首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
Gibbon BC  Kovar DR  Staiger CJ 《The Plant cell》1999,11(12):2349-2363
The actin cytoskeleton is absolutely required for pollen germination and tube growth, but little is known about the regulation of actin polymer concentrations or dynamics in pollen. Here, we report that latrunculin B (LATB), a potent inhibitor of actin polymerization, had effects on pollen that were distinct from those of cytochalasin D. The equilibrium dissociation constant measured for LATB binding to maize pollen actin was determined to be 74 nM. This high affinity for pollen actin suggested that treatment of pollen with LATB would have marked effects on actin function. Indeed, LATB inhibited maize pollen germination half-maximally at 50 nM, yet it blocked pollen tube growth at one-tenth of that concentration. Low concentrations of LATB also caused partial disruption of the actin cytoskeleton in germinated maize pollen, as visualized by light microscopy and fluorescent-phalloidin staining. The amounts of filamentous actin (F-actin) in pollen were quantified by measuring phalloidin binding sites, a sensitive assay that had not been used previously for plant cells. The amount of F-actin in maize pollen increased slightly upon germination, whereas the total actin protein level did not change. LATB treatment caused a dose-dependent depolymerization of F-actin in populations of maize pollen grains and tubes. Moreover, the same concentrations of LATB caused similar depolymerization in pollen grains before germination and in pollen tubes. These data indicate that the increased sensitivity of pollen tube growth to LATB was not due to general destabilization of the actin cytoskeleton or to decreases in F-actin amounts after germination. We postulate that germination is less sensitive to LATB than tube extension because the presence of a small population of LATB-sensitive actin filaments is critical for maintenance of tip growth but not for germination of pollen, or because germination is less sensitive to partial depolymerization of the actin cytoskeleton.  相似文献   

3.
Summary Major stages of actin organization during activation leading to germination of pear (Pyrus communis L.) pollen were disrupted by treatment with 5 g/ml cytochalasin D (CD), and the effects of the drug were monitored with rhodamine-phalloidin staining. CD induced the formation of granules or short rods in the place of the filamentous arrays that occur in normally developing pollen. Filamentous arrays, however, returned upon removal of CD. Pollen incubated directly in CD showed a gradual disappearance of circular actin profiles and their replacement by either granules or, less frequently, short rods. These granules and rods initially had a random distribution in the cell, but with time in CD they became localized at one of the three germination apertures. Pollen was also allowed to reach three stages of microfilament (MF) organization (initial fibrillar arrays, interapertural MFs, and MFs confined beneath a single aperture) prior to being continously exposed to CD. After CD treatment, germination was blocked and the number of cells containing short rods increased, but movement of actin to a single aperture continued. Finally, when pollen at different stages of MF organization was treated with a CD pulse and then transferred to drug-free medium, germination was delayed regardless of the stage of MF organization at the time of treatment. The results indicate that an uninterrupted progression of actin organization is essential for pollen germination, but that movement of actin in the cell is CD-insensitive.  相似文献   

4.
Hydration of pollen of Narcissus pseudonarcissus was retardedand germination blocked in media with supra-optimal concentrationsof osmoticum. Activation of the grains, expressed in circulatorymovement in the vegetative cell, was not blocked. Wall developmentwas disrupted, and pectic material and callose were depositedthroughout. In the absence of calcium many grains burst on hydration.The survivors showed evidence of activation, but few tubes wereformed. In medium with supra-optimal Ca2+, activation proceeded,but where tube tips were produced they became occluded withcallose, which eventually formed a general lining to the intine.Nifedipine, a Ca2+-blocker, did not prevent activation at 10–4M, but reduced callose deposition and inhibited polarized movementin the vegetative cell. Prominences formed at the germinationsites were mostly low and rounded. During recovery in normalmedium, tube tips with normal callose linings were formed. Colchicine,a microtubule inhibitor, had no effect on activation or germination.Cytochalasin D, an actin inhibitor, prevented activation ofthe vegetative cell, but did not arrest all wall deposition.Movement began soon after transfer to normal medium, and somegrains produced adventitious tube tips. While Ca2+ appears notto be essential for activation, these results may be interpretedas indicating links in the normal course of germination betweenthe initial Ca2+ influx at the potential germination sites and:(a) polarization of movement in the vegetative cell, probablyrelated to re-orientation of the actin cytoskeleton; and (b)patterned deposition of callose, which appears to have an importantmorphogenetic role. Narcissus pseudonarcissus, pollen activation, pollen germination, osmotic effects, actin cytoskeleton, nifedipine, cytochalasin D, colchicine, role of Ca2+ flux  相似文献   

5.
Pollen grain polarity, aperture condition and pollen tube formation were examined inEphedra americana, E. foliata, E. rupestris, E. distachya, andE. fragilis using LM, SEM and TEM. In the characteristic oblate pollen, as seen in situ in the tetrad configuration, the polar axis is the minor one and the equatorial plane runs between the two narrow ends of the microspore. The intine is thick in fresh fixed mature pollen but we have seen no indication of regions having an exceptionally thick intine that could be considered associated with an aperture or apertures. About three minutes after transferring fresh pollen to the germinating medium the ridged exine splits and twists away from the intine and its enclosed protoplast. The shed exine spreads out and curls into a scroll-like configuration that is as distinctive as that of the pollen shape had been but now having the ridges and valleys perpendicular to the long axis. The pollen tube develops, in our experience with more than a hundred germinating pollen grains, near one of the narrow tips of the pollen grain's equatorial plane. The location of the pollen tube initiation probably is related to the position of the tube cell nucleus. The pollen tube starts to grow about one hour after the exine was shed. The pollen tube emerges close to the narrow end (equator) of the gametophyte. This end emerged first as the exine is shed and is opposite to the prothallial cells. The stout pollen tube is c. 10µm in diameter grown in vitro on agar. In our germination medium the stout tube continued to elongate for about 24 hours reaching a length of c. 100 µm. With respect to exine morphology the aperture condition could be considered as inaperturate. The pollen tube, however, is formed in a germination area near one end of the exineless gametophyte.  相似文献   

6.
Summary The organization of actin microfilaments (MFs) was studied during pollen development ofBrassica napus cv. Topas. Cells were prepared using three techniques and double labelled for fluorescence microscopy with rhodamine-labelled phalloidin for MFs and Hoechst 33258 for DNA. Microfilaments are present at all stages of pollen development with the exception of tricellular pollen just prior to anthesis. Unicellular microspores contain MFs which radiate from the surface of the nuclear envelope into the cytoplasm. During mitosis MFs form a network partially surrounding the mitotic apparatus and extend into the cytoplasm. Both cytoplasmic and phragmoplast-associated MFs are present during cytokinesis. Nuclear associated-, cytoplasmic, and randomly oriented cortical MFs appear in the vegetative cell of the bicellular microspore. Cortical MFs in the vegetative cell organize into parallel MF bundles (MFBs) aligned transverse to the furrows. The MFBs disappear prior to microspore elongation. At anthesis MFs are restricted to the cortical areas subjacent to the furrows of the vegetative cell. The use of cytochalasin D to disrupt MF function resulted in: (1) displacement of the acentric nucleus in the unicellular microspore; (2) displacement of the spindle apparatus in the mitotic cell; (3) symmetrical growth of the bicellular microspore rather than elongation and (4) inhibition of pollen tube germination in the mature pollen grain. This suggests that MFs play an important role in anchoring the nucleus in the unicellular microspore as well as the spindle apparatus during microspore mitosis, in microspore shape determination and in pollen tube germination.Abbreviations MF microfilament - MFB microfilament bundle - rhph rhodamine phalloidin Dedicated to the memory of Professor John G. Torrey  相似文献   

7.
The signal-mediated and spatially controlled assembly and dynamics of actin are crucial for maintaining shape, motility, and tip growth of eukaryotic cells. We report that a novel Armadillo repeat protein in Arabidopsis thaliana, ARMADILLO REPEAT ONLY1 (ARO1), is of fundamental importance for polar growth and F-actin organization in tip-growing pollen tubes. ARO1 is specifically expressed in the vegetative cell of pollen as well as in the egg cell. ARO1-GFP (for green fluorescent protein) fusion proteins accumulate most notably in pollen tube tips and partially colocalize with F-actin in the shank of pollen tubes. ARO1 knockout results in a highly disorganized actin cytoskeleton, growth depolarization, and ultimately tube growth arrest. Tip-localized ARO1-GFP is spatially shifted toward the future site of tip growth, indicating a role of ARO1 in the signaling network controlling tip growth and regulating actin organization. After the pollen tube discharges its contents into the receptive synergid, ARO1-GFP colocalizes with emerging F-actin structures near the site of sperm cell fusion, suggesting additional participation in the mechanism of sperm cell tracking toward the female gametes. The variable localization of ARO1 in the cytoplasm, the nucleus, and at the plasma membrane, however, indicates a multifunctional role like that of beta-catenin/Armadillo and the p120 catenins.  相似文献   

8.
Actin filament patterns during pollen germination in Hosta caerulea Tratt. were visualized with a simple method in which there was no pre-fixation, with dimethylsulphoxide (DMSO) as a permeabilising agent and staining with TRITC-Phalloidin. The cytoplasm of the vegetative cell of the ungerminated pollen grain contained numerous crystalline fusiform bodies to constitute a storage form of actin. These bodies were transferred to the emerging pollen tube after the germination of the pollen grain. Following the growth of pollen tube, the fusiform bodies were gradually dissociated, branched, slenderized and formed a cross-linked actin network. During the further growth of the pollen tube, the preponderance of longitudinally-oriented thin actin filaments with some anastomoses to form a more complex network present always in the long pollen tube. This was the typical pattern of actin filaments in most cases. In some conditions, actin filaments were assembled to form thick actin cables near the proximate part of the pollen tube tip. The branching and connecting of the cables were probably also seen in some parts. Actin filaments were always entering to the apical region of a tube tip. The significance of the non-fixation and fluorescence-phalloidin (FI-Ph) method and the problems in the future studies are discussed  相似文献   

9.
The behavior and role of the microtubule (MT) and actin-myosin components of the cytoskeleton during pollen tube growth in two species of Pinus were studied using anti--tubulin, rhodamine-phalloidin, anti-myosin, and the appropriate inhibitors. Within germinated pollen tubes MTs were arranged obliquely or transversely, but in elongated tubes they were arranged along the tube's long axis. MTs were localized in the tube tip region, excluding the basal part. Altered growth was found in pollen tubes treated with colchicine; the tips of many pollen tubes incubated in the liquid medium were branched and/or rounded, and those in the agar medium were divided into many branches. Both the branching and the rounding were considered to be caused by the disturbance of polarizing growth of the tube due to MT disorganization with colchicine treatment. Actin filaments (F-actin) were found in the major parts of many pollen tubes along their long axis, excluding the tip region. In a few tubes, however, F-actin was distributed throughout the tube. The areas in the pollen tube containing F-actin were filled with abundant cytoplasmic granules, but the areas without F-actin had very few granules. The tube nucleus, which migrated from the grain area into the tube, was closely associated with F-actin. Germination of pollen grains treated with cytochalasin B was little affected, but further tube elongation was inhibited. Myosin was identified on cytoplasmic granules and to a lesser extent on the tube nucleus in the pollen tubes. Several granules were attached to the nuclear envelope. Tube growth was completely inhibited by N-ethylmaleimide treatment. In generative cells that were retained in the pollen grain, both MT and F-actin networks were observed. Myosin was localized on the cytoplasmic granules but not on the cell surface. In conclusion, it was shown that actin-myosin and MTs were present in gymnospermous Pinus pollen tubes and it is suggested that the former contributed to outgrowth of the tubes and the latter contributed to polarized growth. Several differences in the behavior of cytoskeletal elements in generative cells compared to angiosperms were revealed and are discussed.  相似文献   

10.
Wang HJ  Wan AR  Jauh GY 《Plant physiology》2008,147(4):1619-1636
Actin microfilaments are crucial for polar cell tip growth, and their configurations and dynamics are regulated by the actions of various actin-binding proteins (ABPs). We explored the function of a lily (Lilium longiflorum) pollen-enriched LIM domain-containing protein, LlLIM1, in regulating the actin dynamics in elongating pollen tube. Cytological and biochemical assays verified LlLIM1 functioning as an ABP, promoting filamentous actin (F-actin) bundle assembly and protecting F-actin against latrunculin B-mediated depolymerization. Overexpressed LlLIM1 significantly disturbed pollen tube growth and morphology, with multiple tubes protruding from one pollen grain and coaggregation of FM4-64-labeled vesicles and Golgi apparatuses at the subapex of the tube tip. Moderate expression of LlLIM1 induced an oscillatory formation of asterisk-shaped F-actin aggregates that oscillated with growth period but in different phases at the subapical region. These results suggest that the formation of LlLIM1-mediated overstabilized F-actin bundles interfered with endomembrane trafficking to result in growth retardation. Cosedimentation assays revealed that the binding affinity of LlLIM1 to F-actin was simultaneously regulated by both pH and Ca(2+): LlLIM1 showed a preference for F-actin binding under low pH and low Ca(2+) concentration. The potential functions of LlLIM1 as an ABP sensitive to pH and calcium in integrating endomembrane trafficking, oscillatory pH, and calcium circumstances to regulate tip-focused pollen tube growth are discussed.  相似文献   

11.
The actin cytoskeleton plays a crucial role in many aspects of plant cell development. During male gametophyte development, the actin arrays are conspicuously remodeled both during pollen maturation in the anther and after pollen hydration on the receptive stigma and pollen tube elongation. Remodeling of actin arrays results from the highly orchestrated activities of numerous actin binding proteins (ABPs). A key player in actin remodeling is the actin depolymerizing factor (ADF), which increases actin filament treadmilling rates. We prepared fluorescent protein fusions of two Arabidopsis pollen-specific ADFs, ADF7 and ADF10. We monitored the expression and subcellular localization of these proteins during male gametophyte development, pollen germination and pollen tube growth. ADF7 and ADF10 were differentially expressed with the ADF7 signal appearing in the microspore stage and that of ADF10 only during the polarized microspore stage. ADF7 was associated with the microspore nucleus and the vegetative nucleus of the mature grain during less metabolically active stages, but in germinating pollen grains and elongating pollen tubes, it was associated with the subapical actin fringe. On the other hand, ADF10 was associated with filamentous actin in the developing gametophyte, in particular with the arrays surrounding the apertures of the mature pollen grain. In the shank of elongating pollen tubes, ADF10 was associated with thick actin cables. We propose possible specific functions of these two ADFs based on their differences in expression and localization.  相似文献   

12.
用非固定的、二甲基亚砜作为渗透剂的、异硫氰四甲基罗丹明标记的鬼笔环肽染色方法,观察了紫萼(Hosta caerulea Tratt.)未萌发的花粉粒及不同生长时期的花粉管中的肌动蛋白纤丝的形式。显示未萌发的花粉粒中具有结晶状的梭状体,为肌动蛋白的一种贮藏形式。花粉萌发时,这种梭状体转移到短的花粉管中,逐渐松解、分支和形成肌动蛋白纤丝交错的网络。在花粉管迅速生长和达到一定长度时,肌动蛋白纤丝形成以与花粉管长轴平行的细丝占优势的网络系统,这是在大多数情况中紫萼花粉管典型的肌动蛋白纤丝的形式。在某些条件下,在花粉管接近顶端的前部,肌动蛋白纤丝可集合成长的粗束,这种粗束也常有分支和并合。肌动强白纤丝一直分布到花粉管的末端。讨论了研究肌动蛋白纤丝的非固定方法的重要性和进一步研究花粉管肌动蛋白纤丝值得注意的问题。  相似文献   

13.
Abreu I  Oliveira M 《Protoplasma》2004,224(1-2):123-128
Summary. The cell wall composition of germinating pollen grains of Actinidia deliciosa was studied by immunolocalization with monoclonal antibodies against arabinogalactan proteins (AGPs) and pectins. In ungerminated pollen, the JIM8 epitope (against a subset of AGPs) was located in the intine and in the cytoplasm, while the MAC207 epitope (against AGPs) was only located in the exine. After germination, the JIM8 and MAC 207 epitopes were located in the cytoplasm and in the pollen tube wall. The Yariv reagent that binds to AGPs was added to the germination medium inducing a reduction or inhibition in pollen germination. This indicates that AGPs are present in the growing pollen tube and play an important role in pollen germination. To identify the nature of the pectins found in pollen grains and tubes, four monoclonal antibodies were used. The JIM5 epitope (against unesterified pectins) was located in the intine, more intensely in the pore region, and along the pollen tube wall, and the JIM7 epitope (against methyl-esterified pectins) was also observed in the cytoplasm. After germination, the JIM5 epitope was located in the pollen tube wall; although, the tube tip was not labelled. The JIM7 epitope was located in the entire pollen tube wall. LM5 (against galactans) showed a labelling pattern similar to that of JIM5 and the pattern of LM6 (against arabinans) was similar to that of JIM7. Pectins show different distribution patterns when the degree of esterification is considered. Pollen tube wall pectins are less esterified than those of the pollen tube tip. The association of AGPs with pectins in the cell wall of the pollen grain and the pollen tube may play an important role in the maintenance of cell shape during pollen growth and development.Correspondence and reprints: Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.  相似文献   

14.
Dynamic assembly and disassembly of the actin cytoskeleton has been implicated in the regulation of pollen germination and subsequent tube growth. It is widely accepted that actin filaments are arrayed into distinct structures within different regions of the pollen tube. Maintenance of the equilibrium between monomeric globular actin (G‐actin) and filamentous actin (F‐actin) is crucial for actin assembly and array construction, and the local concentration of G‐actin thus directly impacts actin assembly. The localization and dynamics of G‐actin in the pollen tube, however, remain to be determined conclusively. To address this question, we created a series of fusion proteins between green fluorescent protein (GFP) and the Arabidopsis reproductive actin ACT11. Expression of a fusion protein with GFP inserted after methionine at position 49 within the DNase I‐binding loop of ACT11 (GFPMet49–ACT11) rescued the phenotypes in act11 mutants. Consistent with the notion that the majority of actin is in its monomeric form, GFPMet49–ACT11 and GFP fusion proteins of four other reproductive actins generated with the same strategy do not obviously label filamentous structures. In further support of the functionality of these fusion proteins, we found that they can be incorporated into filamentous structures in jasplakinolide (Jasp)‐treated pollen tubes. Careful observations showed that G‐actin is distributed uniformly in the pollen tube and is rapidly redistributed via cytoplasmic streaming during pollen tube growth. Our study suggests that G‐actin is readily available in the cytoplasm to support continuous actin polymerization during rapid pollen tube growth.  相似文献   

15.
The germinability of newly released pollen of Epilobium angustifolium in liquid medium is low, but it is enhanced by a short period in an atmosphere of 85–95% RH without access to liquid water or solutes. During this period the thickened pectic layers of the intine at the germination apertures of the grains are eroded and prospective tube tips emerge. Concomitantly polarised movement of organelles begins in the vegetative cells, and wall precursor vesicles (P-particles) accumulate at the apertures. In pollen held continuously in the humid environment transition to cylindrical growth follows, with the establishment of the inverse-fountain pattern of circulation in the apical part of the tubes.  相似文献   

16.
The monocolpate pollen grain of Narcissus pseudonarcissus L.has two preferred sites for tube emergence, one at each endof the colpus. While the cellulosic microfibnls of the innerlayer of the intine are disposed circumferentially in the centreof the grain, the microfibrils in these terminal sites are shorterand randomly oriented Soon after the beginning of hydration,inclusions of the vegetative cell begin movement, firstly ina rotatory manner, and then in a pattern focused on one or bothgermination sites, where the intine bulges as hydration progresses.These changes are associated with the evolution of the actincytoskeleton. Actin is present in the unactivated grain in theform of fusiform bodies. During hydration these dissociate toform finer fibrils, initially randomly disposed. Then, correlatedwith the change of the pattern of movement in the vegetativecell, the actin fibril system becomes polarized towards thegermination sites, where shorter fibrils accumulate. Callose,absent from the ungerminated grain, is deposited within thecellulosic wall in these locations, forming a shallow dome whicheventually develops into an annulus subtending the inner calloselining of the emerging tube. The transition to cylindrical growthis associated firstly with the development of zonation in thecytoplasm of the vegetative cell, with the tip occupied by apopulation of wall precursor bodies (P-particles) and a denseaggregate of short actin fibrils; and then with the establishmentof the ‘inverse fountain’ pattern of movement characteristicof the apical part of the extending tube. Narcissus pseudonarcissus L, pollen activation, pollen germination, actin cytoskeleton, tip-growth system, pollen-tube wall development  相似文献   

17.
To study microtubule organization in germinating pear (Pyrus communis L., cv., Bartlett) pollen, we removed the pollen wall by freeze-fracturing before treating the resultant pollen protoplasts by conventional immunofluorescence procedures. Results reveal that axial bundles of microtubules are present in the generative cell of both inactivated and activated pollen grains. Microtubules are not present in the vegetative cells of inactivated pollen, but they are present in the vegetative cells of activated pollen grains. Microtubule nucleation occurs in the vegetative cell cortex. Subsequently, the microtubules grow as branching arrays through most of the vegetative cell cortex except at the apertures where they form localized converging or criss-cross patterns. Eventually, in a germinated pollen grain, the microtubules form network-like arrays through most of the pollen grain and a collar of short arrays at the base of the pollen tube. It is suggested that the role of vegetative cell microtubules in pollen germination is indirect through their mediation of the conformational changes in actin organization that are essential for pollen germination.  相似文献   

18.
Ultrastructural modifications of the intine and cytoplasm, during the maturation, activation and germination processes are described for several Poaceae pollen grains. Allergenic and antigenic proteins were found in the non apertural intine during the times of activation and germination, using TEM immunolabelling. This fact may be related to the function of the non apertural intine during the processes of pollen activation and pollen tube formation prior to fecundation. Changes in the granular particles of the cytoplasm are described and their role in pollen wall development is suggested. The pectic‐cellulosic and callosic layers of the pollen tube were formed on the degraded intine, and a relationship between pollen tube wall development and the substances expelled from the fibrillar particles was observed. The immunolabelling of the starch granules may be in agreement with their role in the allergenic process.  相似文献   

19.
Zi H  Xiang Y  Li M  Wang T  Ren H 《Protoplasma》2007,230(3-4):183-191
Summary. Phenylarsine oxide (PAO) and genistein are two well-known specific inhibitors of tyrosine phosphatases and kinases, respectively, that have been used in the functional analysis of the status of protein phosphotyrosine in different cell types. Our experiments showed that both PAO and genistein arrested pollen germination and pollen tube growth and led to the malformation of the pollen tubes, although genistein had a lesser effect. The malformations of the pollen tubes caused by PAO and genistein were, however, quite different. In addition, it was found that the rate of pollen germination and tube growth recovered to a certain extent when phalloidin was present during PAO treatment, but not when it was present during genistein treatment. Furthermore, PAO treatment also had a great effect on the dynamic organization of filamentous actin in the pollen grain and pollen tube, while genistein only caused reorganization of actin at the turning point of the pollen tube. Our results suggest that reversible protein tyrosine phosphorylation is a crucial step in pollen germination and pollen tube growth, but that tyrosine kinases and phosphatases may have different effects which may function through the reorganization of the actin cytoskeleton. Correspondence and reprints: Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People’s Republic of China.  相似文献   

20.
F-actin and microtubules are important components of pollen tube, which have very important function in cytoplasm streaming of pollen tube. The authors observed the distribution of Factin and microtubules in the pollen tube of Lilium davidii Duch. by immunofluorescence technique and confocol laser scanning microscopy, through which some new results were obtained. 1. Chemical fixation could preserve F-actin well in pollen tube, so the relation between F-actin and microtubules could be studied by the methods of chemical fixation and fluorescence labelling in pollen tube. 2. F-actin bundles were absent near the pollen tube tip, while microtubules were abundant and web formed in the pollen tube tip. The authors found that the terminal of microtubules was closely associated with the plasma membrane in the pollen tube tip. 3. Only a few F-actin bundles co-exist with the microtubules in the pollen tube of Lilium davidii. The results provided new evidence for the fimction and relationship between F-actin and microtubules in the pollen tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号