首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
In nature, plants are subject to various stresses that are often accompanied by wounding of the aboveground tissues. As wounding affects plants locally and systemically, we investigated the impact of leaf wounding on interactions of Medicago truncatula with root-colonizing microorganisms, such as the arbuscular mycorrhizal (AM) fungus Glomus intraradices, the pathogenic oomycete Aphanomyces euteiches and the nitrogen-fixing bacterium Sinorhizobium meliloti. To obtain a long-lasting wound response, repeated wounding was performed and resulted in locally and systemically increased jasmonic acid (JA) levels accompanied by the expression of jasmonate-induced genes, among them the genes encoding allene oxide cyclase 1 (MtAOC1) and a putative cell wall-bound invertase (cwINV). After repeated wounding, colonization with the AM fungus was increased, suggesting a role of jasmonates as positive regulators of mycorrhization, whereas the interaction with the rhizobacterium was not affected. In contrast, wounded plants appeared to be less susceptible to pathogens which might be caused by JA-induced defence mechanisms. The effects of wounding on mycorrhization and pathogen infection could be partially mimicked by foliar application of JA. In addition to JA itself, the positive effect on mycorrhization might be mediated by systemically induced cwINV, which was previously shown to exhibit a regulatory function on interaction with AM fungi.  相似文献   

3.
Jasmonic acid (JA) is a plant signalling compound that has been implicated in the regulation of mutualistic symbioses. In order to understand the spatial distribution of JA biosynthetic capacity in nodules of two actinorhizal species, Casaurina glauca and Datisca glomerata, and one legume, Medicago truncatula, we determined the localization of allene oxide cyclase (AOC) which catalyses a committed step in JA biosynthesis. In all nodule types analysed, AOC was detected exclusively in uninfected cells. The levels of JA were compared in the roots and nodules of the three plant species. The nodules and noninoculated roots of the two actinorhizal species, and the root systems of M. truncatula, noninoculated or nodulated with wild-type Sinorhizobium meliloti or with mutants unable to fix nitrogen, did not show significant differences in JA levels. However, JA levels in all plant organs examined increased significantly on mechanical disturbance. To study whether JA played a regulatory role in the nodules of M. truncatula, composite plants containing roots expressing an MtAOC1-sense or MtAOC1-RNAi construct were inoculated with S. meliloti. Neither an increase nor reduction in AOC levels resulted in altered nodule formation. These data suggest that jasmonates are not involved in the development and function of root nodules.  相似文献   

4.
Carbon transfer between plants via a common extraradical network of arbuscular mycorrhizal (AM) fungal hyphae has been investigated abundantly, but the results remain equivocal. We studied the transfer of carbon through this fungal network, from a Medicago truncatula donor plant to a receiver (1) M. truncatula plant growing under decreased light conditions and (2) M. truncatula seedling. Autotrophic plants were grown in bicompartmented Petri plates, with their root systems physically separated, but linked by the extraradical network of Glomus intraradices. A control Myc-/Nod- M. truncatula plant was inserted in the same compartment as the receiver plant. Following labeling of the donor plant with 13CO2, 13C was recovered in the donor plant shoots and roots, in the extraradical mycelium and in the receiver plant roots. Fatty acid analysis of the receiver's roots further demonstrated 13C enrichment in the fungal-specific lipids, while almost no label was detected in the plant-specific compounds. We conclude that carbon was transferred from the donor to the receiver plant via the AM fungal network, but that the transferred carbon remained within the intraradical AM fungal structures of the receiver's root and was not transferred to the receiver's plant tissues.  相似文献   

5.
6.
The mutualistic interaction in arbuscular mycorrhiza (AM) is characterized by an exchange of mineral nutrients and carbon. The major benefit of AM, which is the supply of phosphate to the plant, and the stimulation of mycorrhization by low phosphate fertilization has been well studied. However, less is known about the regulatory function of carbon availability on AM formation. Here the effect of enhanced levels of hexoses in the root, the main form of carbohydrate used by the fungus, on AM formation was analyzed. Modulation of the root carbohydrate status was performed by expressing genes encoding a yeast (Saccharomyces cerevisiae)-derived invertase, which was directed to different subcellular locations. Using tobacco (Nicotiana tabacum) alcc::wINV plants, the yeast invertase was induced in the whole root system or in root parts. Despite increased hexose levels in these roots, we did not detect any effect on the colonization with Glomus intraradices analyzed by assessment of fungal structures and the level of fungus-specific palmitvaccenic acid, indicative for the fungal carbon supply, or the plant phosphate content. Roots of Medicago truncatula, transformed to express genes encoding an apoplast-, cytosol-, or vacuolar-located yeast-derived invertase, had increased hexose-to-sucrose ratios compared to beta-glucuronidase-transformed roots. However, transformations with the invertase genes did not affect mycorrhization. These data suggest the carbohydrate supply in AM cannot be improved by root-specifically increased hexose levels, implying that under normal conditions sufficient carbon is available in mycorrhizal roots. In contrast, tobacco rolC::ppa plants with defective phloem loading and tobacco pyk10::InvInh plants with decreased acid invertase activity in roots exhibited a diminished mycorrhization.  相似文献   

7.
Metabolite profiling of soluble primary and secondary metabolites, as well as cell wall-bound phenolic compounds from roots of barrel medic (Medicago truncatula) was carried out by GC-MS, HPLC and LC-MS. These analyses revealed a number of metabolic characteristics over 56 days of symbiotic interaction with the arbuscular mycorrhizal (AM) fungus Glomus intraradices, when compared to the controls, i.e. nonmycorrhizal roots supplied with low and high amounts of phosphate. During the most active stages of overall root mycorrhization, elevated levels of certain amino acids (Glu, Asp, Asn) were observed accompanied by increases in amounts of some fatty acids (palmitic and oleic acids), indicating a mycorrhiza-specific activation of plastidial metabolism. In addition, some accumulating fungus-specific fatty acids (palmitvaccenic and vaccenic acids) were assigned that may be used as markers of fungal root colonization. Stimulation of the biosynthesis of some constitutive isoflavonoids (daidzein, ononin and malonylononin) occurred, however, only at late stages of root mycorrhization. Increase of the levels of saponins correlated AM-independently with plant growth. Only in AM roots was the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives) observed. The structures of the unknown cyclohexenone derivatives were identified by spectroscopic methods as glucosides of blumenol C and 13-hydroxyblumenol C and their corresponding malonyl conjugates. During mycorrhization, the levels of typical cell wall-bound phenolics (e.g. 4-hydroxybenzaldehyde, vanillin, ferulic acid) did not change; however, high amounts of cell wall-bound tyrosol were exclusively detected in AM roots. Principal component analyses of nonpolar primary and secondary metabolites clearly separated AM roots from those of the controls, which was confirmed by an hierarchical cluster analysis. Circular networks of primary nonpolar metabolites showed stronger and more frequent correlations between metabolites in the mycorrhizal roots. The same trend, but to a lesser extent, was observed in nonmycorrhizal roots supplied with high amounts of phosphate. These results indicate a tighter control of primary metabolism in AM roots compared to control plants. Network correlation analyses revealed distinct clusters of amino acids and sugars/aliphatic acids with strong metabolic correlations among one another in all plants analyzed; however, mycorrhizal symbiosis reduced the cluster separation and enlarged the sugar cluster size. The amino acid clusters represent groups of metabolites with strong correlations among one another (cliques) that are differently composed in mycorrhizal and nonmycorrhizal roots. In conclusion, the present work shows for the first time that there are clear differences in development- and symbiosis-dependent primary and secondary metabolism of M. truncatula roots.  相似文献   

8.
9.
Using dual cultures of arbuscular mycorrhizal (AM) fungi and Medicago truncatula separated by a physical barrier, we demonstrate that hyphae from germinating spores produce a diffusible factor that is perceived by roots in the absence of direct physical contact. This AM factor elicits expression of the Nod factor-inducible gene MtENOD11, visualized using a pMtENOD11-gusA reporter. Transgene induction occurs primarily in the root cortex, with expression stretching from the zone of root hair emergence to the region of mature root hairs. All AM fungi tested (Gigaspora rosea, Gigaspora gigantea, Gigaspora margarita, and Glomus intraradices) elicit a similar response, whereas pathogenic fungi such as Phythophthora medicaginis, Phoma medicaginis var pinodella and Fusarium solani f.sp. phaseoli do not, suggesting that the observed root response is specific to AM fungi. Finally, pMtENOD11-gusA induction in response to the diffusible AM fungal factor is also observed with all three M. truncatula Nod(-)/Myc(-) mutants (dmi1, dmi2, and dmi3), whereas the same mutants are blocked in their response to Nod factor. This positive response of the Nod(-)/Myc(-) mutants to the diffusible AM fungal factor and the different cellular localization of pMtENOD11-gusA expression in response to Nod factor versus AM factor suggest that signal transduction occurs via different pathways and that expression of MtENOD11 is differently regulated by the two diffusible factors.  相似文献   

10.
The arbuscular mycorrhizal (AM) and the rhizobia-legume (RL) root endosymbioses are established as a result of signal exchange in which there is mutual recognition of diffusible signals produced by plant and microbial partners. It was discovered 20 years ago that the key symbiotic signals produced by rhizobial bacteria are lipo-chitooligosaccharides (LCO), called Nod factors. These LCO are perceived via lysin-motif (LysM) receptors and activate a signaling pathway called the common symbiotic pathway (CSP), which controls both the RL and the AM symbioses. Recent work has established that an AM fungus, Glomus intraradices, also produces LCO that activate the CSP, leading to induction of gene expression and root branching in Medicago truncatula. These Myc-LCO also stimulate mycorrhization in diverse plants. In addition, work on the nonlegume Parasponia andersonii has shown that a LysM receptor is required for both successful mycorrhization and nodulation. Together these studies show that structurally related signals and the LysM receptor family are key components of both nodulation and mycorrhization. LysM receptors are also involved in the perception of chitooligosaccharides (CO), which are derived from fungal cell walls and elicit defense responses and resistance to pathogens in diverse plants. The discovery of Myc-LCO and a LysM receptor required for the AM symbiosis, therefore, not only raises questions of how legume plants discriminate fungal and bacterial endosymbionts but also, more generally, of how plants discriminate endosymbionts from pathogenic microorganisms using structurally related LCO and CO signals and of how these perception mechanisms have evolved.  相似文献   

11.
丛枝菌根真菌对番茄信号物质的诱导效应   总被引:1,自引:0,他引:1  
王彬  李辉  徐丽娟  李敏  刘润进 《菌物学报》2010,29(4):561-568
盆栽番茄Lycopersicon esculentum幼苗分别接种丛枝菌根(AM)真菌摩西球囊霉Glomus mosseae、地表球囊霉G.versiforme、根内球囊霉G.intraradices、幼套球囊霉G.etunicatum及珠状巨孢囊霉Gigaspora margarita 35d后,开始测定番茄植株内源信号物质水杨酸(SA)、茉莉酸(JA)、一氧化氮(NO)和过氧化氢(H2O2)含量变化,抗性相关酶活性,丙二醛(MDA)含量以及生长量等指标。结果表明,接种AM真菌增加了番茄植株鲜重、株高、地上部和地下部干重、叶片和根系NO、JA、H2O2含量和结合态SA含量,其中,以摩西球囊霉G.mosseae诱导作用最大,叶片和根系内NO、JA、H2O2和结合态SA含量分别比对照增加了3.3和1.9倍、6.8和8.0倍、0.9和1.2倍、1.9和2.6倍,而根系中游离态SA含量一直处于较低水平,只有摩西球囊霉G.mosseae处理在诱导高峰时根系游离态SA含量比对照略有增加。接种AM真菌处理的番茄叶片和根系超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、苯丙氨酸解氨酶(PAL)活性显著增加,其中以摩西球囊霉G.mosseae的诱导效应最大,与未接种对照相比分别增加了0.6和0.3倍、7.9和3.1倍、0.4和1.2倍、2.3和1.9倍;幼套球囊霉G.etunicatum的诱导效应最小:与未接种对照相比分别增加了0.26和0.14倍、2.3和1.0倍、0.1和0.28倍、0.55和0.31倍;而MDA含量下降,分别降低了66%和68%、34%和41%、51%和50%、12%和26%、18%和29%。表明AM真菌能诱导植物同时产生多种信号物质,而且这些信号参与了AM真菌-番茄共生体系统抗性的表达。  相似文献   

12.
We monitored the development of intraradical and extraradical mycelia of the arbuscular mycorrhizal (AM) fungi Scutellospora calospora and Glomus intraradices when colonizing Plantago lanceolata. The occurrence of arbuscules (branched hyphal structures) and vesicles (lipid storage organs) was compared with the amounts of signature fatty acids. The fatty acid 16:1omega5 was used as a signature for both AM fungal phospholipids (membrane constituents) and neutral lipids (energy storage) in roots (intraradical mycelium) and in soil (extraradical mycelium). The formation of arbuscules and the accumulation of AM fungal phospholipids in intraradical mycelium followed each other closely in both fungal species. In contrast, the neutral lipids of G. intraradices increased continuously in the intraradical mycelium, while vesicle occurrence decreased after initial rapid root colonization by the fungus. S. calospora does not form vesicles and accumulated more neutral lipids in extraradical than in intraradical mycelium, while the opposite pattern was found for G. intraradices. G. intraradices allocated more of its lipids to storage than did S. calospora. Thus, within a species, the fatty acid 16:1omega5 is a good indicator for AM fungal development. The phospholipid fatty acid 16:1omega5 is especially suitable for indicating the frequency of arbuscules in the symbiosis. We propose that the ratio of neutral lipids to phospholipids is more important than is the presence of vesicles in determining the storage status of AM fungi.  相似文献   

13.
Chen C  Ané JM  Zhu H 《The New phytologist》2008,180(2):311-315
Medicago truncatula IPD3 (MtIPD3) is an interacting protein of DMI3 (does not make infections 3), a Ca(2+)/calmodulin-dependent protein kinase (CCaMK) essential for both arbuscular mycorrhizal (AM) and rhizobial symbioses. However, the function of MtIPD3 in root symbioses has not been demonstrated in M. truncatula, because of a lack of knockout mutants for functional analysis. In this study, the availability of IPD3 knockout mutants in rice (Oryza sativa) was exploited to test the function of OsIPD3 in AM symbiosis. Three independent retrotransposon Tos17 insertion lines of OsIPD3 were selected and the phenotypes characterized upon inoculation with the AM fungus Glomus intraradices. Phenotypic and genetic analyses revealed that the Osipd3 mutants were unable to establish a symbiotic association with G. intraradices. In conclusion, IPD3 represents a novel gene required for root symbiosis with AM fungi in plants.  相似文献   

14.
15.
Nitrogen (N) capture by arbuscular mycorrhizal (AM) fungi from organic material is a recently discovered phenomenon. This study investigated the ability of two Glomus species to transfer N from organic material to host plants and examined whether the ability to capture N is related to fungal hyphal growth. Experimental microcosms had two compartments; these contained either a single plant of Plantago lanceolata inoculated with Glomus hoi or Glomus intraradices, or a patch of dried shoot material labelled with (15)N and (13)carbon (C). In one treatment, hyphae, but not roots, were allowed access to the patch; in the other treatment, access by both hyphae and roots was prevented. When allowed, fungi proliferated in the patch and captured N but not C, although G. intraradices transferred more N than G. hoi to the plant. Plants colonized with G. intraradices had a higher concentration of N than controls. Up to one-third of the patch N was captured by the AM fungi and transferred to the plant, while c. 20% of plant N may have been patch derived. These findings indicate that uptake from organic N could be important in AM symbiosis for both plant and fungal partners and that some AM fungi may acquire inorganic N from organic sources.  相似文献   

16.
Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots   总被引:2,自引:0,他引:2  
  相似文献   

17.
A sub-cellular proteomic approach was carried out to monitor membrane-associated protein modifications in response to the arbuscular mycorrhizal (AM) symbiosis. Membrane proteins were extracted from Medicago truncatula roots either inoculated or not with the AM fungus Glomus intraradices. Comparative two-dimensional electrophoresis revealed that 36 spots were differentially displayed in response to the fungal colonization including 15 proteins induced, 3 up-regulated and 18 down-regulated. Among them, seven proteins were found to be commonly down-regulated in AM-colonized and phosphate-fertilized roots. Twenty-five spots out of the 36 of interest could be identified by matrix assisted laser desorption/ionisation-time of flight and/or tandem mass spectrometry analyses. Excepting an acid phosphatase and a lectin, none of them was previously reported as being regulated during AM symbiosis. In addition, this proteomic approach allowed us for the first time to identify AM fungal proteins in planta.  相似文献   

18.
The role of the jasmonate signalling pathway in modulating the establishment of the arbuscular mycorrhiza (AM) symbiosis between tomato plants and Glomus intraradices fungus was studied. The consequences of AM formation due to the blockage of the jasmonate signalling pathway were studied in experiments with plant mutants impaired in JA perception. The tomato jai-1 mutant (jasmonic acid insensitive 1) failed to regulate colonization and was more susceptible to fungal infection, showing accelerated colonization. The frequency and the intensity of fungal colonization were greatly increased in the jai-1 insensitive mutant plants. In parallel, the systemic effects on mycorrhization due to the activation of the jasmonate signalling pathway by foliar application of MeJA were evaluated and histochemical and molecular parameters of mycorrhizal intensity and efficiency were measured. Histochemical determination of fungal infectivity and fungal alkaline phosphatase activity reveal that the systemic application of MeJA was effective in reducing mycorrhization and mainly affected fungal phosphate metabolism and arbuscule formation, analyzed by the expression of GiALP and the AM-specific gene LePT4, respectively. The results of the present study clearly show that JA participates in the susceptibility of tomato to infection by arbuscular mycorrhizal fungi, and it seems that arbuscular colonization in tomato is tightly controlled by the jasmonate signalling pathway.  相似文献   

19.
Arbuscular mycorrhizal (AM) fungi stimulate root development and induce expression of mycorrhization-specific genes in both eudicots and monocots. Diffusible factors released by AM fungi have been shown to elicit similar responses in Medicago truncatula. Colonization of roots by AM fungi is inhibited by ethylene. We compared the effects of germinating spore exudates (GSE) from Glomus intraradices in monocots and in eudicots, their genetic control, and their regulation by ethylene. GSE modify root architecture and induce symbiotic gene expression in both monocots and eudicots. The genetic regulation of root architecture and gene expression was analyzed using M. truncatula and rice symbiotic mutants. These responses are dependent on the common symbiotic pathway as well as another uncharacterized pathway. Significant differences between monocots and eudicots were observed in the genetic control of plant responses to GSE. However, ethylene inhibits GSE-induced symbiotic gene expression and root development in both groups. Our results indicate that GSE signaling shares similarities and differences in monocots versus eudicots, that only a subset of AM signaling pathways has been co-opted in legumes for the establishment of root nodulation with rhizobia, and that regulation of these pathways by ethylene is a feature conserved across higher land plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号