首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The circadian system of the lizard Iguana iguana is composed of several independent pacemakers that work in concert: the pineal gland, retinae of the lateral eyes, and a fourth oscillator presumed to be located in the hypothalamus. These pacemakers govern the circadian expression of multiple behaviors and physiological processes, including rhythms in locomotor activity, endogenous body temperature, electroretinogram, and melatonin synthesis. The numerous, easily measurable rhythmic outputs make the iguana an ideal organism for examining the contributions of individual oscillators and their interactions in governing the expression of overt circadian rhythms. The authors have examined the effects of pinealectomy and enucleation on the endogenous body temperature rhythm (BTR) and locomotor activity rhythm (LAR) of juvenile iguanas at constant temperature both in LD cycles and in constant darkness (DD). They measured the periods (tau) of the circadian rhythms of LAR and BTR, the phase relationships between them in DD (psiAT), and the phase relationship between each rhythm and the light cycle (psiRL). Pinealectomy lengthened tau of locomotor activity in all animals tested and abolished the BTR in two-thirds of the animals. In those animals in which the BTR did persist following pinealectomy, tau lengthened to the same extent as that of locomotor activity. Pinealectomy also delayed the onset of activity with respect to its normal phase relationship with body temperature in DD. Enucleation alone had no significant effect on tau of LAR or BTR; however, after enucleation, BTR became 180 degrees out of phase from LAR in DD. After both pinealectomy and enucleation, 4 of 16 animals became arrhythmic in both activity and body temperature. Their data suggest that rhythmicity, period, and phase of overt circadian behaviors are regulated through the combined output of multiple endogenous circadian oscillators.  相似文献   

2.
Summary In higher organisms, many physiological and behavioral functions exhibit daily variations, generated by endogenous circadian oscillators. It is not yet clear whether all the various rhythms that occur within an individual depend on one and the same pacemaker or whether different pacemakers are involved. To examine this question, the feeding and perch-hopping rhythms were measured in European starlings (Sturnus vulgaris) under light-dark cycles and continuous dim light. In dim light, the internal phase relationship between the feeding and perch-hopping rhythms changed systematically as a function of the circadian period, and the two rhythms could even dissociate and show different circadian periods in individuals with extremely long or extremely short circadian periods. Moreover, in some birds kept on lowamplitude light-dark cycles, the rhythm of feeding was synchronized 180° out of phase with the rhythm of locomotor activity. These results strongly suggest that in the European starling the feeding and locomotor activity rhythms are controlled by separate circadian pacemakers.  相似文献   

3.
When organisms are maintained under constant conditions of light and temperature, their endogenous circadian rhythms free run, manifesting their intrinsic period. The phases of these free-running rhythms can be shifted by stimuli of light, temperature, and drugs. The change from one free-running steady state to another following a perturbation often involves several transient cycles (cycles of free-running rhythm drifting slowly to catch up with the postperturbation steady state). Although the investigation of oscillator kinetics in circadian rhythms of both insects and mammals has revealed that the circadian pacemaker phase shifts instantaneously, the phenomenon of transient cycles has remained an enigma. We probed the phases of the transient cycles in the locomotor activity rhythm of the field mouse Mus booduga, evoked by a single light pulse (LP), using LPs at critically timed phases. The results of our experiments indicate that the transient cycles generated during transition from one steady state to another steady state do not represent the state of the circadian pacemaker (basic oscillator) controlling the locomotor activity rhythm in Mus booduga. (Chronobiology International, 17(2), 129–136, 2000)  相似文献   

4.
This review summarizes our current understanding of the signal transduction cascade by which light causes phase shifts of the circadian oscillators found in the eye of Bulla and Aplysia. The isolated retina of these marine mollusks contains a circadian oscillator, a photoreceptor, and a light transduction pathway sufficient for entrainment. This preparation offers unique advantages for the cellular analysis of entrainment and the generation of circadian oscillations. There is evidence that similar cellular mechanisms may underlie mammalian and molluskan circadian oscillations. Thus, the models developed to explain entrainment in the molluskan retina are likely to have utility in exploring the mammalian supra-chiasmatic nucleus.  相似文献   

5.
Over recent decades, changes in zebrafish (Danio rerio) behaviour have become popular quantitative indicators in biomedical studies. The circadian rhythms of behavioural processes in zebrafish are known to enable effective utilization of energy and resources, therefore attracting interest in zebrafish as a research model. This review covers a variety of circadian behaviours in this species, including diurnal rhythms of spawning, feeding, locomotor activity, shoaling, light/dark preference, and vertical position preference. Changes in circadian activity during zebrafish ontogeny are reviewed, including ageing-related alterations and chemically induced variations in rhythmicity patterns. Both exogenous and endogenous sources of inter-individual variability in zebrafish circadian behaviour are detailed. Additionally, we focus on different environmental factors with the potential to entrain circadian processes in zebrafish. This review describes two principal ways whereby diurnal behavioural rhythms can be entrained: (i) modulation of organismal physiological state, which can have masking or enhancing effects on behavioural endpoints related to endogenous circadian rhythms, and (ii) modulation of period and amplitude of the endogenous circadian rhythm due to competitive relationships between the primary and secondary zeitgebers. In addition, different peripheral oscillators in zebrafish can be entrained by diverse zeitgebers. This complicated orchestra of divergent influences may cause variability in zebrafish circadian behaviours, which should be given attention when planning behavioural studies.  相似文献   

6.
7.
ERG recordings from German cockroaches showed that the amplitude of light-evoked responses have a circadian rhythmicity in adult males that coincided with the locomotor circadian rhythm. The peak of the response occurred during the subjective night, and the circadian period was less than 24 h under DD condition. In contrast, although the locomotor circadian rhythm was masked by the development of ovaries and pregnancy in females, their visual responses displayed circadian rhythmicity. This inconsistency in expression of locomotor and visual sensitivity circadian rhythms in females implied separate pacemakers for these two overt rhythms. After severing the optic nerves, changes in ERG amplitude of the operated cockroaches still displayed a circadian rhythm under DD condition, demonstrating that the visual sensitive pacemaker was located in the eye and independent from the locomotor pacemaker.  相似文献   

8.
Summary The eye of the marine mollusk Aplysia californica contains a photo-entrainable circadian pacemaker that drives an overt circadian rhythm of spontaneous compound action potentials in the optic nerve. Both light and serotonin are known to influence the phase of this ocular rhythm. The current study evaluated the effect of FMRFamide on both light and serotonin induced phase shifts of this rhythm. The application of FMRFamide was found to block serotonin induced phase shifts but, by itself, FMRFamide did not cause significant phase shifts. Furthermore, the effects of FMRFamide on light-induced phase shifts appeared to be phase dependent (i.e., the application of FMRFamide inhibited light-induced phase delays but actually enhanced the magnitude of phase advances). As in Aplysia, the eye of Bulla gouldiana also contains a circadian pacemaker. In Bulla, FMRFamide prevented light-induced phase advances and delays. Although FMRFamide alone generated phase dependent phase shifts, it did not cause phase shifts at the phases where it blocked the effects of light. These data demonstrate that FMRFamide can have pronounced modulatory effects on phase shifting inputs to the ocular pacemakers of both Aplysia and Bulla.Abbreviations ASW artificial seawater - CAP compound action potential - CT circadian time - 5-HT serotonin  相似文献   

9.
Summary Although pinealectomy or blinding resulted in loss of the clarity of the free-running rhythm of locomotor activity and body temperature and reduced the peak level of circulating melatonin rhythms to approximately a half in intact pigeons, neither pinealectomy nor blinding abolished any of these rhythms. However, when pinealectomy and blinding were combined, the rhythms of locomotor activity and body temperature disappeared in prolonged constant dim light, and melatonin concentration was reduced to the minimum level of detection. In order to examine the role of melatonin in the pigeon's circadian system, it was administered either daily or continuously to PX + EX-pigeons in LLdim. Daily administration of melatonin restored circadian rhythms of locomotor activity which entrained to melatonin injections, but continuous administration did not induce any remarkable change of locomotor activity. These results suggest that melatonin synthesized in the pineal body and the eye contributes to circulating melatonin and its rhythmicity is important for the control of circadian rhythms of locomotor activity and body temperature in the pigeon.Abbreviations LD Light-dark - LLdim constant dim light - LLbright constant bright light - PX pinealectomy - EX blinding - SCN suprachiasmatic nucleus  相似文献   

10.
A control systems model consisting of a population of weakly-coupled feedback oscillators has been developed to simulate the circadian locomotor rhythm of the insect, Hemideina thoracica (Orthoptera; Stenopelmatidae). The model is an extension of a previously published single oscillator feedback model (Gander and Lewis, 1979) which successfully simulates entrainment, phase response curves, temperature compensation and Aschoff's Rule for Hemideina activity rhythms. The population model described here has the additional properties of predicting some of the free-run period lability (Pavlidis, 1978a, b) observed in the Hemideina rhythm (Christensen and Lewis, 1982) which is unexplained by single oscillator systems. Model behaviour is compared with the experimental data derived from the insect activity rhythms.  相似文献   

11.
This study examined whether the daily rhythms of locomotor activity and behavioural thermoregulation that have previously been observed in Australian sleepy lizards (Tiliqua rugosa) under field conditions are true circadian rhythms that persist in constant darkness (DD) and whether these rhythms show similar characteristics. Lizards held on laboratory thermal gradients in the Australian spring under the prevailing 12-hour light : dark (LD) cycle for 14 days displayed robust daily rhythms of behavioural thermoregulation and locomotor activity. In the 13-day period of DD that followed LD, most lizards exhibited free-running circadian rhythms of locomotor activity and behavioural thermoregulation. The predominant activity pattern displayed in LD was unimodal and this was retained in DD. While mean levels of skin temperature and locomotor activity were found to decrease from LD to DD, activity duration remained unchanged. The present results demonstrate for the first time that this species’ daily rhythm of locomotor activity is an endogenous circadian rhythm. Our results also demonstrate a close correlation between the circadian activity and thermoregulatory rhythms in this species indicating that the two rhythms are controlled by the same master oscillator(s). Future examination of seasonal aspects of these rhythms, may, however, cause this hypothesis to be modified.  相似文献   

12.
Summary The eye of the frilled sea hare,Bursatella leachi plei, expresses a circadian rhythm in the frequency of spontaneously occurring optic nerve impulses. The rhythm will free-run for at least 3 cycles in vitro (Fig. 2) and can be entrained by light cycles provided in vivo (Fig. 4 A). While bothBursatella andAplysia eyes contain circadian pacemakers the two rhythms differ in several respects: (1) the peak impulse frequency forBursatella eyes is only 96/h (±36 SD) compared with 247/h (±61 SD) forAplysia. (2) The ocular waveform of theBursatella rhythm exhibits a steep rise and fall from peak frequencies and lacks the delayed falling phase which creates a shoulder on the ocular waveform inAplysia (Fig. 2). (3) The in vitro free-running period of theBursatella ocular rhythm is 21.2 h (±0.6 SD) compared with 24.3 h (±0.9 SD) for theAplysia rhythm (Fig. 2). (4) The steady state phase angle for entrainment differs withBursatella eyes showing a median activity peak at +3 Z.T. compared with a medianAplysia peak at –1 Z.T. (Fig. 4).We also investigated the locomotor rhythm.Bursatella were found to be predominantly diurnal when exposed to LD, 1212 (Fig. 5A) and to exhibit anticipatory locomotor activity when maintained on LD), 915 (Fig. 6). The eyes appear to play a minor role, if any, in timing the locomotor rhythm. EyelessBursatella remained diurnal on LD, 915 and most animals continued to exhibit anticipatory behavior (Fig. 6). These results suggest that theBursatella eye plays a less prominent role than theAplysia eye in controlling locomotor behavior.Abbreviations DD constant darkness - LD 1212 24 h light cycles 12 h light, 12 h dark - EST Eastern Standard Time - Z.T. Zeitgeber Time We would like to thank L. Baird, W. Kilmartin and S. Wallace for help with animal maintenance, data presentation and photography. We also thank T. Breeden for our computer programs. This work was supported by NIH grant NS-15264 to G. Block.  相似文献   

13.
Summary An apparatus was devised to record crowing (mate calling by males) together with locomotor activity and recorded data was analyzed by several methods for rhythm analysis. Crowing and locomotor activity of Japanese quail held on long days were recorded during sexual development as estimated from circulating gonadotropins and testosterone. Both behaviors were testosterone-dependent but commencement of crowing preceded the increase in locomotor activity. When the two behaviors attained their maximum levels, crowing showed consistent daily rhythms in which two peaks were apparent, a major one at the onset of light and a broader one 8 hours later. Locomotor activity also showed a clear daily rhythm with a peak between the two peaks of crowing rhythm suggesting a fixed phase relationship between the two rhythms.Both rhythms free-ran under constant dim light with periods shorter than 24 h. They persisted in birds which had been castrated and then supplied with exogenous testosterone via implanted Silastic capsules. The durations of both rhythms were quite comparable to each other and they maintained a fixed phase relationship similar to that found under LD cycles.The results indicate that testosterone is essential for the induction of crowing and for the enhancement of locomotor activity but the formation of the rhythms in behavior was strictly dependent on a circadian oscillatory mechanism.Abbreviations LH luteinizing hormone - FHS follicle-stimulating hormone - LD light-dark - LDim light-dim light  相似文献   

14.
In humans, activity rhythms become fragmented and attenuated in the elderly. This suggests an alteration of the circadian system per se that could in turn affect the expression of biological rhythms. In primates, very few studies have analyzed the effect of aging on the circadian system. The mouse lemur provides a unique model of aging in non‐human primates. To assess the effect of aging on the circadian system of this primate, we recorded the circadian and daily rhythms of locomotor activity of mouse lemurs of various ages. We also examined age‐related changes in the daily rhythm of immunoreactivities for vasoactive intestinal polypeptide (VIP) and arginine‐vasopressin (AVP) in suprachiasmatic nucleus neurons (SCN), two major peptides of the biological clock. Compared to adult animals, aged mouse lemurs showed a significant increase in daytime activity and an advanced activity onset. Moreover, when maintained in constant dim red light, aged animals exhibited a shortening of the free‐running period compared to adult animals. In adults, AVP immunoreactivity (ir) peaked during the second part of the day, and VIP ir peaked during the night. In aged mouse lemurs, the peaks of AVP ir and VIP ir were significantly shifted with no change in amplitude. AVP ir was most intense at the beginning of the night; whereas, VIP ir peaked at the beginning of the daytime. A weakened oscillator could account for the rhythmic disorders often observed in the elderly. Changes in the daily rhythms of AVP ir and VIP ir may affect the ability of the SCN to transmit rhythmic information to other neural target sites, and thereby modify the expression of some biological rhythms.  相似文献   

15.
In Aplysia californica, memory formation for long-term sensitization (LTS) and for a more complex type of associative learning, learning that food is inedible (LFI), is modulated by a circadian clock. For both types of learning, formation of long-term memory occurs during the day and significantly less during the night. Aplysia eyes contain a well-characterized circadian oscillator that is strongly coupled to the locomotor activity rhythm. Thus, the authors hypothesized that the ocular circadian oscillator was responsible for the circadian modulation of LFI and LTS. To test this hypothesis, they investigated whether the eyes were necessary for circadian modulation of LFI and LTS. Eyeless animals trained during the subjective day and tested 24 h later demonstrated robust long-term memory for both LFI and LTS, while eyeless animals trained and tested during the subjective night showed little or no memory for LFI or LTS. The amplitude of the rhythm of modulation in eyeless animals was similar to that of intact Aplysia, suggesting that extraocular circadian oscillators were mainly responsible for the circadian rhythms in long-term memory formation. Next, the authors investigated whether the eyes played a role in photic entrainment for circadian regulation of long-term memory formation. Eyeless animals were exposed to a reversed LD cycle for 7 days and then trained and tested for long-term memory using the LFI paradigm. Eyeless Aplysia formed significant long-term memory when trained during the projected shifted day but not during the projected shifted night. Thus, the extraocular circadian oscillator responsible for the rhythmic modulation of long-term memory formation can be entrained by extraocular photoreceptors.  相似文献   

16.
17.
We examined whether melatonin can act as a synchronizing agent within the circadian system of amphibians by testing the ability of melatonin injections to entrain the circadian locomotor activity rhythm of a newt (Cynops pyrrhogaster). Under constant darkness, all newts (13 cases) showing the free-running rhythms were subcutaneously injected with 10 g melatonin at the same time every other day for at least 30 days. Subsequently, they were injected with vehicle (1% ethanolic saline) instead of melatonin for at least another 30 days. In 10 of the 13 newts, the locomotor activity rhythms could be entrained to a period of 24 h by melatonin injections but not by vehicle injections. During the entrained steady-state, the active phase of an activity-rest cycle preceded the time of melatonin injections as previously reported in other diurnal species. These results suggest that the endogenous circadian rhythm of melatonin concentration may be involved in synchronizing circadian oscillator(s) within the newt's circadian system.  相似文献   

18.
Nonphotic entrainment of an overt sleep-wake rhythm and a circadian pacemaker-driving temperature/melatonin rhythm suggests existence of feedback mechanisms in the human circadian system. In this study, the authors constructed a phase dynamics model that consisted of two oscillators driving temperature/melatonin and sleep-wake rhythms, and an additional oscillator generating an overt sleep-wake rhythm. The feedback mechanism was implemented by modifying couplings between the constituent oscillators according to the history of correlations between them. The model successfully simulated the behavior of human circadian rhythms in response to forced rest-activity schedules under free-run situations: the sleep-wake rhythm is reentrained with the circadian pacemaker after release from the schedule, there is a critical period for the schedule to fully entrain the sleep-wake rhythm, and the forced rest-activity schedule can entrain the circadian pacemaker with the aid of exercise. The behavior of human circadian rhythms was reproduced with variations in only a few model parameters. Because conventional models are unable to reproduce the experimental results concerned here, it was suggested that the feedback mechanisms included in this model underlie nonphotic entrainment of human circadian rhythms.  相似文献   

19.
In the free-running circadian locomotor activity rhythm of a 7-year-old male owl monkey (Aotus lemurinus griseimembra) kept under constant light and climatic conditions (LL 0.2 lux, 25°C ± 1°C, 60 ± 5% relative humidity [RH]), a second rhythm component developed that showed strong relative coordination with the free-running activity rhythm of 24.4h and a 24h rhythm. The simultaneously recorded feeding activity rhythm strongly resembled this rhythm component. Therefore, it seems justified to infer that there was an internal desynchronization between the two behavioral rhythms or their circadian pacemakers, that is, between the light-entrainable oscillator located in the suprachiasmatic nuclei (SCN) and a food-entrainable oscillator located outside the SCN. This internal desynchronization may have been induced and/or maintained by a zeitgeber effect of the (irregular) 24h feeding schedule on the food-entrainable oscillator. The weak relative coordination shown by the activity rhythm indicates a much weaker coupling of the light-entrainable oscillator to the food-entrainable oscillator than vice versa. (Chronobiology International, 17(2), 147–153, 2000)  相似文献   

20.
Pittendrigh first found that the circadian rhythm of locomotor activity in nocturnal rodents split into two components. Hoffman then reported that the splitting phenomenon was even more reproducible in the small diurnal primate Tupaia. These “splitting” experiments and many other experiments suggest that two coupled oscillators may constitute the circadian pacemaker system. Pittendrigh proposed a phenomenological two-oscillator model. Daan and Berde developed a quantitative model assuming that the interaction between the two constituent oscillators is by instantaneous resets. Their model system can simulate several qualitative features in the experimental data. As the assumption of instantaneous resets seems to be unnatural, we study two limit cycle oscillators, which are coupled continuously to each other, as a model of the circadian pacemaker. We assume the following points, (i) One oscillator in a resting state does not affect another oscillator, (ii) Two oscillators are identical, (iii) The coupling is symmetrical. By the theory of Hopf bifurcation it is found that the general two-oscillator system has two stable periodic solutions. One is the in-phase solution where the two constituent oscillators oscillate in phase synchrony. Another is the anti-phase solution where the two oscillators oscillate 180 ° out of phase. The former corresponds to a single pattern of locomotor activity and the latter corresponds to a splitting pattern. Furthermore, we study specific two-neural oscillators, which are linearly coupled to each other. By the method of secondary bifurcation we find that the model shows simultaneous stability of the two alternative phase relationships and the hysteresis phenomena found in Tupaia. A natural period of the uncoupled constituent oscillator is longer than that of the in-phase solution but it is shorter than that of the anti-phase solution. This is in agreement with the data of Tupaia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号