首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The 'oxidation theory' of atherosclerosis proposes that oxidation of low density lipoprotein (LDL) contributes to atherogenesis. Although the precise mechanisms of in vivo oxidation are widely unknown, increasing evidence suggests that myeloperoxidase (MPO, EC 1.11.1.7), a protein secreted by activated phagocytes, generates modified/oxidized (lipo)proteins via intermediate formation of hypochlorous acid (HOCl). In vitro generation of HOCl transforms lipoproteins into high uptake forms for macrophages giving rise to cholesterol-engorged foam cells. To identify HOCl-modified-epitopes in human plaque tissues we have raised monoclonal antibodies (directed against human HOCl-modified LDL) that do not cross-react with other LDL modifications, i.e. peroxynitrite-LDL, hemin-LDL, Cu2+-oxidized LDL, 4-hydroxynonenal-LDL, malondialdehyde-LDL, glycated-LDL, and acetylated-LDL. The antibodies recognized a specific epitope present on various proteins after treatment with OCl- added as reagent or generated by the MPO/H2O2/halide system. Immunohistochemical studies revealed pronounced staining for HOCl-modified-epitopes in fibroatheroma (type V) and complicated (type VI) lesions, while no staining was observed in aortae of lesion-prone location (type I). HOCl-oxidation-specific epitopes are detected in cells in the majority of atherosclerotic plaques but not in control segments. Staining was shown to be inside and outside monocytes/macrophages, endothelial cells, as well as in the extracellular matrix. A similar staining pattern using immunohistochemistry could be obtained for MPO. The colocalization of immunoreactive MPO and HOCl-modified-epitopes in serial sections of human atheroma (type IV), fibroatheroma (type V) and complicated (type VI) lesions provides further convincing evidence for MPO/H2O2/halide system-mediated oxidation of (lipo)proteins under in vivo conditions. We propose that MPO could act as an important link between the development of atherosclerotic plaque in the artery wall and chronic inflammatory events.  相似文献   

2.
In contrast to the multiple low abundance 2,4-dinitrophenylhydrazine-reactive tryptic peptides formed by oxidation of LDL with reagent HOCl in vitro, myeloperoxidase-catalyzed oxidation produces a dominant product in considerably greater yield and selectivity. This modified peptide had a single amino-terminal sequence corresponding to amino acids 53-66 of apolipoprotein B-100 (apoB-100), but its mass spectra indicated a significantly higher mass than could be reconciled with simple modifications of this peptide. Subsequent studies indicate that this product appears to result from N-chlorination of the N-terminal amino group of apoB-100 and dehydrohalogenation to the corresponding imine, which may form the hydrazone derivative directly, or after hydrolysis to the ketone. The methionine residue is oxidized to the corresponding sulfoxide, and the primary sequence peptide (residues 1-14 of apoB-100) is linked by the intramolecular disulfide bond between C-12 and C-61 to the peptide composed of residues 53-66, as we have observed previously (Yang, C-Y., T. W. Kim, S. A. Weng, B. Lee, M. Yang, and A. M. Gotto, Jr. 1990. Proc. Natl. Acad. Sci. USA. 87: 5523-5527) in unmodified LDL. The selective oxidation by myeloperoxidase of the N-terminal amine suggests strong steric effects in the approach of substrate to the enzyme catalytic site, an effect that may apply to other macromolecules and to cell surface molecules.  相似文献   

3.
Oxidized low-density lipoprotein (LDL) is implicated in atherogenesis, and human atherosclerotic lesions contain LDL oxidized by myeloperoxidase, a heme protein secreted by activated phagocytes. Using hydrogen peroxide (H(2)O(2)), myeloperoxidase generates hypochlorous acid (HOCl), a powerful oxidant. We now demonstrate that HOCl produces sulfenamides, sulfinamides, and sulfonamides in model peptides, which suggests a potential mechanism for LDL oxidation and cross-linking. When we exposed the synthetic peptide PFKCG to HOCl, the peptide's thiol residue reacted rapidly, generating a near-quantitative yield of products. Tandem mass spectrometric analysis identified the products as the sulfenamide, sulfinamide, and sulfonamide, all formed by intramolecular cross-linking of the peptide's thiol and lysine residues. An intramolecular sulfinamide was also observed after the peptide PFRCG was exposed to HOCl, indicating that the guanidine group of arginine can also form a sulfur-nitrogen cross-link. The synthetic peptide PFVCG, which contains a free thiol residue but lacks nucleophilic amino acid side chains, formed an intermolecular sulfonamide when exposed to HOCl. Tandem mass spectrometric analysis of the dimer revealed that the free N-terminal amino group of one PFVCG molecule cross-linked with the thiol residue of another. This peptide also formed intermolecular sulfonamide cross-links with N(alpha)-acetyllysine after exposure to HOCl, demonstrating that the epsilon-amino group of a lysine residue can undergo a similar reaction. Moreover, human neutrophils used the myeloperoxidase-H(2)O(2) system to generate sulfinamides in model peptides containing lysine or arginine residues. Collectively, our observations raise the possibility that HOCl generated by myeloperoxidase contributes to intramolecular and intermolecular protein cross-linking in the artery wall. Myeloperoxidase might also use this mechanism to form sulfur-nitrogen cross-links in other inflammatory conditions.  相似文献   

4.
Myeloperoxidase (MPO), a heme enzyme secreted by activated phagocytes, catalyzes the oxidation of halides to hypohalous acids. At plasma concentrations of halides, hypochlorous acid (HOCl) is the major strong oxidant produced. In contrast, the related enzyme eosinophil peroxidase preferentially generates hypobromous acid (HOBr). Since reagent and MPO-derived HOCl converts low-density lipoprotein (LDL) to a potentially atherogenic form, we investigated the effects of HOBr on LDL modification. Compared to HOCl, HOBr caused 2-3-fold greater oxidation of tryptophan and cysteine residues of the protein moiety (apoB) of LDL and 4-fold greater formation of fatty acid halohydrins from the lipids in LDL. In contrast, HOBr was 2-fold less reactive than HOCl with lysine residues and caused little formation of N-bromamines. Nevertheless, HOBr caused an equivalent increase in the relative electrophoretic mobility of LDL as HOCl, which was not reversed upon subsequent incubation with ascorbate, in contrast to the shift in mobility caused by HOCl. Similar apoB modifications were observed with HOBr generated by MPO/H(2)O(2)/Br(-). In the presence of equivalent concentrations of Cl(-) and Br(-), modifications of LDL by MPO resembled those seen in the presence of Br(-) alone. Interestingly, even at physiological concentrations of the two halides (100 mM Cl(-), 100 microM Br(-)), MPO utilized a portion of the Br(-) to oxidize apoB cysteine residues. MPO also utilized the pseudohalide thiocyanate to oxidize apoB cysteine residues. Our data show that even though HOBr has different reactivities than HOCl with apoB, it is able to alter the charge of LDL, converting it into a potentially atherogenic particle.  相似文献   

5.
Oxidation of LDL by the myeloperoxidase (MPO)-H2O2-chloride system is a key event in the development of atherosclerosis. The present study aimed at investigating the interaction of MPO with native and modified LDL and at revealing posttranslational modifications on apoB-100 (the unique apolipoprotein of LDL) in vitro and in vivo. Using amperometry, we demonstrate that MPO activity increases up to 90% when it is adsorbed at the surface of LDL. This phenomenon is apparently reflected by local structural changes in MPO observed by circular dichroism. Using MS, we further analyzed in vitro modifications of apoB-100 by hypochlorous acid (HOCl) generated by the MPO-H2O2-chloride system or added as a reagent. A total of 97 peptides containing modified residues could be identified. Furthermore, differences were observed between LDL oxidized by reagent HOCl or HOCl generated by the MPO-H2O2-chloride system. Finally, LDL was isolated from patients with high cardiovascular risk to confirm that our in vitro findings are also relevant in vivo. We show that several HOCl-mediated modifications of apoB-100 identified in vitro were also present on LDL isolated from patients who have increased levels of plasma MPO and MPO-modified LDL. In conclusion, these data emphasize the specificity of MPO to oxidize LDL.  相似文献   

6.
Yang C  Gu ZW  Yang M  Lin SN  Siuzdak G  Smith CV 《Biochemistry》1999,38(48):15903-15908
Oxidative modifications of low-density lipoproteins (LDL) may contribute to the pathogenesis of atherosclerosis. Although the oxidation products of the lipid components of LDL have been studied extensively, less is known about the oxidation products of the apoprotein, apolipoprotein B-100. To identify the specific oxidative modifications, we oxidized LDL in the presence of Cu(2+), treated with DNPH, precipitated and delipidated the protein, digested the protein with trypsin, and analyzed the peptides by high-performance liquid chromatography. We isolated nine peptides that exhibited measurable absorbance at 365 nm, which is characteristic of hydrazones derived from DNPH and is not observed in peptides derived from unoxidized LDL. Unexpectedly, we obtained the same peptides with absorbance at 365 nm in Cu(2+)-oxidized LDL not treated with DNPH. N-terminal sequence analyses and mass spectrometry indicated that the peptides isolated from the Cu(2+)-oxidized LDL all contained kynurenine residues in place of Trp residues found in the native apoprotein. The product profile we observed in Cu(2+)-oxidized LDL was remarkably different from the profiles observed in LDL oxidized by HOCl or myeloperoxidase in vitro, and the preferential oxidation of Trp to kynurenine in Cu(2+)-catalyzed oxidation of LDL contrasts with the products observed following oxidation of LDL with HOCl or myeloperoxidase. Our studies to date support the working hypothesis that the specific products of protein oxidation are sufficiently distinct to be developed as biomarkers of proposed mechanisms of oxidation of LDL and biological molecules in other toxicities and diseases.  相似文献   

7.
Nitric oxide, a pivotal molecule in vascular homeostasis, is converted under aerobic conditions to nitrite. Recent studies have shown that myeloperoxidase (MPO), an abundant heme protein released by activated leukocytes, can oxidize nitrite (NO(2-)) to a radical species, most likely nitrogen dioxide. Furthermore, hypochlorous acid (HOCl), the major strong oxidant generated by MPO in the presence of physiological concentrations of chloride ions, can also react with nitrite, forming the reactive intermediate nitryl chloride. Since MPO and MPO-derived HOCl, as well as reactive nitrogen species, have been implicated in the pathogenesis of atherosclerosis through oxidative modification of low density lipoprotein (LDL), we investigated the effects of physiological concentrations of nitrite (12.5-200 microm) on MPO-mediated modification of LDL in the absence and presence of physiological chloride concentrations. Interestingly, nitrite concentrations as low as 12.5 and 25 microm significantly decreased MPO/H2O2)/Cl- -induced modification of apoB lysine residues, formation of N-chloramines, and increases in the relative electrophoretic mobility of LDL. In contrast, none of these markers of LDL atherogenic modification were affected by the MPO/H2O2/NO2-) system. Furthermore, experiments using ascorbate (12.5-200 microm) and the tyrosine analogue 4-hydroxyphenylacetic acid (12.5-200 microm), which are both substrates of MPO, indicated that nitrite inhibits MPO-mediated LDL modifications by trapping the enzyme in its inactive compound II form. These data offer a novel mechanism for a potential antiatherogenic effect of the nitric oxide congener nitrite.  相似文献   

8.
Thiocyanate catalyzes myeloperoxidase-initiated lipid oxidation in LDL   总被引:1,自引:0,他引:1  
There is evidence that LDL oxidation may render the lipoprotein atherogenic. The myeloperoxidase-hydrogen peroxide (MPO/H2O2) system of activated phagocytes may be involved in this process. Chloride is supposed to be the major substrate for MPO, generating reactive hypochlorous acid (HOCl), modifying LDL. The pseudo-halide thiocyanate (SCN-) has been shown to be a suitable substrate for MPO, forming reactive HOSCN/SCN*. As relatively abundant levels of SCN- are found in plasma of smokers--a well-known risk group for cardiovascular disease--the ability of SCN- to act as a catalyst of LDL atherogenic modification by MPO/H2O2 was tested. Measurement of conjugated diene and lipid hydroperoxide formation in LDL preparations exposed to MPO/H2O2 revealed that SCN- catalyzed lipid oxidation in LDL. Chloride did not diminish the effect of SCN- on lipid oxidation. Surprisingly, SCN inhibited the HOCl-mediated apoprotein modification in LDL. Nitrite--recently found to be a substrate for MPO--showed some competing properties. MPO-mediated lipid oxidation was inhibited by heme poisons (azide, cyanide) and catalase. Ascorbic acid was the most effective compound in inhibiting the SCN- -catalyzed reaction. Bilirubin showed some action, whereas tocopherol was ineffective. When LDL oxidation was performed with activated human neutrophils, which employ the MPO pathway, SCN- catalyzed the cell-mediated LDL oxidation. The MPO/H2O2/SCN- system may have the potential to play a significant role in the oxidative modification of LDL--an observation further pointing to the link between the long-recognized risk factors of atherosclerosis: elevated levels of LDL and smoking.  相似文献   

9.
Hypochlorite (HOCl), the product of the activated myeloperoxidase/H2O2/chloride (MPO/H2O2/Cl) system is favored as a trigger of LDL modifications, which may play a pivotal role in early atherogenesis. As HOCl has been shown to react with thiol-containing compounds like glutathione and N-acetylcysteine protecting LDL from HOCl modification, we have tested the ability of hydrogen sulfide (H2S)—which has recently been identified as an endogenous vasorelaxant—to counteract the action of HOCl on LDL. The results show that H2S could inhibit the atherogenic modification of LDL induced by HOCl, as measured by apolipoprotein alterations. Beside its HOCl scavenging potential, H2S was found to inhibit MPO (one may speculate that this occurs via H2S/heme interaction) and destroy H2O2. Thus, H2S may interfere with the reactants and reaction products of the activated MPO/H2O2/Cl system. Our data add to the evidence of an anti-atherosclerotic action of this gasotransmitter taking the role of HOCl in the atherogenic modification of LDL into account.  相似文献   

10.
Oxidation of low density lipoprotein (LDL) may be of critical importance in the pathogenesis of atherosclerosis. Recent studies suggest that oxidized phospholipids render LDL atherogenic. However, both the structures and the physiologically relevant pathways for the formation of modified phospholipids in oxidized LDL remain poorly understood. We previously showed that p-hydroxyphenylacetaldehyde (pHA) is the major product of L-tyrosine oxidation by the myeloperoxidase/hydrogen peroxide/chloride system of phagocytes. In the current studies, we demonstrate that this reactive aldehyde targets the aminophospholipids of LDL in vitro and in vivo. Activated human neutrophils generated pHA-ethanolamine, the reduced adduct of pHA with the amino group of phosphatidylethanolamine, on LDL phospholipids by a reaction that required myeloperoxidase, H(2)O(2), and L-tyrosine. The cellular system could be replaced by HOCl and L-tyrosine but not by a wide variety of other oxidation systems, indicating that pHA-ethanolamine is a specific marker for covalent modification of aminophospholipids by myeloperoxidase. To determine whether aldehydes modify aminophospholipids in vivo, we quantified levels of pHA-ethanolamine in acid hydrolysates of reduced lipid extracts through isotope dilution gas chromatography/mass spectrometry. Circulating LDL contained undetectable levels of pHA-modified phospholipid (<0.1 mmol/mol). In contrast, the concentration of pHA-ethanolamine in LDL isolated from human atherosclerotic lesions was strikingly elevated (4.5 mmol/mol). Collectively, these results demonstrate a novel, myeloperoxidase-based mechanism for modifying the amino group of LDL phospholipids. They also offer the first evidence that myeloperoxidase may damage LDL lipids in vivo, raising the possibility that aldehyde-modified aminophospholipids play a role in inflammation and vascular disease.  相似文献   

11.
The neutrophil enzyme myeloperoxidase (MPO) purposefully makes hypochlorous acid (HOCl) as part of the cells defence against microbial infections. During cell lysis, however, MPO will be released into the extracellular environment where production of HOCl, a powerful oxidant, will lead to molecular damage. Extracellular MPO binds to the copper-containing protein caeruloplasmin (Cp) and prevents MPO making HOCl. Cp has several important antioxidant functions in extracellular fluids associated with its ability to catalyse oxidation of ferrous ions and to remove peroxides. The binding of MPO to Cp did not inhibit these important extracellular antioxidant activities of Cp, but in so doing it provided additional antioxidant protection against formation of HOCl.  相似文献   

12.
The neutrophil enzyme myeloperoxidase (MPO) purposefully makes hypochlorous acid (HOCl) as part of the cells defence against microbial infections. During cell lysis, however, MPO will be released into the extracellular environment where production of HOCl, a powerful oxidant, will lead to molecular damage. Extracellular MPO binds to the copper-containing protein caeruloplasmin (Cp) and prevents MPO making HOCl. Cp has several important antioxidant functions in extracellular fluids associated with its ability to catalyse oxidation of ferrous ions and to remove peroxides. The binding of MPO to Cp did not inhibit these important extracellular antioxidant activities of Cp, but in so doing it provided additional antioxidant protection against formation of HOCl.  相似文献   

13.
The reaction of human myeloperoxidase (MPO) with hypochlorous acid (HOCl) was investigated by conventional stopped-flow spectroscopy at pH 5, 7, and 9. In the reaction of MPO with HOCl, compound I is formed. Its formation is strongly dependent on pH. HOCl (rather than OCl-) reacts with the unprotonated enzyme in its ferric state. Apparent second-order rate constants were determined to be 8.1 x 10(7) M(-1)s(-1) (pH 5), 2.0 x 10(8) M(-1)s(-1) (pH 7) and 2.0 x 10(6) M(-1)s(-1) (pH 9) at 15 degrees C. Furthermore, the kinetics and spectra of the reactions of halides and thiocyanate and of physiologically relevant one-electron donors (ascorbate, nitrite, tyrosine and hydrogen peroxide) with this compound I were investigated using the sequential-mixing technique. The results show conclusively that the redox intermediates formed upon addition of either hydrogen peroxide or hypochlorous acid to native MPO exhibit the same spectral features and reactivities and thus are identical. In stopped-flow investigations, the MPO/HOCl system has some advantage since: (i) in contrast to H2O2, HOCl cannot function as a one-electron donor of compound I; and (ii) MPO can easily be prevented from cycling by addition of methionine as HOCl scavenger. As a consequence, the observed absorbance changes are bigger and errors in data analysis are smaller.  相似文献   

14.
Myeloperoxidase-generated oxidants and atherosclerosis   总被引:22,自引:0,他引:22  
Atherosclerosis is a chronic inflammatory process where oxidative damage within the artery wall is implicated in the pathogenesis of the disease. Mononuclear phagocytes, an inflammatory cell capable of generating a variety of oxidizing species, are early components of arterial lesions. Their normal functions include host defense and surveillance through regulated generation of diffusible radical species, reactive oxygen or nitrogen species, and HOCl (hypochlorous acid). However, under certain circumstances an excess of these oxidizing species can overwhelm local antioxidant defenses and lead to oxidant stress and oxidative tissue injury, processes implicated in the pathogenesis of atherosclerosis. This review focuses on oxidation reactions catalyzed by myeloperoxidase (MPO), an abundant heme protein secreted from activated phagocytes which is present in human atherosclerotic lesions. Over the past several years, significant evidence has accrued demonstrating that MPO is one pathway for protein and lipoprotein oxidation during the evolution of cardiovascular disease. Multiple distinct products of MPO are enriched in human atherosclerotic lesions and LDL recovered from human atheroma. However, the biological consequences of these MPO-catalyzed reactions in vivo are still unclear. Here we discuss evidence for the occurrence of MPO-catalyzed oxidation reactions in vivo and the potential role MPO plays in both normal host defenses and inflammatory diseases like atherosclerosis.  相似文献   

15.
In this study, the production of the highly toxic oxidant hypochlorous acid (HOCl) by the phagocytic enzyme myeloperoxidase (MPO) was quantitated and the concomitant alterations of low density lipoprotein (LDL) were analyzed in view of the potential role of LDL in atherosclerosis. Using the monochlorodimedone assay, it was found that HOCl is produced in micromolar concentrations. The kinetics of the decrease of tryptophan fluorescence appeared to be a sensitive method to monitor LDL alterations under near in vivo conditions. Therefore, this method was used to subsequently compare the effectiveness of MPO inhibitors that block production of HOCl with compounds that act as HOCl traps. The efficiency of MPO inhibitors to prevent LDL damage increased in the series benzohydroxamic acid < salicylhydroxamic acid < 3-amino-1,2,4-triazole < sodium azide < potassium cyanide < p-hydroxy-benzoic acid hydrazide, while for the HOCl traps the protective efficiency increased in the series glycine < taurine < methionine. We conclude that HOCl traps may have high potential therapeutic impact in vivo due to their low toxicity, although high concentrations of them would have to reach sites of inflammation. In contrast, only low concentrations of a specific MPO inhibitor would be required to irreversibly inhibit the enzyme.  相似文献   

16.
Phagocytes generate superoxide (O2-.) and hydrogen peroxide (H2O2) and their interaction in an iron-catalyzed reaction to form hydroxyl radicals (OH.) (Haber-Weiss reaction) has been proposed. Deferoxamine chelates iron in a catalytically inactive form, and thus inhibition by deferoxamine has been employed as evidence for the involvement of OH. generated by the Haber-Weiss reaction. We report here that deferoxamine also inhibits reactions catalyzed by the peroxidases of phagocytes, i.e., myeloperoxidase (MPO) and eosinophil peroxidase (EPO). The reactions inhibited include iodination in the presence and absence of chloride and the oxidation of guaiacol. Iodination by MPO and H2O2 is stimulated by chloride due to the intermediate formation of hypochlorous acid (HOCl). Iodination by reagent HOCl also is inhibited by deferoxamine with the associated consumption of HOCl. Iron saturation of deferoxamine significantly decreased but did not abolish its inhibitory effect on iodination by MPO + H2O2 or HOCl. Deferoxamine did not affect the absorption spectrum of MPO, suggesting that it does not react with or remove the heme iron. The conversion of MPO to Compound II by H2O2 was not seen when H2O2 was added to MPO in the presence of deferoxamine, suggesting either that deferoxamine inhibited the formation of Compound II by acting as an electron donor for MPO Compound I or that deferoxamine immediately reduced the Compound II formed. Iodination by stimulated neutrophils also was inhibited by deferoxamine, suggesting an effect on peroxidase-catalyzed reactions in intact cells. Thus deferoxamine has multiple effects on the formation and activity of phagocyte-derived oxidants and therefore its inhibitory effect on oxidant-dependent damage needs to be interpreted with caution.  相似文献   

17.
This study investigated the functional and structural effects of bovine Cu,Zn-superoxide dismutase (Cu,Zn-SOD) oxidation by the myeloperoxidase (MPO)/hydrogen peroxide (H 2 O 2 )/chloride system and reagent hypochlorous acid (HOCl). Exposure to HOCl led to a fast inactivation accompanied by structural alterations. The residual SOD activity depended on the reactants concentration ratio and on the exposure time. The concomitant high consumption of HOCl indicated the presence of multiple targets on the protein. As assessed by SDS/PAGE, HOCl caused the dissociation of the protein into protomers at 16 kDa stable to both SDS and reducing conditions. Results from isoelectric focusing gels showed that exposure to HOCl induced the formation of modified protein derivatives, with a more acidic net electric charge than the parent molecule, consistent with the presence of additional ions observed in the electrospray ionization mass spectra. The reaction of protein with HOCl resulted in changes in protein conformation as assessed by the UV fluorescence and oxidation of the unique methionine and tyrosine, chlorination of several lysines with formation of chloramines. There was no significant formation of dityrosine and carbonyl groups. Exposure to high levels of HOCl resulted in complete enzyme inactivation, loss of additional lysine, histidine and arginine residues and coincident detection of weakly bound zinc and copper using 4-pyridylazaresorcinol. Collectively, the results suggest that the decrease of the dismutase activity is probably related to both dissociation into protomers and unfolding due to extensive oxidative modifications of amino acids.  相似文献   

18.
This study investigated the functional and structural effects of bovine Cu,Zn-superoxide dismutase (Cu,Zn-SOD) oxidation by the myeloperoxidase (MPO)/hydrogen peroxide (H 2 O 2 )/chloride system and reagent hypochlorous acid (HOCl). Exposure to HOCl led to a fast inactivation accompanied by structural alterations. The residual SOD activity depended on the reactants concentration ratio and on the exposure time. The concomitant high consumption of HOCl indicated the presence of multiple targets on the protein. As assessed by SDS/PAGE, HOCl caused the dissociation of the protein into protomers at 16 kDa stable to both SDS and reducing conditions. Results from isoelectric focusing gels showed that exposure to HOCl induced the formation of modified protein derivatives, with a more acidic net electric charge than the parent molecule, consistent with the presence of additional ions observed in the electrospray ionization mass spectra. The reaction of protein with HOCl resulted in changes in protein conformation as assessed by the UV fluorescence and oxidation of the unique methionine and tyrosine, chlorination of several lysines with formation of chloramines. There was no significant formation of dityrosine and carbonyl groups. Exposure to high levels of HOCl resulted in complete enzyme inactivation, loss of additional lysine, histidine and arginine residues and coincident detection of weakly bound zinc and copper using 4-pyridylazaresorcinol. Collectively, the results suggest that the decrease of the dismutase activity is probably related to both dissociation into protomers and unfolding due to extensive oxidative modifications of amino acids.  相似文献   

19.
Peroxynitrite (PN), the product of the diffusion-limited reaction between nitric oxide (*NO) and superoxide (O*-(2)), represents a relevant mediator of oxidative modifications in low-density lipoprotein (LDL). This work shows for the first time the simultaneous action of low-controlled fluxes of PN and *NO on LDL oxidation in terms of lipid and protein modifications as well as oxidized lipid-protein adduct formation. Fluxes of PN (e.g., 1 microM min(-1)) initiated lipid oxidation in LDL as measured by conjugated dienes and cholesteryl ester hydroperoxides formation. Oxidized-LDL exhibited a characteristic fluorescent emission spectra (lambda(exc) = 365 nm, lambda(max) = 417 nm) in parallel with changes in both the free amino groups content and the relative electrophoretic mobility of the particle. Physiologically relevant fluxes of *NO (80-300 nM min(-1)) potently inhibited these PN-dependent oxidative processes. These results are consistent with PN-induced adduct formation between lipid oxidation products and free amino groups of LDL in a process prevented by the simultaneous presence of *NO. The balance between rates of PN and *NO production in the vascular wall will critically determine the final extent of LDL oxidative modifications leading or not to scavenger receptor-mediated LDL uptake and foam cell formation.  相似文献   

20.
Hypochlorite is a major oxidant generated when neutrophils and macrophages are activated at inflammatory sites, such as in atherosclerotic lesions. Murine S100A8 (A8) is a major cytoplasmic protein in neutrophils and is secreted by macrophages in response to inflammatory stimuli. After incubation with reagent HOCl for 10 min, approximately 85% of A8 was converted to 4 oxidation products, with electrospay ionization mass spectrometry masses of m/z 10354, 10388, 10354 +/- 1, and 20707 +/- 3. All were resistant to reduction by dithiothreitol. Initial formation of a reactive Cys sulfenic acid intermediate was demonstrated by the rapid conjugation of 5,5-dimethyl-1,3-cyclohexanedione (dimedone) to HOCl-treated A8 to form stable adducts. Matrix-assisted laser desorption-reflectron time of flight peptide mass fingerprinting of isolated oxidation products confirmed the mass additions observed in the full-length proteins. Both Met(36/73) were converted to Met(36/73) sulfoxides. An additional product with an unusual mass addition of m/z 14 (+/-0.2) was identified and corresponded to the addition of oxygen to Cys(41), conjugation to various epsilon-amines of Lys(6), Lys(34/35), or Lys(87) with loss of dihydrogen and formation of stable intra- or inter-molecular sulfinamide cross-links. Specific fragmentations identified in matrix-assisted laser desorption-post source decay spectra and low energy collisional-induced dissociation tandem mass spectroscopy spectra of sulfinamide-containing digest peptides confirmed Lys(34/35) to Cys(41) sulfinamide bonds. HOCl oxidation of mutants lacking Cys(41) (Ala(41)S100A8) or specific Lys residues (e.g. Lys(34/35), Ala(34/35)S100A8) did not form sulfinamide cross-links. HOCl generated by myeloperoxidase and H(2)O(2) and by phorbol 12-myristate 13-acetate-activated neutrophils also formed these products(.) In contrast to the disulfide-linked dimer, oxidized monomer retained normal chemotactic activity for neutrophils. Sulfinamide bond formation represents a novel oxidative cross-linking process between thiols and amines and may be a general consequence of HOCl protein oxidation in inflammation not identified previously. Similar modifications in other proteins could potentially regulate normal and pathological processes during aging, atherogenesis, fibrosis, and neurogenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号