首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

Vibrio parahaemolyticus is a marine seafood-borne pathogen causing gastrointestinal disorders in humans. Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are known as major virulence determinants of V. parahaemolyticus. Most V. parahaemolyticus isolates from the environment do not produce TDH or TRH. Total V. parahaemolyticus has been used as an indicator for control of seafood contamination toward prevention of infection. Detection of total V. parahaemolyticus using conventional culture- and biochemical-based assays is time-consuming and laborious, requiring more than three days. Thus, we developed a novel and highly specific loop-mediated isothermal amplification (LAMP) assay for the sensitive and rapid detection of Vibrio parahaemolyticus.  相似文献   

2.

Background  

The hfq gene is conserved in a wide variety of bacteria and Hfq is involved in many cellular functions such as stress responses and the regulation of gene expression. It has also been reported that Hfq is involved in bacterial pathogenicity. However, it is not clear whether Hfq regulates virulence in Vibrio parahaemolyticus. To evaluate this, we investigated the effect of Hfq on the expression of virulence-associated genes including thermostable direct hemolysin (TDH), which is considered to be an important virulence factor in V. parahaemolyticus, using an hfq deletion mutant.  相似文献   

3.

Background  

Pandemic Vibrio parahaemolyticus has undergone rapid changes in both K- and O-antigens, making detection of outbreaks more difficult. In order to understand these rapid changes, the genetic regions encoding these antigens must be examined. In Vibrio cholerae and Vibrio vulnificus, both O-antigen and capsular polysaccharides are encoded in a single region on the large chromosome; a similar arrangement in pandemic V. parahaemolyticus would help explain the rapid serotype changes. However, previous reports on "capsule" genes are controversial. Therefore, we set out to clarify and characterize these regions in pandemic V. parahaemolyticus O3:K6 by gene deletion using a chitin based transformation strategy.  相似文献   

4.

Background  

Vibrio parahaemolyticus is a food-borne pathogen causing inflammation of the gastrointestinal epithelium. Pathogenic strains of this bacterium possess two Type III Secretion Systems (TTSS) that deliver effector proteins into host cells. In order to better understand human host cell responses to V. parahaemolyticus, the modulation of Mitogen Activated Protein Kinase (MAPK) activation in epithelial cells by an O3:K6 clinical isolate, RIMD2210633, was investigated. The importance of MAPK activation for the ability of the bacterium to be cytotoxic and to induce secretion of Interleukin-8 (IL-8) was determined.  相似文献   

5.

Background  

Vibrios, which include more than 100 species, are ubiquitous in marine and estuarine environments, and several of them e.g. Vibrio cholerae, V. parahaemolyticus, V. vulnificus and V. mimicus, are pathogens for humans. Pathogenic V. parahaemolyticus strains possess two sets of genes for type III secretion system (T3SS), T3SS1 and T3SS2. The latter are critical for virulence of the organism and be classified into two distinct phylogroups, T3SS2α and T3SS2β, which are reportedly also found in pathogenic V. cholerae non-O1/non-O139 serogroup strains. However, whether T3SS2-related genes are present in other Vibrio species remains unclear.  相似文献   

6.

Background  

To evaluate the antibiogram and antibiotic resistance genes of some Vibrio strains isolated from wastewater final effluents in a rural community of South Africa. V. vulnificus (18), V. metschnikovii (3), V. fluvialis (19) and V. parahaemolyticus (12) strains were isolated from final effluents of a wastewater treatment plant (WWTP) located in a rural community of South Africa. The disk diffusion method was used for the characterization of the antibiogram of the isolates. Polymerase chain reaction (PCR) was employed to evaluate the presence of established antibiotic resistance genes using specific primer sets.  相似文献   

7.
Bacteria of the genus Vibrio are an important component of marine ecosystems worldwide. The genus harbors several human pathogens, for instance the species Vibrio parahaemolyticus, a main cause for foodborne gastroenteritis in Asia and the USA. Pathogenic V. parahaemolyticus strains emerged also in Europe, but little is known about the abundance, pathogenicity and ecology of V. parahaemolyticus especially in Northern European waters. This study focuses on V. parahaemolyticus and its close relative Vibrio alginolyticus in the North Sea (Helgoland Roads, Germany). Free-living, plankton-attached and shellfish-associated Vibrio spp. were quantified between May 2008 and January 2010. CFUs up to 4.3 × 103 N l−1 and MPNs up to 240 N g−1 were determined. Phylogenetic classification based on rpoB gene sequencing revealed V. alginolyticus as the dominant Vibrio species at Helgoland Roads, followed by V. parahaemolyticus. We investigated the intraspecific diversity of V. parahaemolyticus and V. alginolyticus using ERIC-PCR. The fingerprinting disclosed three distinct groups at Helgoland Roads, representing V. parahaemolyticus, V. alginolyticus and one group in between. The species V. parahaemolyticus occurred mainly in summer months. None of the strains carried the virulence-associated genes tdh or trh. We further analyzed the influence of nutrients, secchi depth, temperature, salinity, chlorophyll a and phytoplankton on the abundance of Vibrio spp. and the population structure of V. parahaemolyticus. Spearman Rank analysis revealed that particularly temperature correlated significantly with Vibrio spp. numbers. Based on multivariate statistical analyses we report that the V. parahaemolyticus population was structured by a complex combination of environmental parameters. To further investigate these influences is the key to understanding the dynamics of Vibrio spp. in temperate European waters, where this microbial group and especially the pathogenic species, are likely to gain in importance.  相似文献   

8.
Vibrio parahaemolyticus is a globally present marine bacterium that often leads to acute gastroenteritis. Two type III secretion systems (T3SSs), T3SS1 and T3SS2, are important for host infection. Type I collagen is a component of the extracellular matrix and is abundant in the small intestine. However, whether type I collagen serves as the cellular receptor for Vparahaemolyticus infection of host cells remains enigmatic. In this study, we discovered that type I collagen is not only important for the attachment of Vparahaemolyticus to host cells but is also involved in T3SS1‐dependent cytotoxicity. In addition, 2 virulence factors, MAM7 and VpadF enable Vparahaemolyticus to interact with type I collagen and mediate T3SS2‐dependent host cell invasion. Type I collagen, the collagen receptor α1 integrin, and its downstream factor phosphatidylinositol 3‐kinase (PI3K) are responsible for Vparahaemolyticus invasion of host cells. Further biochemical studies revealed that VpadF mainly relies on the C‐terminal region for type I collagen binding and MAM7 relies on mce domains to bind to type I collagen. As MAM7 and/or VpadF homologues are widely distributed in the genus Vibrio, we propose that Vibrios have evolved a unique strategy to infect host cells by binding to type I collagen.  相似文献   

9.
Vibrio parahaemolyticus is a natural microflora of marine and coastal water bodies and associated with mortality of larval shrimp in penaeid shrimp in ponds. Bacteriophages occur virtually in all places where their hosts exist. In this study, total distribution of V. parahaemolyticus and its phages were examined in shrimp ponds, seawater, estuary, animal surface, and tissues. Total vibrio count in sediments of two ponds was found to be 2.6 × 103 and 5.6 × 103 cfu/g. Incidence of V. parahaemolyticus in the ponds was close, while it was markedly higher in the animal surface and tissue samples. Biochemically identified eight strains of V. parahaemolyticus (V1, V3–V6, V9, V11, and V12) were taken for further infection studies with bacteriophage. Totally five bacteriophages capable of infecting V. parahaemolyticus MTCC-451 strain were isolated from all the samples. One of the isolated bacteriophage Vp1 from estuary was able to lyse all the isolated V. parahaemolyticus strains we used. Therefore, the morphology of Vp1 was estimated in TEM. Vp1 phage head measuring approximately about 50–60 nm diameter with icosahedral outline and a contractile tails of diameter 7 nm and length 100 nm and it was identified as Myoviridae. Therefore, the phages have the potential application in destroying bacterial pathogens.  相似文献   

10.
Between October 2008 and June 2009, 15 samples of 10 live oysters each (Crassostrea rhizophorae) measuring 8.31–10.71 cm were purchased from a restaurant on the seashore of Fortaleza, Brazil. The Vibrio count ranged from 75 (estimated) to 43,500 CFU/g. Fourteen species were identified among the 56 isolated Vibrio strains, with V. parahaemolyticus as the most prevalent. Two of the 17 V. parahaemolyticus strains were urease-positive and tdh- and trh-positive on multiplex PCR, but neither produced β-hemolysis halos in Wagatsuma agar. Thus, fresh oysters served in natura in Fortaleza, Brazil, were found to contain Vibrio strains known to cause gastroenteritis in humans.  相似文献   

11.

Aims

To determine the herd prevalence of Enterobacteriaceae producing CTX‐M‐type extended‐spectrum β‐lactamases (ESBLs) among 381 dairy farms in Japan.

Methods and Results

Between 2007 and 2009, we screened 897 faecal samples using BTB lactose agar plates containing cefotaxime (2 μg ml?1). Positive isolates were tested using ESBL confirmatory tests, PCR and sequencing for CTX‐M, AmpC, TEM and SHV. The incidence of Enterobacteriaceae producing CTX‐M‐15 (= 7), CTX‐M‐2 (= 12), CTX‐M‐14 (= 3), CMY‐2 (= 2) or CTX‐M‐15/2/14 and CMY‐2 (= 4) in bovine faeces was 28/897 (3·1%) faecal samples. These genes had spread to Escherichia coli (= 23) and three genera of Enterobacteriaceae (= 5). Herd prevalence was found to be 20/381 (5·2%) dairy farms. The 23 E. coli isolates showed clonal diversity, as assessed by multilocus sequence typing and pulsed‐field gel electrophoresis. The pandemic E. coli strain ST131 producing CTX‐M‐15 or CTX‐M‐27 was not detected.

Conclusions

Three clusters of CTX‐M (CTX‐M‐15, CTX‐M‐2, CTX‐M‐14) had spread among Japanese dairy farms.

Significance and Impact of the Study

This is the first report on the prevalence of multidrug‐resistant CTX‐M‐15–producing E. coli among Japanese dairy farms.  相似文献   

12.

Background

Vibrio parahaemolyticus is a Gram-negative halophilic bacterium. Infections with the bacterium could become systemic and can be life-threatening to immunocompromised individuals. Genome sequences of a few clinical isolates of V. parahaemolyticus are currently available, but the genome dynamics across the species and virulence potential of environmental strains on a genome-scale have not been described before.

Results

Here we present genome sequences of four V. parahaemolyticus clinical strains from stool samples of patients and five environmental strains in Hong Kong. Phylogenomics analysis based on single nucleotide polymorphisms revealed a clear distinction between the clinical and environmental isolates. A new gene cluster belonging to the biofilm associated proteins of V. parahaemolyticus was found in clincial strains. In addition, a novel small genomic island frequently found among clinical isolates was reported. A few environmental strains were found harboring virulence genes and prophage elements, indicating their virulence potential. A unique biphenyl degradation pathway was also reported. A database for V. parahaemolyticus (http://kwanlab.bio.cuhk.edu.hk/vp) was constructed here as a platform to access and analyze genome sequences and annotations of the bacterium.

Conclusions

We have performed a comparative genomics analysis of clinical and environmental strains of V. parahaemolyticus. Our analyses could facilitate understanding of the phylogenetic diversity and niche adaptation of this bacterium.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1135) contains supplementary material, which is available to authorized users.  相似文献   

13.
Aim: To develop a haemolysin (hly) gene‐based species‐specific multiplex PCR for simple and rapid detection of Vibrio campbellii, V. harveyi and V. parahaemolyticus. Methods and Results: The complete hly genes of three V. campbellii strains isolated from diseased shrimps were sequenced and species‐specific PCR primers were designed based on these sequences and the registered hly gene sequences of Vibrio harveyi and Vibrio parahaemolyticus. Specificity and sensitivity of the multiplex PCR was validated with 27 V. campbellii, 16 V. harveyi, and 69 V. parahaemolyticus, 18 other Vibrio species, one Photobacterium damselae and nine other bacterial species. The detection limits of all the three target species were in between 10 and 100 cells per PCR tube. Conclusions: Specificity and sensitivity of the multiplex PCR is 100% each and sufficient to be considered as an effective tool in a prediction system to prevent potential disease outbreak by these Vibrio species. Significance and Impact of the Study: Because there is lack of simple, rapid and cost‐effective method to differentiate these closely related V. campbellii, V. harveyi and V. parahaemolyticus species, the multiplex PCR developed in this study will be very effective in epidemiological, ecological and economical points of view.  相似文献   

14.
In this study, we have developed a SYBR Green™ I-based real-time multiplexed PCR assay for the detection of Vibrio parahaemolyticus in Gulf of Mexico water (gulf water), artificially seeded and natural oysters targeting three hemolysin genes, tlh, tdh and trh in a single reaction. Post-amplification melt-temperature analysis confirmed the amplification of all three targeted genes with high specificity. The detection sensitivity was 10 cfu (initial inoculum) in 1 ml of gulf water or oyster tissue homogenate, following 5 h enrichment. The results showed 58% of the oysters to be positive for tlh, indicating the presence of V. parahaemolyticus; of which 21% were positive for tdh; and 0.7% for trh, signifying the presence of pathogenic strains. The C t values showed that oyster tissue matrix had some level of inhibition, whereas the gulf water had negligible effect on PCR amplification. The assay was rapid (~8 h), specific and sensitive, meeting the ISSC guidelines. Rapid detection using real-time multiplexed PCR will help reduce V. parahaemolyticus-related disease outbreaks, thereby increasing consumer confidence and economic success of the seafood industry.  相似文献   

15.

Background  

Prox1, the vertebrate homolog of prospero in Drosophila melanogaster, is a divergent homeogene that regulates cell proliferation, fate determination and differentiation during vertebrate embryonic development.  相似文献   

16.

Aims

To confirm the stress‐relieving effects of heat‐inactivated, enteric‐colonizing Lactobacillus gasseri CP2305 (paraprobiotic CP2305) in medical students taking a cadaver dissection course.

Methods and Results

Healthy students (21 males and 11 females) took paraprobiotic CP2305 daily for 5 weeks during a cadaver dissection course. The General Health Questionnaire and the Pittsburgh Sleep Quality Index were employed to assess stress‐related somatic symptoms and sleep quality respectively. The aggravation of stress‐associated somatic symptoms was observed in female students (P = 0·029). Sleep quality was improved in the paraprobiotic CP2305 group (= 0·038), particularly in men (= 0·004). Among men, paraprobiotic CP2305 shortened sleep latency (= 0·035) and increased sleep duration (= 0·048). Diarrhoea‐like symptoms were also effectively controlled with CP2305 (= 0·005) in men. Thus, we observed sex‐related differences in the effects of paraprobiotic CP2305. In addition, CP2305 affected the growth of faecal Bacteroides vulgatus and Dorea longicatena, which are involved in intestinal inflammation.

Conclusions

CP2305 is a potential paraprobiotic that regulates stress responses, and its beneficial effects may depend on specific cell component(s).

Significance and Impact of the Study

This study characterizes the effects of a stress‐relieving para‐psychobiotic in humans.  相似文献   

17.

Background  

The main vector for transmission of malaria in India is the Anopheles culicifacies mosquito species, a naturally selected subgroup of which is completely refractory (R) to transmission of the malaria parasite, Plasmodium vivax;  相似文献   

18.
Vibrio parahaemolyticus: is recognized as the main cause of gastroenteritis associated with consumption of seafood. Bacteriocin-producing Lactobacillus plantarum FGC-12 isolated from golden carp intestine had strong antibacterial activity toward V. parahaemolyticus. The fish-borne bacteriocin was purified by a three-step procedure consisting of ethyl acetate extraction, gel filtration chromatography and high performance liquid chromatography. Its molecular weight was estimated at 4.1 kDa using SDS-PAGE. The fish-borne bacteriocin reached the maximum production at stationary phase after 20 h. It was heat-stable (30 min at 121?°C) and remained active at pH range from 3.0 to 5.5, but was sensitive to nutrasin, papain and pepsin. Its minimum inhibitory concentration for V. parahaemolyticus was 6.0 mg/ml. Scanning electron microscopy analysis showed that the fish-borne bacteriocin disrupted cell wall of V. parahaemolyticus. The antibacterial mechanism of the fish-borne bacteriocin against V. parahaemolyticus might be described as action on membrane integrity in terms of the leakage of electrolytes, the losses of Na+K+-ATPase, AKP and proteins. The addition of the fish-borne bacteriocin to shrimps leaded V. parahaemolyticus to reduce 1.3 log units at 4?°C storage for 6 day. Moreover, a marked decline in total volatile base nitrogen and total viable counts was observed in bacteriocin treated samples than the control. It is clear that this fish-borne bacteriocin has promising potential as biopreservation for the control of V. parahaemolyticus in aquatic products.  相似文献   

19.

Background  

There is a substantial discrepancy between in vitro and in vivo experiments. The purpose of the present work was development of a theoretical framework to enable improved prediction of in vivo response from in vitro bioassay results.  相似文献   

20.
The immunogenicity of soluble outer membrane protein K (OmpK)- small ubiquitin-like modifier, OmpK inclusion bodies, formalin, and heat-killed Vibrio parahaemolyticus cells were prepared and studied in a mouse model. The results of whole-cell ELISA and Western blot (WB) revealed that the serum against soluble OmpK and OmpK inclusion bodies reacted only with homologous V. parahaemolyticus. Furthermore, recombinant OmpK proteins were not recognized by the serum against whole-cell V. parahaemolyticus antigens. Unexpectedly, the serum against formalin and heat-killed V. parahaemolyticus reacted broadly with homologous (an immunization strain) and heterologous (non-immunization strains) V. parahaemolyticus and Vibrio species. The WB results revealed that the serum against the two V. parahaemolyticus whole-cell antigens primarily reacted with proteins that were approximately 100, 70, 36, 28, and 22 kDa in the cell lysates from different Vibrio strains, rather than the recombinant OmpK. The 70 and 28 kDa proteins exhibited specificity to Vibrio species, while the 22 kDa protein was more specific to V. parahaemolyticus. This study showed the limitation of recombinant OmpK to prepare diagnostic antibodies and revealed several specific Omps of Vibrio sp. and V. parahaemolyticus that were promising in diagnosis and vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号