首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In species of Clusia, switching from C3-photosynthesis (C3-PS)to crassulacean acid metabolism (CAM) may be a means of optimizingwater use, plant carbon balance and photon utilization duringperiods of stress. We ask whether, in perennial species of Clusia,the switch from CAM back to C3-PS is also of ecophysiologicalsignificance. Our objective was to investigate the performanceof C. minor L. during a short-term shift from CAM to C3-PS.During the transition from CAM to C3-PS, nocturnal malate andcitrate accumulation decreased whereas CO2uptake increased duringthe daytime. However, after 7 d, marked nocturnal accumulationof citrate and 24 h CO2uptake occurred. In contrast to C3-likephotosynthesis, a pronounced reduction in the effective quantumyield of photosystem II,  相似文献   

2.
This paper reports autecological field-studies in Singaporeon Drymoglossum piloselloides (L.) Presl., an epiphytic fernof the humid tropics which is capable of performing Crassulaceanacid metabolism (CAM). As indicated by the gas exchange patternsand by the occurrence of a diurnal malic acid rhythm, the plantalso features CAM in situ at its natural sites. Both in well-wateredand in naturally droughted plants external CO2 was taken upsolely during the night. Water stress decreased nocturnal CO2uptake,but left the synthesis and storage of malic acid unaffected.This indicates that CO2 recycling of respiratory CO2 by CAMis ecophysiologically important at the high night temperaturestypical of the tropical habitats of the fern. The plants showeda diel fluctuation of cell-sap osmotic pressure which paralleledthat of malic acid, while the fluctuation of the xylem tensionfollowed the curve of transpiration more closely than it followedthat of the malic acid content. CAM in D. piloselloides wasclearly not limited by natural access to mineral ions and nitrogen.It is concluded that the ecophysiological advantage of CAM forD. piloselloides lies in a better water use efficiency as comparedwith C3 ferns and in the salvaging of carbon by CO2 recycling. Key words: CAM, epiphytic ferns, gas exchange, water relations  相似文献   

3.
The 13C primary kinetic isotope effect on the decarboxylation of malate by nicotinamide adenine dinucleotide malic enzyme from Crassula argentea is 1.0199 +/- 0.0006 with proteo L-malate-2-H and 1.0162 +/- 0.0003 with malate-2-d. The primary deuterium isotope effect is 1.45 +/- 0.10 on V/K and 1.93 +/- 0.13 on Vmax. This indicates a stepwise conversion of malate to pyruvate and CO2 with hydride transfer preceding decarboxylation, thereby suggesting a discrete oxaloacetate intermediate. This is in agreement with the stepwise nature of the chemical mechanism of other malic enzymes despite the Crassula enzyme's inability to reduce or decarboxylate oxaloacetate. Differences in morphology and allosteric regulation between enzymes suggest specialization of the Crassula malic enzyme for the physiology of crassulacean acid metabolism while maintaining the catalytic events found in malic enzymes from animal sources.  相似文献   

4.
The intracellular distribution of enzymes involved in the Crassulacean acid metabolism (CAM) has been studied in Bryophyllum calycinum Salisb. and Crassula lycopodioides Lam. After separation of cell organelles by isopycnic centrifugation, enzymes of the Crassulacean acid metabolism were found in the following cell fractions: Phosphoenolpyruvate carboxylase in the chloroplasts; NAD-dependent malate dehydrogenase in the mitochondria and in the supernatant; NADP-dependent malate dehydrogenase and phosphoenolpyruvate carboxykinase in the chloroplasts; NADP-dependent malic enzyme in the supernatant and to a minor extent in the chloroplasts; NAD-dependent malic enzyme in the supernatant and to some degree in the mitochondria; and pyruvate; orthophosphate dikinase in the chloroplasts. The activity of the NAD-dependent malate dehydrogenase was due to three isoenzymes separated by (NH4)2SO4 gradient solubilization. These isoenzymes represented 17, 78, and 5% of the activity recovered, respectively, in the order of elution. The isoenzyme eluting first was associated with the mitochondria and the second isoenzyme was of cytosolic origin, while the intracellular location of the third isoenzyme was probably the peroxisome. Based on these findings, the metabolic path of Crassulacean acid metabolism within cells of CAM plants is discussed. New address: Institut für Pflanzenphysiologie und Zellbiologie, Freie Universität Berlin, Königin-Luise-Straße 12-16a. D-1000 Berlin 33  相似文献   

5.
Bryophyllum diagremontianum plants grown under light-dark regimeswere exposed to one more cycle of the regime or to continuousdarkness for 24 hr. Photosynthetic O2 evolution by leaf segmentsfrom these plants was investigated in the presence of 15 mMNaHCO3 (CO2-dependent O2 evolution) or in the absence of CO2(malate-dependent O2 evolution). The malate-dependent O2 evolutionserved as an index of the activity of malate decarboxylation.Malate content was respectively 67, 64 and 85 µmoles/g.fwin leaves measured at 7 hr 30 min in light and 6 hr 26 min inthe dark from plants under the light-dark regime (light 12 hr/dark12 hr) and those measured at 6 hr 26 min in the dark from plantsunder the continuous dark regime. The malate- and CO2-dependentphotosynthetic O2 evolutions in the same leaves were 9.7 and22, 0.2 and 17, and 16 and 26 µmoles/g.fw.hr, respectively.Thus, the diurnal change in capacity for malate-dependent O2evolution was relieved by continuous dark treatment. These results suggest that the diurnal change in malate decarboxylationin this crassulacean acid metabolism plant does not occur byan endogenous rhythm. This further indicates lack of an endogenousrhythm for the influx-efflux of malate across the vacuole andin malate decarboxylation enzyme activity. (Received August 1, 1979; )  相似文献   

6.
Pascopyrum smithii (C3) andBouteloua gracilis (C4) are importantforage grasses native to the Colorado shortgrass steppe. Thisstudy investigated photosynthetic responses of these grassesto long-term CO2enrichment and temperature in relation to leafnonstructural carbohydrate (TNC) and [N]. Glasshouse-grown seedlingswere transferred to growth chambers and grown for 49 d at twoCO2concentrations (380 and 750 µmol mol-1) at 20 and 35°C, and two additional temperatures (25 and 30 °C) at750 µmol mol-1CO2. Leaf CO2exchange rate (CER) was measuredat a plant's respective growth temperature and at two CO2concentrationsof approx. 380 and 700 µmol mol-1. Long-term CO2enrichmentstimulated CER in both species, although the response was greaterin the C3,P. smithii . Doubling the [CO2] from 380 to 750 µmolmol-1stimulated CER ofP. smithii slightly more in plants grownand measured at 30 °C compared to plants grown at 20, 25or 35 °C. CO2-enriched plants sometimes exhibited lowerCER when compared to ambient-grown controls measured at thesame [CO2], indicating photosynthetic acclimation to CO2growthregime. InP. smithii , such reductions in CER were associatedwith increases in TNC and specific leaf mass, reductions inleaf [N] and, in one instance, a reduction in leaf conductancecompared to controls. InB. gracilis , photosynthetic acclimationwas observed more often, but significant changes in leaf metabolitelevels from growth at different [CO2] were generally less evident.Temperatures considered optimal for growth (C3: 20 °C; C4:35 °C) sometimes led to CO2-induced accumulations of TNCin both species, with starch accumulating in the leaves of bothspecies, and fructans accumulating only inP. smithii. Photosynthesisof both species is likely to be enhanced in future CO2-enrichedand warmer environments, although responses will sometimes beattenuated by acclimation. Acclimation; blue grama (Bouteloua gracilis (H.B.K.) Lag ex Steud.); leaf nitrogen concentration; nonstructural carbohydrates; photosynthesis; western wheatgrass (Pascopyrum smithii (Rydb.) Love)  相似文献   

7.
Conditions and maintenance of growth were chosen so that plantsof Clusia minor L. were obtained which showed the C3- and CAM-modes of CO2-exchange, respectively. C. minor is known to accumulateconsiderable amounts of citric acid in addition to malic acidduring the dark-phase of CAM. 14CO2-pulse-chase experiments were performed with these plants.Patterns of labelling during the pulse and redistribution oflabel during the chase in the C3-mode were as expected for C3-photosynthesis.Pulse-labelling in the CAM-mode during the last hour of thelight period, during the first part of the dark period and duringthe last hour of the dark period always led to an almost exclusiveincorporation of label into malate. Redistribution of labelfrom malate after the pulse at the end of the dark period duringthe chase in the subsequent light period followed the patternexpected for light-dependent reassimilation of CO2 remobilizedfrom malate in CAM during the light period. During the chasesin the dark period, label was transferred from l4C-malate tocitrate. This suggests that during accumulation of citric acidin the dark period of CAM in C. minor, citrate is synthesizedin the mitochondria from malate or oxaloacetate after formationof malate via phosphoenolpyruvate carboxylase. The experiment also showed that no labelled compounds are exportedfrom leaves in the CAM-mode during the dark period. In plantsof the C3-mode the roots proved to be strong sinks. Key words: Clusia minor, labelling, pulse-chase, 14CO2  相似文献   

8.
The carbon balance of shade-grown Ananas comosus was investigatedwith regard to nitrogen supply and responses to high PAR. Netdark CO2 uptake was reduced from 61.2 to 38.5 mmol CO2 m–2in N limited (–N) plants grown under low PAR (60 µmolm–2 s–1) and apparent photon yield declined from0.066 to 0.034 (mol 02.mol–1 photon), although photosyntheticcapacities (measured under 5% CO2) were similar. Following transferfor 7 d to high PAR (600. µmol m–2 s–1), netCO2 uptake at night increased by 14% in +N plants, and daytimephotosynthetic capacity was higher, with a maximum value of7.8 µmol m–2 s–1. The magnitude of dark CO2 fixation during CAM was measured asdawn—dusk variations in leaf-sap titratable acidity (H+)and as the proportion of malic and citric acids. The contributionfrom re-fixation of respiratory CO2 recycling (measured as thedifference between net CO2 uptake and malic acid accumulation)varied with growth conditions, although it was generally lower(30%) than reported for other bromeliads. Assuming a stoichiometryof 2H+: malate and 3H+: citrate, there was a good agreementbetween titratable protons and enzymatically determined organicacids. The accumulation of citric acid was related to nitrogensupply and PAR regime, increasing from 7.0 mol m–3 (+Nplants) to 18 mol m–3 (–N plants) when plants weretransferred to high PAR; malate: citrate ratios decreased from13.1 to 2.5 under these conditions. Under the low PAR regime, leaf-sap osmotic pressure increasedat night in proportion to malic acid accumulation. However,following the transfer to high PAR for 7 d, there was a muchgreater depletion of soluble sugars at night which correspondedto a decrease in leaf-sap osmotic pressure. Although a rolefor citric acid in CAM has not been properly defined, it appearsthat the accepted stoichiometry for CAM in terms of gas exchange,titratable acidity, malic acid and osmotic pressure may nothold for plants which accumulate citric acid. Key words: Ananas comosus, CAM, citric acid accumulation, carbon recycling  相似文献   

9.
Photosynthesis of Crassula helmsii, an amphibious aquatic macrophyte weed species, has been measured with respect to pH and irradiance. C. helmsii shows a marked diel fluctuation in titratable acidity, which can be accounted for by changing levels of malic acid. C. helmsii is unable to use HCO inf3 sup- for photosynthesis and exhibits generally low photosynthetic rates when CO2 is not limiting. The photon flux density at which the onset of light saturation of photosynthesis is reached (E K ) is low for aquatic macrophytes. Some advantages conferred on C. helmsii by the possession of crassulacean acid metabolism are an extension of the period of assimilation of dissolved inorganic carbon, resulting in a reduction in the limitation imposed on photosynthesis in aquatic environments by a very high CO2 diffusion resistance.  相似文献   

10.
Gametophyte-derived callus cultures of Platycerium coronariumcould be maintained under photoautotrophic conditions on Murashigeand Skoog medium supplemented with 2µM 2,4-dichlorophenoxyaceticacid (2,4-D) and with CO2 enrichment. Progressive reductionof sucrose from the medium resulted in a reduction in growth,but an increase in total chlorophyll content. When subculturingwas delayed beyond 2 weeks, callus cells differentiated intogametophytes on the medium with 0.2 sucrose and no CO2 enrichment.Enriching the photoautotrophic cultures on 2µM 2, 4-Dwith 1% CO2 resulted in about 1.7-fold increase in fresh weightwithin 42 d. Total chlorophyll content was generally higherwith 1% CO2 enrichment than with 10%. Fv/Fm ratio was higherfor callus on low levels of sucrose (>0.5%) than that onsucrose 1.0%. An increase in autofluorescence of chloroplasts,but not the size, was observed with decreasing sucrose levelsin the medium. Autofluorescence decreased with increase in CO2from 0.03%. Our data are in agreement with the view that long-termexposure to high levels of decrease in photosynthetic capacity. Key words: Platycerium coronarium, stag's horn fern, autofluorescence of chloroplasts, confocal laser scanning microscope, Fv/Fm ratio, photoautotrophic callus  相似文献   

11.
Haloxylon aphyllum and H. persicum of Chenopodiaceae are dominantplants in the continental deserts of the Asian Irano-Turanianregion. The photosynthetic organs, assimilating shoots and leaf-likecotyledons of these two species were studied to characterizetheir photosynthetic types. 13C/12C isotope ratios, the cellularanatomy of as similating organs, primary photosynthetic products,and activities of carbon metabolism enzymes, RUBP carboxylase,PEP carboxylase, malic enzymes, and aspartate aminotransferase,indicate different pathways of CO2 fixation in the photosyntheticorgans. Assimilating shoots had attributes of the C4 photosynthesisentirely, while cotyledons lack Kranz-anatomy and incorporatedCO2 via C3 photosynthesis. Cotyledons and seeds had lower  相似文献   

12.
The effects of water stress (drought) on the pattern of photosynthesisin Sedum telephium have been determined. Well-watered plantsexhibit a weak-CAM pattern, with substantial CO2 fixation inthe day, a low level of CO2 fixation at night, high daytimestomatal conductance with a lower conductance at night, andno diurnal fluctuation in acid content. Imposition of water-stress causes a switch from weak-CAM toa full-CAM mode of photosynthesis, as indicated by cessationof daytime CO2 fixation, a marked increase in night-time CO2fixation, very low daytime stomatal conductance, increased night-timeconductance and significant diurnal fluctuations in acid content. Sedum telephium, CAM, CO2 fixation, drought, malate, photosynthesis, water stress  相似文献   

13.
The photosynthetic uptake of root-zone CO2 was determined forEriocaulon septangulare, Gratiola aurea, Isoetes macrospora,Littorella uniflora var. americana and Lobelia dortmanna aspart of a study of the photosynthetic carbon economy of submergedaquatic isoetids. The pH and dissolved inorganic carbon (DIC)of the sediment interstitial water in four Wisconsin lakes reflectedthe water column character, where the DIC increased with depthin the sediment to concentrations five to ten times those ofthe water column. Sediment free CO2 concentrations were 5–50times those in the water column and were similar at all sites(about 05–1.0mM CO2 in the root-zone). In ‘pH-drift’studies these plants were unable to take up HCO2. Laboratory determinations of the carbon uptake from the rootand shoot-zones were made for all five species. These experimentsshowed that CO2 in the root-zone accounted for 65–95 percent of external carbon uptake for the five species. For G.aurea and E. septangulare, root-zone CO2 was > 85 per centof carbon uptake. Carbon, CO2, photosynthesis, sediment, isoetid, Eriocaulon septangulare, Gratiola aurea, Isoetes macrospora, Littorella uniflora, Lobelia dortmanna  相似文献   

14.
The carbon balance and changes in leaf structure in Clusia minorL., were investigated in controlled conditions with regardto nitrogen supply and responses to low and high photosyntheticallyactive radiation (PAR). Nitrogen deficiency and high PAR ledto the production of smaller leaves with higher specific leafdry weight (SLDW) and higher leaf water content, but with lowerchlorophyll content. Nitrogen and PAR levels at growth alsoaffected CO2 exchange and leaf area. In – N conditions,total daily net CO2 uptake and leaf area accumulation were slightlyless for high-PAR-grown plants. In contrast, high-PAR-grownplants supplied with nitrogen showed about a 4-fold higher totaldaily CO2 uptake and about twice the total leaf area of low-PAR-grownplants. Although total daily net CO2 uptake of +N plants wasonly slightly higher than –N plants under the low PARlevel, –N plants produced almost three times more leafarea but with lower SLDW. Under well-watered conditions, low-PAR-grownplants showed only CO2 evolution during the night and malicacid levels decreased. However, there was considerable night-timeaccumulation of titratable protons due to day/night changesin citric acid levels. High-PAR-grown plants showed net CO2uptake, malate and citrate accumulation during the dark period.However, most of the CO2 fixed at night probably came from respiratoryCO2. Positive night-time CO2 exchange was readily observed forlow-PAR-grown plants when they were transferred to high PARconditions or when they were submitted to water stress. In plantsgrown in high and low PAR, CAM leads to a substantial increasein daily water use efficiency for water-stressed plants, althoughtotal net CO2 uptake decreased.  相似文献   

15.
The effects of night-time temperature, leaf-to-air vapour pressuredeficit (VPD) and water stress on CO2 recycling in Bromeliahumilis Jacq. grown under two light and nitrogen regimes wereinvestigated. At night-time temperatures above 30°C, integratednet dark CO2 uptake was severely reduced and CO2 for malatesynthesis was mainly derived from dark respiration. At 35°C,up to 84% of the CO2 liberated by dark respiration was refixedinto malic acid. Below 30 °C only nitrogen deficient plantsshowed significant recycling. No significant differences wereobserved between high and low light grown plants in CO2 recycling.A doubling of leaf-to-air VPD from 7-46 Pa kPa–1 to 15.49Pa kPa–1 resulted in a 2- to 20-fold decrease in leafconductance and about 50 to 65% reduction in integrated darkCO2 uptake. However, about twice as much CO2 was recycled atthe higher VPD as in the lower. Ten days of water stress resultedin 80 to 100% recycling of respiratory CO2. Under high VPD andwater stress treatments, the amount of water potentially savedthrough recycling of CO2 reached 2- to 6-fold of the actualtranspiration. In general, nitrogen deficient plants had higherper cent recycling of respiratory CO2 in response to high night-timetemperature, increased VPD or water stress. The results emphasizethe ecological relevance of carbon recycling in CAM plants. Key words: Bromelia humilis, CAM, PPFD, dark respiration, temperature, VPD, water stress  相似文献   

16.
Sediment CO2, entering via the roots, contributes a significantportion of the total carbon uptake for isoetids (small, evergreen,submersed, vascular plants). Laboratory studies of inorganiccarbon uptake via the roots and shoots by five isoetids wereused to model the use of root-zone CO2. Simple first-order linearmodels accounted for at least 75 per cent of the variation inthe data for Gratiola aurea, Isoetes macrospora, Littorellauniflora and Lobelia dortmanna. For Eriocaulon septangulare,which relies almost exclusively on root-zone CO2, models couldaccount for only about 62 per cent of the variation in root-zoneCO2 use. For each species, we present the best fitting regressionof root-zone CO2 use as a function of root- and shoot-zone CO2concentrations. For the species studied, carbon uptake was not saturated atfield concentrations of root and shoot-zone CO2. Maximum ratesof carbon uptake were lower for species that naturally occurredat greater depths, compared with species more common in shallowwater. At equal external CO2 concentrations carbon entry perunit root surface area was several times more rapid than entryper unit shoot surface area for L. dortmanna. The entry ratesper unit root and shoot surface area were about equal for G.aurea and E. septangulare. Shoots were equally or more permeablethan the roots of L. uniflora and I. macrospora, a fact thatmay be related to the functioning of crassulacean acid metabolismin these plants. Carbon, CO2, photosynthesis, isoetid, Eriocaulon septangulare, Gratiola aurea, Isoetes macrospora, Littorella uniflora, Lobelia dortmanna  相似文献   

17.
P. Rustin  C. Queiroz-Claret 《Planta》1985,164(3):415-422
Kalanchoe blossfeldiana plants grown under long days (16 h light) exhibit a C3-type photosynthetic metabolism. Switching to short days (9 h light) leads to a gradual development of Crassulacean acid metabolism (CAM). Under the latter conditions, dark CO2 fixation produces large amounts of malate. During the first hours of the day, malate is rapidly decarboxylated into pyruvate through the action of a cytosolic NADP+-or a mitochondrial NAD+-dependent malic enzyme. Mitochondria were isolated from leaves of plants grown under long days or after treatment by an increasing number of short days. Tricarboxylic acid cycle intermediates as well as exogenous NADH and NADPH were readily oxidized by mitochondria isolated from the two types of plants. Glycine, known to be oxidized by C3-plant mitochondria, was still oxidized after CAM establishment. The experiments showed a marked parallelism in the increase of CAM level and the increase in substrate-oxidation capacity of the isolated mitochondria, particularly the capacity to oxidize malate in the presence of cyanide. These simultaneous variations in CAM level and in mitochondrial properties indicate that the mitochondrial NAD+-malic enzyme could account at least for a part of the oxidation of malate. The studies of whole-leaf respiration establish that mitochondria are implicated in malate degradation in vivo. Moreover, an increase in cyanide resistance of the leaf respiration has been observed during the first daylight hours, when malate was oxidized to pyruvate by cytosolic and mitochondrial malic enzymes.Abbreviations CAM Crassulacean acid metabolism - MDH malate dehydrogenase - ME malic enzyme  相似文献   

18.
Gas exchange and organic acid accumulation of the C3-CAM intermediateClusia minor L. were investigated in response to various day/nighttemperatures and two light regimes (low and high PAR). For bothlight levels equal day/night temperatures between 20°C and30°C caused a typical C3 gas exchange pattern with all CO2uptake occurring during daylight hours. A day/ night temperatureof 15°C caused a negative CO2 balance over a 24 h periodfor low-PAR-grown plants while high-PAR-grown plants showeda CAM gas exchange pattern with most CO2 uptake taking placeduring the dark period. However, there was always a considerablenight-time accumulation of malic acid which increased when thenight-time temperature was lowered and had its maximum (54 mmolm–2) at day/night temperature of 30/15°C. A significantamount of malic acid accumulation (23 mmol m–2) in low-PAR-grownplants was observed only at 30/15°C. Recycling of respiratoryCO2 in terms of malic acid accumulation reached between 2·0and 21·5 mmol m–2 for high-PAR-grown plants whilethere was no significant recycling for low-PAR-grown plants.Both low and high-PAR-grown plants showed considerable night-timeaccumulation of citric acid. Indeed under several temperatureregimes low-PAR-grown plants showed day/night changes in citricacid levels whereas malic acid levels remained approximatelyconstant or slightly decreased. It is hypothesized that lowand high-PAR-grown plants have different requirements for citrate.In high-PAR-grown plants, the breakdown of citrate preventsphotoinhibition by increasing internal CO2 levels, whereas inlow-PAR-grown plants the night-time accumulation of citric acidmay function as an energy and carbon saving mechanism. Key words: C. minor, C3, CAM, citric acid, light intensity  相似文献   

19.
Cell organelles were isolated from the CAM plants Crassula lycopodioides Lam., Bryophyllum calycinum Salisb. and Sedum rubrotinctum R.T. Clausen by isopycnic centrifugation in sucrose gradients. The inclusion of 2.5% Ficoll in the grinding medium proved to be essential for a satisfactory separation of cell organelles during the subsequent centrifugation. Peroxisomes, mitochondria, and whole and broken chloroplasts were at least partially resolved as judged by marker-enzyme-activity profiles. The isolated peroxisomes contained activities of glycollate oxidase, catalase, hydroxypyruvate reductase, glycine aminotransferase, serine-glyoxylate aminotransferase, and aspartate aminotransferase, comparable to activities found in spinach (Spinacia oleracea L.) leaf peroxisomes. In contrast to spinach, however, only little, if any, particulate malate dehydrogenase activity could be attributed to isolated peroxisomes of the three CAM plants.  相似文献   

20.
The photosynthetic response to CO2 concentration, light intensityand temperature was investigated in water hyacinth plants (Eichhorniacrassipes (Mart.) Solms) grown in summer at ambient CO2 or at10000 µmol(CO2) mol–1 and in winter at 6000 µmol(CO2)mol–1 Plants grown and measured at ambient CO2 had highphotosynthetic rate (35 µmo1(CO2) m–2 s–1),high saturating photon flux density (1500–2000) µmolm–2 s–1 and low sensitivity to temperature in therange 20–40 °C. Maximum photosynthetic rate (63 µmol(CO2)m–2 s–1) was reached at an internal CO2 concentrationof 800 µmol mol–1. Plants grown at high CO2 in summerhad photosynthetic capacities at ambient CO2 which were 15%less than for plants grown at ambient CO2, but maximum photosyntheticrates were similar. Photosynthesis by plants grown at high CO2and high light intensity had typical response curves to internalCO2 concentration with saturation at high CO2, but for plantsgrown under high CO2 and low light and plants grown under lowCO2 and high light intensity photosynthetic rates decreasedsharply at internal CO2 concentrations above 1000 µmol–1. Key words: Photosynthesis, CO2, enrichment, Eichhornia crassipes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号