首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M J Scott  M J Tsai  B W O'Malley 《Biochemistry》1987,26(21):6831-6840
The location of CR1 middle repetitive sequences within or near the boundaries of the ovalbumin DNase I sensitive domain has suggested that CR1 sequences may play a role in defining transition regions of DNase I sensitivity in hen oviduct nuclei. We have examined this apparent relationship of CR1 sequences and transitions of chromatin structure by determining the DNase I sensitivity in oviduct nuclei of a 47-kilobase region that contains five CR1 sequences and the transcribed ovomucoid and ovoinhibitor genes. We find that three of the CR1 sequences occur within a broad transition region of decreasing DNase I sensitivity downstream of the ovomucoid gene. Another CR1 is in a region of decreased DNase I sensitivity within the ovoinhibitor gene. The fifth CR1 sequence is in a DNase I sensitive region between the two genes but which is less sensitive to DNase I digestion than the region immediately upstream from the ovomucoid gene. Thus, the CR1 sequences occur within regions of reduced relative DNase I sensitivity, suggesting that CR1s could facilitate the formation of a chromatin conformation that is less sensitive to DNase I digestion. Unexpectedly, the noncoding strand of sequences within and immediately adjacent to the 5' end of the actively transcribed ovomucoid and ovalbumin genes was less sensitive to DNase I digestion than their respective coding strands.  相似文献   

2.
3.
4.
The disappearance of defined restriction fragments of the beta 1-globin, an albumin and the A1 vitellogenin gene was quantitated after DNase I digestion and expressed by a sensitivity factor defined by a mathematical model. Analysis of naked DNA showed that the gene fragments have similar but not identical sensitivity factors. DNase I digestion of chromatin revealed for the same gene fragments sensitivity factors differing over a much wilder range. This is correlated to the activity of the genes analyzed: the beta 1-globin gene fragment is more sensitive to DNase I in chromatin of erythrocytes compared to hepatocytes whereas the albumin gene fragment is more sensitive to DNase I in chromatin of hepatocytes. The A1 vitellogenin gene has the same DNase I sensitivity in both cell types. Comparing the DNase I sensitivity of the three genes in their inactive state we suggest that different chromatin conformations may exist for inactive genes.  相似文献   

5.
The rearrangement of a variable (V) and a constant (C) gene appears to be a necessary prerequisite for immunoglobulin gene expression. Multiple different rearranged kappa genes were found in several mouse myelomas, although these cells produce only one type of kappa chain [Wilson, R., Miller, J., & Storb, U. (1979) Biochemistry 18, 5013--5021]. It is therefore of interest to understand how only one allele within a lymphoid cell becomes expressed, while the other allele remains nonfunctional ("allelic exclusion"). We have studied the chromatin conformation of kappa genes by making use of the preferential digestion of potentially active genes by DNase I described, for example, for globin genes [Weintraub, H., & Groudine, M. (1976) Science (Washington, D.C.) 193, 848--856]. The DNase I sensitivity of kappa genes in myeloma tumors, in a B cell lymphoma, and in liver was determined by hybridization with DNA on Southern blots. It was found that rearranged C kappa genes are DNase I sensitive in myelomas in which several kappa genes are rearranged, regardless of whether the rearranged genes code for the kappa chains synthesized by the cell. Furthermore, the C kappa gene in germline configuration is also DNase I sensitive in a B cell lymphoma; i.e., it is in the same chromatin state as the rearranged C kappa gene which probably codes for the kappa chains produced by the cell. The altered chromatin state appears to be localized: V kappa genes in germline context are not DNase I sensitive in myeloma or B lymphoma cells while C kappa genes present in a kappa gene cluster on the same chromosomes are sensitive. When rearranged, however, the V kappa genes are as sensitive to DNase I as are rearranged C kappa genes. V lambda and C lambda genes are not DNase I sensitive in kappa myelomas. Thus, commitment to kappa gene expression is apparently correlated with a chromatin conformation which confers increased DNase I sensitivity to the DNA in the vicinity of all C kappa genes in the cell. "Allelic exclusion" does not operate on the level of chromatin conformation which can be detected by altered DNase I sensitivity.  相似文献   

6.
In the presence of 3 mM MgCl2 DNase I cleavage of bulk, globin and ovalbumin gene chromatin in chicken erythrocyte nuclei generates fragments which are multiples of a double-nucleosome repeat. However, in addition to the dinucleosomal periodicity beta-globin gene chromatin was fragmented into multiples of a 100 b.p. interval which is characteristic for partially unfolded chromatin. This distinction correlates with higher sensitivity of beta-globin domain to DNase I and DNase II as compared to the inactive ovalbumin gene. At 0.7 mM MgCl2 where these DNases fragment bulk chromatin into series of fragments with a 100 b.p. interval, the difference in digestibility of the investigated genes is dramatically decreased. When chromatin has been decondensed by incubation of nuclei in 10 mM Tris-buffer, DNase II generates a typical nucleosomal repeat, and the differential nuclease sensitivity of the analyzed genes is not observed. The data suggest that higher nuclease sensitivity of potentially active genes is due to irregularities in higher order chromatin structure.  相似文献   

7.
8.
9.
Summary A simple and rapid procedure has been developed for the isolation of chromatin from plant leaves. The molecular weight of the DNA extracted from these chromatin preparations is comparable to that of DNA isolated by a conventional purification procedure (CTAB-CsCl-method). These results suggest that almost no degradation occurs during the isolation procedure. The effect of DNase I on three different groups of genes was studied; one of them, encoding the NADPH-protochlorophyllide oxidoreductase (PCR), represents a gene which is actively transcribed in etiolated leaf tissue. The other genes examined encode the hordein seed storage protein and 26S ribosomal RNA. The hordein genes are known to be inactive in leaves.The hordein and rDNA genes were found to be resistant to low levels of DNase I, while the gene for the PCR was highly sensitive to DNase I. During the course of digestion of the PCR gene, discrete cleavage products are generated. These indicate the presence of DNase I hypersensitive sites in the vicinity of the PCR gene in etiolated leaves. As a control naked DNA has been digested with DNase I. No differences in sensitivity between the PCR gene and the hordein genes can be detected.  相似文献   

10.
吕占军  王秀芳  翟羽  宋淑霞 《遗传》2003,25(1):30-36
同样的基因在不同的分化细胞中表达不同,基因的选择性表达问题涉及分化和衰老的本质。转录基因对DNaseⅠ(DNA酶Ⅰ)消化敏感,本文研究了RNA对小鼠重组染色质白蛋白基因DNaseⅠ消化敏感性的影响。分离BALB/c小鼠脑细胞核,加入终浓度为2mol/L的NaCl破坏核小体结构,加入不同量、不同来源的RNA,装透析袋,逐渐降低离子强度进行染色质重组。重组染色质中加入DNaseⅠ消化DNA,PCR扩增白蛋白基因的外显子1到外显子2约1200bp区段,PAGE电泳后,用银染色观察不同来源RNA促进DNaseⅠ对白蛋白基因的消化作用。不同组织来源(肝、肺、肾、脑)RNA对小鼠重组染色质中白蛋白基因DNaseⅠ消化敏感性均有促进作用,其中肝和肺RNA促进消化作用较强;酵母tRNA无显著促进消化作用;消化促进作用与RNA剂量有关。RNA能增加DNaseⅠ对白蛋白基因的消化敏感性且有组织(细胞)来源特异性。又委托丹麦Chemical R D 实验室合成2条与白蛋白基因互补的各23核苷酸的RNA,用其进行重组试验。结果表明,重组混合物中含有低至0.2μg/mL的RNA,即可以发挥显著的DNase I消化促进作用。  相似文献   

11.
12.
13.
Nuclei from male Xenopus liver were digested extensively with DNase I and the residual amount of the four vitellogenin genes measured by hybridization with a moderate excess of vitellogenin cDNA. The saturation value was about twofold lower in chromatin isolated from liver cells of estrogen treated than from untreated males or from erythrocytes. Analyzing the disappearance of several defined restriction fragments specific for the A1 and A2 vitellogenin genes, after limited digestion with DNase I, suggested that the entire A1 and A2 vitellogenin genes are about twofold more sensitive to DNase I in chromatin of hepatocytes isolated from estrogen treated than from untreated males. Using the same assay no change in the DNase I sensitivity of the two vitellogenin genes in erythrocyte chromatin was observed. Analysis of the beta 1-globin and an albumin gene demonstrated that the DNase I sensitivity of these genes in both cell types is not altered by estrogen. All these data indicate that estrogen stimulation results in an increased DNase I sensitivity specific for the vitellogenin genes in hepatocytes.  相似文献   

14.
15.
16.
The DNase I sensitivity of the nuclear genes encoding the NADPH-protochlorophyllide oxidoreductase, the light-harvesting chlorophyll a/b protein (LHCP), the hordeins and a 15-kDa protein of unknown function was assayed in chromatin of etiolated and green leaves and endosperm tissue of barley (Hordeum vulgare L.). A tissue-specific differentiation of chromatin structure was found for the LHCP, hordein and 15-kDa protein genes. The genes for the LHCP and the 15-kDa protein, which are expressed in leaf tissue, display DNase I sensitivity in leaves but not in endosperm. Hordein genes which are expressed solely in endosperm, were insensitive to low levels of digestion with DNase I in leaves but sensitive in endosperm. The effect of light on chromatin structure was determined by comparing leaves of etiolated plants and plants which had been grown under a day/night cycle. Only in the case of the 15-kDa protein is there a remarkable change from a DNAse-I-sensitive configuration in etiolated leaves to a more resistant one in leaves from illuminated plants. The gene for the NADPH-protochlorophyllide oxidoreductase was found to be equally sensitive to DNase I in leaves and endosperm.  相似文献   

17.
18.
DNA and chromatin structure of the human alpha 1 (I) collagen gene   总被引:19,自引:0,他引:19  
The human alpha 1 (I) collagen gene and 48 kilobase pairs of flanking DNA have been isolated on two overlapping cosmids. The alpha 1 (I) gene is 18 kilobase pairs long and contains a single repetitive element of the Alu family; at least 15 repetitive elements are present in the flanking DNA. Analysis of chromatin structure in nuclei isolated from cultured fibroblasts demonstrated a single chromatin domain greater than 65 kilobase pairs in length that contained 9 DNase I-hypersensitive sites. The pattern of hypersensitive sites was also determined in nuclei derived from placental tissue. Five of the DNase I-hypersensitive sites were observed in both placental and fibroblast chromatin including one site near the 5' end and another near the 3' end of alpha 1 (I). An additional two sites located near the 3' end of the alpha 1 (I) gene in fibroblast chromatin are associated with the tissue-specific use of different polyadenylation sites. Two DNase I-hypersensitive sites found only in fibroblast chromatin and one site found only in placental chromatin were located more than 10 kilobase pairs away from the alpha 1 (I) gene and may be related to tissue-specific expression of other genes in the domain. However, the only abundant placental mRNAs from the 65-kilobase pair domain were those transcribed from the alpha 1 (I) gene. These findings suggest that physical linkage does not play a predominant role in controlling coordinate expression of collagen genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号