首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
2.
3.
In order to understand more details about the role of abscisic acid (ABA) in fruit ripening and senescence, six 740 bp cDNAs (LeNCED1, LeNCED2, PpNCED1, VVNCED1, DKNCED1 and CMNCED1) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) as a key enzyme in ABA biosynthesis, were cloned from fruits of tomato, peach, grape, persimmon and melon using an RT-PCR approach. A Blast homology search revealed a similarity of amino acid 85.76% between the NCEDs. A relationship between ABA and ethylene during ripening was also investigated. At the mature green stage, exogenous ABA treatment increased ABA content in flesh, and promoting ethylene synthesis and fruit ripening, while treatment with nordihydroguaiaretic acid (NDGA), inhibited them, delayed fruit ripening and softening. However, ABA inhibited the ethylene synthesis obviously while NDGA promoted them when treated the immature fruit with these chemicals. At the breaker, NDGA treatment cannot block ABA accumulation and ethylene synthesis. Based on the results obtained in this study, it was concluded that ABA plays different role in ethylene synthesis system in different stages of tomato fruit ripening.Key words: tomato, NCED gene, ABA, ethylene, fruit ripening, peach, grape, persimmon, melon  相似文献   

4.
Rapid ripening of mango fruit limits its distribution to distant markets. To better understand and perhaps manipulate this process, we investigated the role of plant hormones in modulating climacteric ripening of ??Kensington Pride?? mango fruits. Changes in endogenous levels of brassinosteroids (BRs), abscisic acid (ABA), indole-3-acetic acid (IAA), and ethylene and the respiration rate, pulp firmness, and skin color were determined at 2-day intervals during an 8-day ripening period at ambient temperature (21?±?1°C). We also investigated the effects of exogenously applied epibrassinolide (Epi-BL), (+)-cis, trans-abscisic acid (ABA), and an inhibitor of ABA biosynthesis, nordihydroguaiaretic acid (NDGA), on fruit-ripening parameters such as respiration, ethylene production, fruit softening, and color. Climacteric ethylene production and the respiration peak occurred on the fourth day of ripening. Castasterone and brassinolide were present in only trace amounts in fruit pulp throughout the ripening period. However, the exogenous application of Epi-BL (45 and 60?ng?g?1 FW) advanced the onset of the climacteric peaks of ethylene production and respiration rate by 2 and 1?day, respectively, and accelerated fruit color development and softening during the fruit-ripening period. The endogenous level of ABA rose during the climacteric rise stage on the second day of ripening and peaked on the fourth day of ripening. Exogenous ABA promoted fruit color development and softening during ripening compared with the control and the trend was reversed in NDGA-treated fruit. The endogenous IAA level in the fruit pulp was higher during the preclimacteric minimum stage and declined during the climacteric and postclimacteric stages. We speculate that higher levels of endogenous IAA in fruit pulp during the preclimacteric stage and the accumulation of ABA prior to the climacteric stage might switch on ethylene production that triggers fruit ripening. Whilst exogenous Epi-BL promoted fruit ripening, endogenous measurements suggest that changes in BRs levels are unlikely to modulate mango fruit ripening.  相似文献   

5.
6.
7.
Xyloglucan endotransglucosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, has been proposed to have a role during tomato and apple fruit ripening by loosening the cell wall. Since the ripening of climacteric fruits is controlled by endogenous ethylene biosynthesis, we wanted to study whether XET activity was ethylene-regulated, and if so, which specific genes encoding ripening-regulated XTH genes were indeed ethylene-regulated. XET specific activity in tomato and apple fruits was significantly increased by the ethylene treatment, as compared with the control fruits, suggesting an increase in the XTH gene expression induced by ethylene. The 25 SlXTH protein sequences of tomato and the 11 sequences MdXTH of apple were phylogenetically analyzed and grouped into three major clades. The SlXTHs genes with highest expression during ripening were SlXTH5 and SlXTH8 from Group III-B, and in apple MdXTH2, from Group II, and MdXTH10, and MdXTH11 from Group III-B. Ethylene was involved in the regulation of the expression of different SlXTH and MdXTH genes during ripening. In tomato fruit fifteen different SlXTH genes showed an increase in expression after ethylene treatment, and the SlXTHs that were ripening associated were also ethylene dependent, and belong to Group III-B (SlXTH5 and SlXTH8). In apple fruit, three MdXTH showed an increase in expression after the ethylene treatment and the only MdXTH that was ripening associated and ethylene dependent was MdXTH10 from Group III-B. The results indicate that XTH may play an important role in fruit ripening and a possible relationship between XTHs from Group III-B and fruit ripening, and ethylene regulation is suggested.  相似文献   

8.
9.
10.
Yang FW  XQ Feng 《Phyton》2015,84(2):444-453
Abscisic acid (ABA) plays a series of significant physiology roles in higher plants including but not limited to promote bud and seed dormancy, accelerate foliage fall, induce stomatal closure, inhibit growth and enhance resistance. Recently, it has been revealed that ABA also has an important regulator role in the growth, development and ripening of fruit. In higher plants ABA is produced from an indirect pathway from the cleavage products of carotenoids. The accumulation of endogenous ABA levels in plants is a dynamic balance controlled by the processes of biosynthesis and catabolism, through the regulation of key ABA biosynthetic gene and enzyme activities. It has been hypothesized that ABA levels could be part of the signal that trigger fruit ripening, and that ABA may play an important role in the regulation of ripening and senescence of both non-climacteric and climacteric fruit. The expensive costs of natural ABA and labile active ABA for its chemical synthesis limit its application in scientific research and agricultural production. These findings that ABA has various of important roles in the regulation of growth and development, quality formation, coloring and softening, ripening and senescence of fruit, are providing opportunities and challenges for Horticultural Science. This is to elucidate the specific mechanism of response and biosynthesis, signal transduction, and receptor recognition of ABA in fruit, employing comprehensive research methods, such as molecular biology, plant physiology and molecular genetics. Further and more in-depth research about ABA has a great, realistic significance for knowing the mechanisms behind the process of fruit ripening.  相似文献   

11.
A role for jasmonates in climacteric fruit ripening   总被引:12,自引:0,他引:12  
Jasmonates are a class of oxylipins that induce a wide variety of higher-plant responses. To determine if jasmonates play a role in the regulation of climacteric fruit ripening, the effects of exogenous jasmonates on ethylene biosynthesis and color, as well as the endogenous concentrations of jasmonates were determined during the onset of ripening of apple (Malus domestica Borkh. cv. Golden Delicious) and tomato (Lycopersicon esculentum Mill. cv. Cobra) fruit. Transient (12 h) treatment of pre-climacteric fruit discs with exogenous jasmonates at low concentration (1 or 10 μM) promoted ethylene biosynthesis and color change in a concentration-dependent fashion. Activities of both 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase and ACC synthase were stimulated by jasmonate treatments in this concentration range. The endogenous concentration of jasmonates increased transiently prior to the climacteric increase in ethylene biosynthesis during the onset of ripening of both apple and tomato fruit. The onset of tomato fruit ripening was also preceded by an increase in the percentage of the cis-isomer of jasmonic acid. Inhibition of ethylene action by diazocyclopentadiene negated the jasmonate-induced stimulation of ethylene biosynthesis, indicating jasmonates act at least in part via ethylene action. These results suggest jasmonates may play a role together with ethylene in regulating the early steps of climacteric fruit ripening. Received: 14 August 1997 / Accepted: 4 October 1997  相似文献   

12.
13.
14.
Papaya (Carica papaya L.) is the first fleshy fruit with a climacteric ripening pattern to be sequenced. As a member of the Rosids superorder in the order Brassicales, papaya apparently lacks the genome duplication that occurred twice in Arabidopsis. The predicted papaya genes that are homologous to those potentially involved in fruit growth, development, and ripening were investigated. Genes homologous to those involved in tomato fruit size and shape were found. Fewer predicted papaya expansin genes were found and no Expansin Like-B genes were predicted. Compared to Arabidopsis and tomato, fewer genes that may impact sugar accumulation in papaya, ethylene synthesis and response, respiration, chlorophyll degradation and carotenoid synthesis were predicted. Similar or fewer genes were found in papaya for the enzymes leading to volatile production than so far determined for tomato. The presence of fewer papaya genes in most fruit development and ripening categories suggests less subfunctionalization of gene action. The lack of whole genome duplication and reductions in most gene families and biosynthetic pathways make papaya a valuable and unique tool to study the evolution of fruit ripening and the complex regulatory networks active in fruit ripening.  相似文献   

15.
Genetic mapping of ripening and ethylene-related loci in tomato   总被引:5,自引:0,他引:5  
 The regulation of tomato fruit development and ripening is influenced by a large number of loci as demonstrated by the number of existing non-allelic fruit development mutations and a multitude of genes showing ripening-related expression patterns. Furthermore, analysis of transgenic and naturally occurring tomato mutants confirms the pivotal role of the gaseous hormone ethylene in the regulation of climacteric ripening. Here we report RFLP mapping of 32 independent tomato loci corresponding to genes known or hypothesized to influence fruit ripening and/or ethylene response. Mapped ethylene-response sequences fall into the categories of genes involved in either hormone biosynthesis or perception, while additional ripening-related genes include those involved in cell-wall metabolism and pigment biosynthesis. The placement of ripening and ethylene-response loci on the tomato RFLP map will facilitate both the identification and exclusion of candidate gene sequences corresponding to identified single gene and quantitative trait loci contributing to fruit development and ethylene response. Received: 26 October 1998 / Accepted: 13 November 1998  相似文献   

16.
17.
18.
Phytohormones are integral to the regulation of fruit development and maturation. This review expands upon current understanding of the relationship between hormone signaling and fruit development, emphasizing fleshy fruit and highlighting recent work in the model crop tomato (Solanum lycopersicum) and additional species. Fruit development comprises fruit set initiation, growth, and maturation and ripening. Fruit set transpires after fertilization and is associated with auxin and gibberellic acid (GA) signaling. Interaction between auxin and GAs, as well as other phytohormones, is mediated by auxin-responsive Aux/IAA and ARF proteins. Fruit growth consists of cell division and expansion, the former shown to be influenced by auxin signaling. While regulation of cell expansion is less thoroughly understood, evidence indicates synergistic regulation via both auxin and GAs, with input from additional hormones. Fruit maturation, a transitional phase that precipitates ripening, occurs when auxin and GA levels subside with a concurrent rise in abscisic acid (ABA) and ethylene. During fruit ripening, ethylene plays a clear role in climacteric fruits, whereas non-climacteric ripening is generally associated with ABA. Recent evidence indicates varying requirements for both hormones within both ripening physiologies, suggesting rebalancing and specification of roles for common regulators rather than reliance upon one. Numerous recent discoveries pertaining to the molecular basis of hormonal activity and crosstalk are discussed, while we also note that many questions remain such as the molecular basis of additional hormonal activities, the role of epigenome changes, and how prior discoveries translate to the plethora of angiosperm species.  相似文献   

19.
20.
It has been suggested that the phytohormone abscisic acid (ABA) plays an important role in the ripening of climatic fruit, although relevant genetic/molecular evidence is lacking. In the present study, a peach gene homologous to the putative Arabidopsis ABA receptor gene ABAR/CHLH, named PpCHLH, was isolated and characterized. PpCHLH is expressed ubiquitously as a single-copy gene in peach. Using tobacco rattle virus-induced gene silencing (VIGS), the PpCHLH gene was silenced in both peach leaves and fruit. The silenced PpCHLH gene affected leaf stomatal movement and delayed fruit ripening significantly. Although exogenously applied ABA promoted the ripening of the wild-type fruits, it could not rescue the RNAi chimeric fruit ripening. Collectively, these results demonstrate that PpCHLH plays a critical role in peach fruit ripening, and suggest that ABA might function as an important signal in the regulation of climacteric fruit development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号