首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
3.
4.
5.
Knowledge regarding the expression of the recently cloned estrogen receptor beta (ERbeta) in colonic mucosa is limited. In this study, we demonstrated that five human colon cancer cell lines, HT29, Colo320, Lovo, SW480, and HCT116, expressed ERbeta mRNA, but lacked ERalpha mRNA. Results from a cell growth assay demonstrated that these colon cancer cells were not influenced by estrogen, while genistein possessed slight growth inhibitory effects on HT29, Colo320 and Lovo cells at 10 microM, at which concentration is stimulated the growth of ERalpha-positive human breast cancer MCF-7 cells. Tamoxifen inhibited the growth of HT29 and Colo320 cells, dose-dependently, as well as MCF-7 cells. A transfected reporter plasmid containing a vitellogenin estrogen response element could be activated by estradiol in Colo320 cells. Taken together with previous reports, these data suggest that ERalpha and ERbeta may have different biological functions in colon cells.  相似文献   

6.
7.
Chlamydial attachment and infectivity in vitro and ascending disease and sequelae in vivo have been reported to be enhanced/modulated by estrogen. Endometrial carcinoma cell lines Ishikawa and HEC-1B and the breast cancer lines MCF-7 and HCC-1806 were examined for Chlamydia trachomatis E infectivity. Estrogen receptor (ER) presence was confirmed by Western blot and qRT-PCR analyses. FACS analysis was used to determine the percent of plasma membrane-localized ERs (mERs), and their activity was tested by estrogen binding and competitive estrogen antagonists assays. Chlamydiae grew in all cell lines with HEC (90%) > MCF-7 (57%)>Ishikawa (51%) > HCC-1806 (20%). The cell line ER isoform composition was re-defined as: ERalpha + ERbeta + for MCF-7, HCC-1806 and Ishikawa; and ERbeta only for HEC-1B. HeLa cells were also tested and found to express ERbeta, but not ERalpha. A small percentage of both ERs were surface-exposed and functionally active. The endometrium-predominant ERbeta isoform was found in all cell lines, including those most representative of the common sites of C. trachomatis infection. Thus, the role of chlamydial attachment/infectivity will now be analyzed in ERbeta+and-isogenic HEC-1B cells.  相似文献   

8.
9.
17beta-Estradiol (E2), diethylstilbestrol (DES) and several synthetic (or xenoestrogenic) compounds induced transactivation in MCF-7 or MDA-MB-231 cells transfected with wild-type estrogen receptor alpha (ERalpha) and a construct (pERE(3)) containing three tandem estrogen responsive elements (EREs) linked to a luciferase gene. In contrast, the antiestrogens ICI 182,780 and 4-hydroxytamoxifen (4-OHT) were inactive in this assay. We have investigated the effects of these compounds and several structurally-diverse estrogenic compounds on transactivation in cells transfected with pERE(3) and wild-type ERalpha, mutant ERalpha (1-553), and ERalpha (1-537) containing deletions of amino acids 595-554 and 595-538, respectively. These constructs were used to develop an in vitro assay to distinguish between different structural classes of estrogenic compounds. The results obtained using these constructs were highly cell context- and structure-dependent. Neither E2- nor diethylstilbestrol-induced transactivation in MCF-7 (or MDA-MB-231) cells transfected with pERE(3)/ERalpha (1-537) due to partial deletion of helix 12; however, octylphenol and nonlylphenol, resveratrol (a phytoestrogen), kepone and 2',3',4',5'-tetrachloro-4-biphenylol were "estrogenic" in MCF-7 cells transfected with pERE(3)/ERalpha (1-537). Moreover, the structure-dependent estrogenic activities of several synthetic estrogens (xenoestrogens) in MDA-MB-231 cells were different than those observed in MCF-7 cells. These results demonstrate that the estrogenic activity of many synthetic compounds do not require activation function 2 (AF-2) of ERalpha and are mechanistically different from E2. These data suggest that xenoestrogens are selective ER modulators (SERMs).  相似文献   

10.
11.
Deoxybenzoins are plant compounds with similar structure to isoflavones. In this study, we evaluated the ability of two synthesized deoxybenzoins (compound 1 and compound 2) (a) to influence the activity of the estrogen receptor subtypes ERalpha and ERbeta in HeLa cells co-transfected with an estrogen response element-driven luciferase reporter gene and ERalpha- or ERbeta-expression vectors, (b) to modulate the IGFBP-3 and pS2 protein in MCF-7 breast cancer cells, (c) to induce mineralization of KS483 osteoblasts and (d) to affect the cell viability of endometrial (Ishikawa) and breast (MCF-7, MDA-MB-231) cancer cells. Docking and binding energy calculations were performed using the mixed Monte Carlo/Low Mode search method (Macromodel 6.5). Compound 1 displayed significant estrogenic activity via ERbeta but no activity via ERalpha. Compound 2 was an estrogen-agonist via ERalpha and antagonist via ERbeta. Both compounds increased, like the pure antiestrogen ICI182780, the IGFBP-3 levels. Compound 2 induced, like 17beta-estradiol, significant mineralization in osteoblasts. The cell viability of Ishikawa cells was unchanged in the presence of either compound. Compound 1 increased MCF-7 cell viability consistently with an increase in pS2 levels, whereas compound 2 inhibited the cell viability. Molecular modeling confirmed the agonistic or antagonistic behaviour of compound 2 via ER subtypes. Compound 2, being an agonist in osteoblasts, an antagonist in breast cancer cells, with no estrogenic effects in endometrial cancer cells, makes it a potential selective estrogen receptor modulator and a choice for hormone replacement therapy.  相似文献   

12.
13.
Estrogen-dependent regulation of several genes associated with cell cycle progression, proliferation, and nucleotide metabolism in breast cancer cells is associated with interactions of estrogen receptor (ER)alpha/Sp1 with GC-rich promoter elements. This study investigates ligand-dependent interactions of ERalpha and Sp1 in MCF-7 breast cancer cells using fluorescence resonance energy transfer (FRET). Chimeric ERalpha and Sp1 proteins fused to cyan fluorescent protein or yellow fluorescent protein were transfected into MCF-7 cells, and a FRET signal was induced after treatment with 17beta-estradiol, 4'-hydroxytamoxifen, or ICI 182,780. Induction of FRET by these ERalpha agonists/antagonists was paralleled by their activation of gene expression in cells transfected with a construct (pSp1(3)) containing three tandem Sp1 binding sites linked to a luciferase reporter gene. In contrast, interactions between ERalpha and Sp1DeltaDBD [a DNA binding domain (DBD) deletion mutant of Sp1] are not observed, and this is consistent with the critical role of the C-terminal DBD of Sp1 for interaction with ERalpha. Results of the FRET assay are consistent with in vitro studies on ERalpha/Sp1 interactions and transactivation, and confirm that ERalpha and Sp1 interact in living breast cancer cells.  相似文献   

14.
15.
16.
Acteoside and martynoside are plant phenylpropanoid glycosides exhibiting anticancer, cytotoxic and antimetastatic activities. We investigated their potential to activate estrogen receptor isoforms ERalpha and ERbeta in HeLa cells transfected with an estrogen response element (ERE)-driven luciferase (Luc) reporter gene and an ERalpha or ERbeta expression vector. Their estrogenic/antiestrogenic effects were also assessed in breast cancer cells (MCF7), endometrial cancer cells (Ishikawa) and osteoblasts (KS483), by measuring IGFBP3 levels, cell viability and number of mineralized nodules, respectively, seeking for a natural selective estrogen receptor modulator (SERM). Acteoside and martynoside antagonized both ERalpha and ERbeta (p<0.001), whereas they reversed the effect of E(2) mainly via ERalpha (p<0.001). Martynoside was a potent antiestrogen in MCF-7 cells, increasing, like ICI182780, IGFBP3 levels via the ER-pathway. In osteoblasts, martynoside induced nodule mineralization, which was abolished by ICI182780, implicating an ER-mediated mechanism. Furthermore, its antiproliferative effect on endometrial cells suggests that martynoside may be an important natural SERM. Acteoside was an antiestrogen in breast cancer cells and osteoblasts, without any effect on endometrial cells. Our study suggests that the nature is rich in selective ERalpha and ERbeta ligands, the discovery of which may lead to the development of novel neutraceutical agents.  相似文献   

17.
The estrogen receptor alpha (ERalpha) is understood to play an important role in the progression of breast cancer. Therefore, pure antiestrogens with a preference for this receptor form are of interest as new agents for the treatment of this malignancy. Several chemical structures with selective binding affinity for ERalpha have been identified and might be useful for the synthesis of ERalpha-selective pure antiestrogens. In this study we applied the 2,5-diphenylfuran system which is closely related to the triphenylfurans described by others. Various side chains with amino and/or sulfur functions were linked to C3 to convert the furans to estrogen antagonists without residual estrogenic activity. The degree of alpha-selectivity which ranges from 2.5- to 236-fold is strongly influenced by the alkyl group at C4. Antiestrogenic potency was determined in MCF-7/2a breast cancer cells stably transfected with a luciferase gene under the control of an ERE. The 2,5-bis(4-hydroxyphenyl)furan with an ethyl substituent and a 6-[N-methyl-N-(3-pentylthiopropyl)amino]hexyl side chain exerted the strongest antiestrogenic effect in this series with an IC(50) value of 50 nM in cells stimulated with 1 nM estradiol. The RBA values of this derivative were 18% (ERalpha) and 3.4% (ERbeta) of estradiol, respectively. It inhibited the growth of wild-type MCF-7 cells with an IC(50) value of 22 nM. The data show that the 2,5-diphenylfuran system is appropriate for the development of pure antiestrogens with preference for ERalpha.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号