies by developing nearly isogenic lines of peas that alter Hup phenotypes in R. leguminosarum strains containing hup genes. Eight pairs of nearly isogenic pea lines that produce Hup++ and Hup+ phenotypes in R. leguminosarum 128C53 were identified in 173 F2-derived F6 families produced from crosses between JI1205 and Alaska. Tests with the pea isolines and three strains of hup-containing R. leguminosarum showed that the isolines altered Hup activity significantly (P ≤ 0.05) in 19 of 24 symbiotic combinations. Analyses of Hup phenotypes in F6 families, the F1 population, and two backcrosses suggested involvement of a single genetic locus. Three of the eight pairs of isolines were identified as being suitable for physiological studies, because the two lines in each pair showed similar growth, N assimilation, and flowering traits under nonsymbiotic conditions. Tests of those lines under N2-dependent conditions with isogenic Hup+ and negligible Hup (Hup) mutants of R. leguminosarum 128C53 showed that, in symbioses with Hup+ rhizobia, two out of three Hup++ pea lines decreased N2 fixation relative to Hup+ peas. In one of those cases, however, the Hup++ plant line also decreased fixation by Hup rhizobia. When results were averaged across all rhizobia tested, Hup+ pea isolines had 8.2% higher dry weight (P ≤ 0.05) and fixed 12.6% more N2 (P ≤ 0.05) than Hup++ isolines. Pea lines described here may help identify host plant factors that influence rhizobial Hup activity and should assist in clarifying how Hup systems influence other physiological processes.  相似文献   

7.
The ability to recycle H2 evolved by nitrogenase is thought to be of importance in increasing the efficiency of N2 fixation and to be a factor in increasing plant yield in symbiotic systems. To determine whether this ability is a significant factor in the Rhizobium leguminosarum-Pisum sativum L. system, plants were inoculated with R. leguminosarum isolates which differed in their ability to oxidize H2 and in their relative efficiency of N2 fixation. These plants were grown at three levels of irradiance and harvested after 3, 4, and 5 weeks of growth for determination of C2H2 reduction, H2 evolution and uptake, plant dry weight, and N content. Plants inoculated with uptake hydrogenase-positive (Hup+) isolates did not exhibit higher dry weight or N content than those inoculated with Hup isolates under any of the growth conditions studied. The efficiency of the nitrogenase system of Hup isolates increased at a low irradiance, a factor which may allow them to compete successfully with Hup+ isolates. In some Hup+R. leguminosarum isolates, H2 oxidation is coupled to ATP formation, whereas in others, it is not. There were no differences in plant dry weight and N content in plants inoculated with the two types and grown for 5 weeks at three irradiance levels. The addition of H2 to Hup+ nodules whose supply of photosynthate had been removed by stem excision did not increase C2H2 reduction in either coupled or uncoupled types.  相似文献   

8.
Field soybean plants were inoculated with Hup+ wild-type or H2 uptake-negative (Hup) mutants of Bradyrhizobium japonicum. For two consecutive summers we found an enrichment for acinetobacters associated with the surfaces of the H2-evolving nodules. Soybean root nodules that evolved H2 had up to 12 times more Acinetobacter spp. bacteria associated with their surfaces than did nodules incapable of evolving H2. All of the newly isolated strains identified as Acinetobacter obtained from the surfaces of root nodules, as well as known established Acinetobacter strains, were capable of oxidizing H2, a property not previously described for this alkane-degrading soil bacterium.  相似文献   

9.
The expression of cosmid-borne Bradyrhizobium japonicum hydrogenase genes in alfalfa, clover, and soybean nodules harboring Rhizobium transconjugants was studied. Cosmid pHU52 conferred hydrogen uptake (Hup) activity in both free-living bacteria and in nodules on the different plant hosts, although in nodules the instability of the cosmid resulted in low levels of Hup activity. In contrast, cosmid pHU1, which does not confer Hup activity on free-living bacteria, gave a Hup+ phenotype in nodules on alfalfa and soybean. Nodules formed by B. japonicum USDA 123Spc(pHU1) recycled about 90% of nitrogenase-mediated hydrogen evolution. Both subunits of hydrogenase (30- and 60-kilodalton polypeptides) were detected in enzyme-linked immunosorbent assays of bacteroid preparations from nodules harboring B. japonicum strains with pHU1 or pHU52. Neither pHU53 nor pLAFR1 conferred detectable Hup activity in either nodules or free-living bacteria. Based on the physical maps of pHU1 and pHU52, it is suggested that a 5.5-kilobase EcoRI fragment unique to pHU52 contains a gene or part of a gene required for Hup activity in free-living bacteria but not in nodules. This conclusion is supported by the observation that two Tn5 insertions in the chromosome of B. japonicum USDA 122DES obtained by marker exchange with Tn5-mutagenized pHU1 abolished Hup activity in free-living bacteria but not in nodules.  相似文献   

10.
The synthesis and accumulation of nitrite has been suggested as a causative factor in the inhibition of legume nodules supplied with nitrate. Plants were grown in sand culture with a moderate level of nitrate (2.1 to 6.4 millimolar) supplied continuously from seed germination to 30 to 50 days after planting. In a comparison of nitrate treatments, a highly significant negative correlation between nitrite concentration in soybean (Glycine max [L.] Merr.) nodules and nodule fresh weight per shoot dry weight was found even when bacteroids lacked nitrate reductase (NR). However, in a comparison of two Rhizobium japonicum strains, there was only 12% as much nitrite in nodules formed by NRR. japonicum as in nodules formed by NR+R. japonicum, and growth and acetylene reduction activity of both types of nodules was about equally inhibited. In a comparison of eight other NR+ and NRR. japonicum strains, and a comparison of G. max, Phaseolus vulgaris, and Pisum sativum, the concentration of nitrite in nodules was unrelated to nodule weight per plant or to specific acetylene reduction activity. The very small concentration of nitrite found in P. vulgaris nodules (0.05 micrograms NO2-N per gram fresh weight) was probably below that required for the inhibition of nitrogenase based on published in vitro experiments, and yet the specific acetylene reduction activity was inhibited 83% by nitrate. The overall results do not support the idea that nitrite plays a role in the inhibition of nodule growth and nitrogenase activity by nitrate.  相似文献   

11.
Peas (Pisum sativum L.) were inoculated with strains of Rhizobium leguminosarum having different levels of uptake hydrogenase (Hup) activity and were grown in sterile Leonard jars under controlled conditions. Rates of H2 evolution and acetylene reduction were determined for intact nodulated roots at intervals after the onset of darkness or after removal of the shoots. Hup activity was estimated using treatment plants or equivalent plants from the growth chamber, by measuring the uptake of H2 or 3H2 in the presence of acetylene. In all cases, the rate of H2 evolution was a continuous function of the rate of acetylene reduction. In symbioses with no demonstrable Hup activity, H2 evolution increased in direct proportion to acetylene reduction and the slopes were similar with the Hup strains NA502 and 128C79. Hup activity was similar in strains 128C30 and 128C52 but significantly lower in strain 128C54. With these strains, the slopes of the H2 evolution versus acetylene reduction curves initially increased with acetylene reduction, but became constant and similar to those for the Hup strains at high rates of acetylene reduction. On these parallel portions of the curves, the decreases in H2 evolution by Hup+ strains were similar in magnitude to their H2-saturated rates of Hup activity. The curvilinear relationship between H2 evolution and acetylene reduction for a representative Hup+ strain (128C52) was the same, regardless of the experimental conditions used to vary the nitrogenase activity.  相似文献   

12.
The effect of the Bradyrhizobium japonicum hydrogenase on nitrogen fixation was evaluated by comparing the growth of Vigna and Glycine species inoculated with a Hup mutant and its Hup+ revertant. In all experiments, the growth of plants inoculated with the strain without hydrogenase was at least equal to the growth of the strain with hydrogenase. For Glycine usuriensis and Glycine max cv. Hodgson in liquid culture, the growth was higher with the Hup strain. It is possible that reduced rates of nitrogen fixation in the presence of hydrogenase are due to O2 depletion caused by the hydrogen oxidizing, since the oxygen pressure in the air appears to be a limiting factor of symbiotic nitrogen fixation in the soybean.  相似文献   

13.
The H2 is an obligate by-product of N-fixation. Recycling of H2 through uptake hydrogenase (Hup) inside the root nodules of leguminous plants is often considered an advantage for plants. However, many of the rhizobium-legume symbioses found in nature, especially those used in agriculture are shown to be Hup, with the plants releasing H2 produced by nitrogenase activity from root nodules into the surrounding rhizosphere. Recent studies have suggested that, H2 induces plant-growth-promoting rhizobacteria, which may explain the widespread of Hup symbioses in spite of the low energy efficiency of such associations. Wild legumes grown in Nova Scotia, Canada, were surveyed to determine if any plant-growth characteristics could give an indication of Hup choice in leguminous plants. Out of the plants sampled, two legumes, Securigera varia and Vicia cracca, showed Hup+ associations. Securigera varia exhibited robust root structure as compared with the other plants surveyed. Data from the literature and the results from this study suggested that plants with established root systems are more likely to form the energy-efficient Hup+ symbiotic relationships with rhizobia. Conversely, Hup associations could be beneficial to leguminous plants due to H2-oxidizing plant-growth-promoting rhizobacteria that allow plants to compete successfully, early in the growing season. However, some nodules from V. cracca tested Hup+, while others were Hup. This was similar to that observed in Glycine max and Pisum sativum, giving reason to believe that Hup choice might be affected by various internal and environmental factors.  相似文献   

14.
Soybean plants (Glycine max [L.] Merr) were grown in sand culture with 2 millimolar nitrate for 37 days and then supplied with 15 millimolar nitrate for 7 days. Control plants received 2 millimolar nitrate and 13 millimolar chloride and, after the 7-day treatment period, all plants were supplied with nil nitrate. The temporary treatment with high nitrate inhibited nitrogenase (acetylene reduction) activity by 80% whether or not Rhizobium japonicum bacteroids had nitrate reductase (NR) activity. The pattern of nitrite accumulation in nodules formed by NR+ rhizobia was inversely related to the decrease and recovery of nitrogenase activity. However, nitrite concentration in nodules formed by NR rhizobia appeared to be too low to explain the inhibition of nitrogenase. Carbohydrate composition was similar in control nodules and nodules receiving 15 millimolar nitrate suggesting that the inhibition of nitrogenase by nitrate was not related to the availability of carbohydrate.

Nodules on plants treated with 15 millimolar nitrate contained higher concentrations of amino N and, especially, ureide N than control nodules and, after withdrawal of nitrate, reduced N content of treated and control nodules returned to similar levels. The accumulation of N2 fixation products in nodules in response to high nitrate treatment was observed with three R. japonicum strains, two NR+ and one NR. The high nitrate treatment did not affect the allantoate/allantoin ratio or the proportion of amino N or ureide N in bacteroids (4%) and cytosol (96%).

  相似文献   

15.
16.
The conditions necessary for coordinate derepression of nitrogenase and O2-dependent hydrogenase activities in free-living cultures of Rhizobium japonicum were studied. Carbon sources were screened for their ability to support nitrogenase, and then hydrogenase activities. There was a positive correlation between the level of nitrogenase and corresponding hydrogenase activities among the various carbon substrates. The carbon substrate -ketoglutarate was able to support the highest levels of both nitrogenase and hydrogenase activities. When cells were incubated in -ketoglutarate-containing medium, without added H2 but in the presence of acetylene (to block H2 evolution from nitrogenase) significant hydrogenase activity was still observed. Complete inhibition of nitrogenase-dependent H2 evolution by acetylene was verified by the use of a Hup- mutant. Hydrogen is therefore not required to induce hydrogenase. The presence of 10% acetylene inhibited derepression of hydrogenase. Constitutive (Hupc) mutants were isolated which contained up to 9 times the level of hydrogenase acitivity than the wild type in nitrogenase induction medium. These mutants did not have greater nitrogenase activities than the wild type.This is contribution number 1254 from the Department of Biology and the McCollum-Pratt Institute Abbreviations: -Ketoglutarate-containing medium (LOKG) and pre-adaptation medium (SRM) as described in Materials and methods  相似文献   

17.
Gluconacetobacter diazotrophicus is an N2-fixing endophyte isolated from sugarcane. G. diazotrophicus was grown on solid medium at atmospheric partial O2 pressures (pO2) of 10, 20, and 30 kPa for 5 to 6 days. Using a flowthrough gas exchange system, nitrogenase activity and respiration rate were then measured at a range of atmospheric pO2 (5 to 60 kPa). Nitrogenase activity was measured by H2 evolution in N2-O2 and in Ar-O2, and respiration rate was measured by CO2 evolution in N2-O2. To validate the use of H2 production as an assay for nitrogenase activity, a non-N2-fixing (Nif) mutant of G. diazotrophicus was tested and found to have a low rate of uptake hydrogenase (Hup+) activity (0.016± 0.009 μmol of H2 1010 cells−1 h−1) when incubated in an atmosphere enriched in H2. However, Hup+ activity was not detectable under the normal assay conditions used in our experiments. G. diazotrophicus fixed nitrogen at all atmospheric pO2 tested. However, when the assay atmospheric pO2 was below the level at which the colonies had been grown, nitrogenase activity was decreased. Optimal atmospheric pO2 for nitrogenase activity was 0 to 20 kPa above the pO2 at which the bacteria had been grown. As atmospheric pO2 was increased in 10-kPa steps to the highest levels (40 to 60 kPa), nitrogenase activity decreased in a stepwise manner. Despite the decrease in nitrogenase activity as atmospheric pO2 was increased, respiration rate increased marginally. A large single-step increase in atmospheric pO2 from 20 to 60 kPa caused a rapid 84% decrease in nitrogenase activity. However, upon returning to 20 kPa of O2, 80% of nitrogenase activity was recovered within 10 min, indicating a “switch-off/switch-on” O2 protection mechanism of nitrogenase activity. Our study demonstrates that colonies of G. diazotrophicus can fix N2 at a wide range of atmospheric pO2 and can adapt to maintain nitrogenase activity in response to both long-term and short-term changes in atmospheric pO2.  相似文献   

18.
Soybean (Glycine max L. cv Williams) seeds were sown in pots containing a 1:1 perlite-vermiculite mixture and grown under greenhouse conditions. Nodules were initiated with a nitrate reductase expressing strain of Rhizobium japonicum, USDA 110, or with nitrate reductase nonexpressing mutants (NR 108, NR 303) derived from USDA 110. Nodules initiated with either type of strain were normal in appearance and demonstrated nitrogenase activity (acetylene reduction). The in vivo nitrate reductase activity of N2-grown nodules initiated with nitrate reductase-negative mutant strains was less than 10% of the activity shown by nodules initiated with the wild-type strain. Regardless of the bacterial strain used for inoculation, the nodule cytosol and the cell-free extracts of the leaves contained both nitrate reductase and nitrite reductase activities. The wild-type bacteroids contained nitrate reductase but not nitrite reductase activity while the bacteroids of strains NR 108 and NR 303 contained neither nitrate reductase nor nitrite reductase activities.

Addition of 20 millimolar KNO3 to bacteroids of the wild-type strain caused a decrease in nitrogenase activity by more than 50%, but the nitrate reductase-negative strains were insensitive to nitrate. The nitrogenase activity of detached nodules initiated with the nitrate reductase-negative mutant strains was less affected by the KNO3 treatment as compared to the wild-type strain; however, the results were less conclusive than those obtained with the isolated bacteroids.

The addition of either KNO3 or KNO2 to detached nodules (wild type) suspended in a semisolid agar nutrient medium caused an inhibition of nitrogenase activity of 50% and 65% as compared to the minus N controls, and provided direct evidence for a localized effect of nitrate and nitrite at the nodule level. Addition of 0.1 millimolar sucrose stimulated nitrogenase activity in the presence or absence of nitrate or nitrite. The sucrose treatment also helped to decrease the level of nitrite accumulated within the nodules.

  相似文献   

19.
Summary An hydrogenase-deficient (Hup) mutant of Rhodobacter capsulatus was obtained by adventitious insertion of IS21 DNA into an hydrogenase structural gene (hup) of the wild-type strain 1310. The resulting Hup mutant, strain JP91, selected by its inability to grow autotrophically (Aut phenotype) together with other Hup mutant strains obtained by classical ethyl methane sulphonate mutagenesis were used in R plasmid-mediated conjugation experiments to map the hup/aut loci on the chromosome of R. capsulatus. The hup genes tested in this study were found to cluster on the chromosome in the proximity of the his-1 marker. A cluster of hup genes comprising the structural genes was isolated from a gene bank constructed in the cosmid vector pHC79 with 40 kb insert DNA. The clustered hup genes, characterized by hybridization studies and complementation analyses of the R. capsulatus Hup mutants, span 15–20 kb of DNA.  相似文献   

20.
Mutant strains of Bradyrhizobium japonicum that required higher levels of molybdate than the wild-type strain for growth on NO3-containing medium were obtained after transposon Tn5 mutagenesis of the wild-type strain. The mutant strains expressed more than fivefold-greater nitrate reductase activities in the range of 0.1 to 1.0 mM added molybdate compared with activities expressed upon incubation in non-Mo-supplemented medium, whereas the nitrate reductase activity of the wild-type strain (JH) was not markedly influenced by Mo supplementation. In free-living culture, mutant strains JH310 and JH359 expressed substantial nitrogenase activity, even in medium treated to remove molybdate, and nitrogenase activity was influenced little by Mo supplementation, whereas the wild-type strain required 100 nM added Mo for highest nitrogenase activity. Double-reciprocal plots of Mo uptake rates versus Mo concentration showed that both bacteroids and free-living cells of mutant strain JH359 had about the same affinity for Mo as did the parent strain. Bacteroids of both the mutants and the wild type also exhibited similar Mo accumulation rates over a 9-min period under very-low-Mo (4 nM) conditions. Nitrogenase activities for strain JH359 and for the wild-type strain in free-living culture were both strongly inhibited by tungsten; thus, the nitrogenase activities of both strains are probably the result of a “conventional” Mo-containing nitrogenase. Soybeans inoculated with strain JH359 and grown under either Mo-supplemented or Mo-deficient conditions had greater specific acetylene reduction rates and significantly greater plant fresh weight than those inoculated with the wild-type strain. Under Mo-deficient conditions, the acetylene reduction rates and plant fresh weights were up to 35 and 58% greater, respectively, for mutant-nodulated plants compared with wild-type-strain-nodulated plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号