首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human teratocarcinoma stem cell line Tera-2 clone 13 is induced by retinoic acid to differentiate in vitro into endodermal or neuroectodermal cell types. In the absence of externally added growth factors, Tera-2 clone 13 cells proliferated at the same rate as in the presence of serum growth factors. Analysis of serum-free medium conditioned by Tera-2 clone 13 cells showed the presence of a polypeptide immunologically and biochemically related to platelet-derived growth factor (PDGF). In addition transforming growth factor beta (TGF-beta), but no TGF-alpha production could be detected. Tera-2 clone 13 cells specifically expressed high levels of the A-chain mRNA, but not the B-chain mRNA of PDGF. During retinoic acid induced differentiation the level of A-chain mRNA became markedly reduced. In contrast the TGF-beta mRNA levels increased significantly upon differentiation. The implications of these findings are discussed in terms of regulation of growth and differentiation in early embryos as well as in (human) teratocarcinomas.  相似文献   

2.
Recent evidence has shown that retinoic acid (RA) signalling is required for early pancreatic development in zebrafish and frog but its role in later development in mammals is less clear cut. In the present study, we determined the effects of RA on the differentiation of the mouse embryonic pancreas. Addition of all-trans retinoic acid (atRA) to embryonic pancreatic cultures induced a number of changes. Branching morphogenesis and exocrine differentiation were suppressed and there was premature formation of endocrine cell clusters (although the total area of beta cells was not different in control and atRA-treated buds). We investigated the mechanism of these changes and found that the premature formation of beta cells was associated with the early expression of high-level Pdx1 in the endocrine cell clusters. In contrast, the suppressive effect of RA on exocrine differentiation may be due to a combination of two mechanisms (i) up-regulation of the extracellular matrix component laminin and (ii) enhancement of apoptosis. We also demonstrate that addition of fibroblast growth factor (FGF)-10 is able to partially prevent apoptosis and rescue exocrine differentiation and branching morphogenesis in atRA-treated cultures but not in mice lacking the FGF receptor 2-IIIb, suggesting the effects of FGF-10 are mediated through this receptor.  相似文献   

3.
Differentiation of endothelial cells, i.e., formation of a vessel lumen, is a prerequisite for angiogenesis. The underlying molecular mechanisms are ill defined. We have studied a brain capillary endothelial cell line (IBEC) established from H-2Kb-tsA58 transgenic mice. These cells form hollow tubes in three-dimensional type I collagen gels in response to fibroblast growth factor-2 (FGF-2). Culture of IBEC on collagen gels in the presence of FGF-2 protected cells from apoptosis and allowed tube formation (i.e., differentiation) but not growth of the cells. FGF-induced differentiation, but not cell survival, was inhibited by treatment of the cells with an anti-beta1-integrin IgG. Changes in integrin expression in the collagen-gel cultures could not be detected. Rather, cell-matrix interactions critical for endothelial cell differentiation were created during the culture, as indicated by the gradual increase in tyrosine phosphorylation of focal adhesion kinase in the collagen-gel cultures. Inclusion of laminin in the collagen gels led to FGF-2-independent formation of tube structures, but cells were not protected from apoptosis. These data indicate that FGF receptor-1 signal transduction in this cell model results in cell survival. Through mechanisms dependent on cell-matrix interactions, possibly involving the alpha3beta1-integrin and laminin produced by the collagen-cultured IBE cells, FGF stimulation also leads to differentiation of the cells.  相似文献   

4.
The regulation of cell surface fibroblast growth factor (FGF) receptors during the differentiation of F9 teratocarcinoma cells was investigated. The capacity of F9 cells to bind 125I-basic FGF (FGF-2) increased upon induction of differentiation with dibutyryl cAMP and retinoic acid. No change in binding capacity was observed in the first 24 h after addition of differentiating agents, but a sixfold increase in binding capacity was observed after 48 h and a fivefold increase after 72 h. Scatchard analysis of the binding data indicated that the increased binding of 125I-FGF-2 was due to an increase in the number of receptors with no change in their affinity. When 125I-FGF-2 was cross-linked to cell surface receptors, an increase in FGF-2-receptor complexes with molecular weights of 140,000–160,000 was also observed in the differentiated F9 cells. Undifferentiated F9 cells are known to secrete FGF-4 and cease expression of this molecule upon differentiation. To determine whether the low level of receptors in undifferentiated cells might be related to their production of FGF ligands, the ability of suramin, a drug that can disrupt FGF-receptor interactions, to modulate receptor number on F9 cells was investigated. Suramin treatment increased 125I-FGF-2 binding capacity of undifferentiated F9 cells threefold but had little effect on the binding capacity of differentiated cells. In addition, antibodies to FGF-4 increased the 125I-FGF-2 binding capacity of undifferentiated F9 cells by 58%. These results suggest that undifferentiated F9 cells might be responding in an autocrine manner to their own FGF ligands resulting in downregulation of cell surface FGF receptors. The increased number of receptors observed in differentiated cells may partly result from the decreased production of FGF ligands by these cells. © 1994 Wiley-Liss, Inc.  相似文献   

5.
We have found that the gene expression of the ninth member of the fibroblast growth factor (FGF) family, FGF9 was induced during retinoic acid(RA)-induced neuronal differentiation of murine embryonal carcinoma P19 cells. We have reported here the nucleotide sequence of the mouse FGF9 cDNA. The murine cDNA showed 92.4% nucleotide sequence homology to the human FGF9 cDNA and 98.2% homology to that of rats. This mouse FGF9 cDNA encoded a polypeptide consisting of 208 amino acids with amino acid sequence identical to that of rats. Only one amino acid was replaced compared to the human homolog. The highly conserved sequence homology of FGF9 suggests its functional importance. FGF9 was originally isolated from a culture medium of a human glioma cell line as a growth-promoting factor for glial cells [5]. Upon induction of neuronal differentiation by forming cell aggregates with 10−6 M RA, the gene expression of FGF9 was increased biphasically during the first 96 hours when cells were aggregating and from 168 hours to 192 hours followed by plating onto a tissue culture dish as glia-like cells proliferated. Neither undifferentiated P19 cells nor the cells aggregated without RA remaining undifferentiated expressed FGF9. This indicates that RA regulates the gene expression of FGF9 that may play an important role in neuronal differentiation in both early and late developmental process.  相似文献   

6.
The human embryonal carcinoma cell lines Tera-2 clone 13 and NTera-2 clone D1 can be induced by retinoic acid to differentiate in vitro into neuroectodermal derivatives. The undifferentiated cells are rapidly proliferating and tumorigenic, whereas retinoic-acid-treated cells possess a decreased growth rate, lose their transformed phenotype and show a finite lifespan. Differentiation is accompanied by a marked increase in the levels of mRNA for TGF-beta 1 and TGF-beta 2 and the production of TGF-beta activity. Just like murine embryonal carcinoma cells the growth of Tera-2 clone 13 cells is not affected by the addition of either TGF-beta 1 or TGF-beta 2 to the culture medium. In contrast to published data on murine embryonal carcinoma cells, Tera-2 clone 13 and NTera-2 clone D1 cells bind TGF-beta 1 with high affinity, which is due to the presence of type-III TGF-beta receptors. Furthermore, and again in contrast to murine embryonal carcinoma cells, treatment of the human embryonal carcinoma cells with retinoic acid causes a nearly complete loss of TGF-beta 1 binding sites. These results are discussed in the light of similarities and differences in the regulation of growth and differentiation of human and murine embryonal carcinoma cell lines.  相似文献   

7.
Chan SS  Li HJ  Hsueh YC  Lee DS  Chen JH  Hwang SM  Chen CY  Shih E  Hsieh PC 《PloS one》2010,5(12):e14414

Background

The fibroblast growth factor (FGF) family is essential to normal heart development. Yet, its contribution to cardiomyocyte differentiation from stem cells has not been systemically studied. In this study, we examined the mechanisms and characters of cardiomyocyte differentiation from FGF family protein treated embryonic stem (ES) cells and induced pluripotent stem (iPS) cells.

Methodology/Principal Findings

We used mouse ES cells stably transfected with a cardiac-specific α-myosin heavy chain (αMHC) promoter-driven enhanced green fluorescent protein (EGFP) and mouse iPS cells to investigate cardiomyocyte differentiation. During cardiomyocyte differentiation from mouse ES cells, FGF-3, -8, -10, -11, -13 and -15 showed an expression pattern similar to the mesodermal marker Brachyury and the cardiovascular progenitor marker Flk-1. Among them, FGF-10 induced cardiomyocyte differentiation in a time- and concentration-dependent manner. FGF-10 neutralizing antibody, small molecule FGF receptor antagonist PD173074 and FGF-10 and FGF receptor-2 short hairpin RNAs inhibited cardiomyocyte differentiation. FGF-10 also increased mouse iPS cell differentiation into cardiomyocyte lineage, and this effect was abolished by FGF-10 neutralizing antibody or PD173074. Following Gene Ontology analysis, microarray data indicated that genes involved in cardiac development were upregulated after FGF-10 treatment. In vivo, intramyocardial co-administration of FGF-10 and ES cells demonstrated that FGF-10 also promoted cardiomyocyte differentiation.

Conclusion/Significance

FGF-10 induced cardiomyocyte differentiation from ES cells and iPS cells, which may have potential for translation into clinical applications.  相似文献   

8.
To characterize the role of epidermal growth factor (EGF) and fibroblast growth factor (FGF) in regulating neuroepithelial stem cells differentiation, we have examined the expression of FGF, EGF, and their receptors by neuroepithelial (NEP) cells and their derivatives. Our results indicate that undifferentiated NEP cells express a subset of FGF receptor (FGFR) isoforms, but do not express platelet-derived growth factor receptors (PDGFRs) or epidermal growth factor receptor (EGFR). The FGFR pattern of expression by differentiated neuron and glial cells differs from that found on NEP stem cells. FGFR-4 is uniquely expressed on NEP cells, while FGFR-1 is expressed by both NEP cells and neurons, and FGFR-2 is down-regulated during neuronal differentiation. FGFRs present on astrocytes and oligodendrocytes also represent a subset of those present on NEP cells. Expression of FGF and EGF by NEP cells and their progeny was also examined. NEP cells synthesize detectable levels of both FGF-1 and FGF-2, and EGF. FGF-1 and FGF-2 synthesis is likely to be biologically relevant, as cells grown at high density do not require exogenous FGF for their survival and cells grown in the presence of neutralizing antibodies to FGF show a reduction in cell survival and division. Thus, neuroepithelial cells synthesize and respond to FGF, but not to EGF, and are therefore distinct from other neural stem cells (neurospheres). The unique pattern of expression of FGF isoforms may serve to distinguish NEP cells from their more differentiated progeny.  相似文献   

9.
FGF8, a member of the fibroblast growth factor (FGF) family, has been shown to play important roles in different developing systems. Mouse embryonic carcinoma P19 cells could be induced by retinoic acid (RA) to differentiate into neuroectodermal cell lineages, and this process is cell aggregation dependent. In this report, we show that FGF8 expression is transiently up-regulated upon P19 cell aggregation, and the aggregation-dependent FGF8 elevation is pluripotent stem cell related. Overexpressing FGF8 promotes RA-induced monolayer P19 cell neural differentiation. Inhibition of FGF8 expression by RNA interference or blocking FGF signaling by the FGF receptor inhibitor, SU5402, attenuates neural differentiation of the P19 cell. Blocking the bone morphogenetic protein (BMP) pathway by overexpressing Smad6 in P19 cells, we also show that FGF signaling plays a BMP inhibition-independent role in P19 cell neural differentiation.  相似文献   

10.
The p38 mitogen-activated protein kinase (p38) is activated in response to environmental stress and inflammatory cytokines. Although several growth factors, including fibroblast growth factor (FGF)-2, mediate activation of p38, the consequences for growth factor-dependent cellular functions have not been well defined. We investigated the role of p38 activation in FGF-2-induced angiogenesis. In collagen gel cultures, bovine capillary endothelial cells formed tubular growth-arrested structures in response to FGF-2. In these collagen gel cultures, p38 activation was induced more potently by FGF-2 treatment compared with that in proliferating cultures. Treatment with the p38 inhibitor SB202190 enhanced FGF-2-induced tubular morphogenesis by decreasing apoptosis, increasing DNA synthesis and cell proliferation, and enhancing the kinetics of cell differentiation including increased expression of the Notch ligand Jagged1. Overexpression of dominant negative mutants of the p38-activating kinases MKK3 and MKK6 also supported FGF-2-induced tubular morphogenesis. Sustained activation of p38 by FGF-2 was identified in vascular endothelial cells in vivo in the chick chorioallantoic membrane (CAM). SB202190 treatment enhanced FGF-2-induced neovascularization in the CAM, but the vessels displayed abnormal features indicative of hyperplasia of endothelial cells. These results implicate p38 in organization of new vessels and suggest that p38 is an essential regulator of FGF-2-driven angiogenesis.  相似文献   

11.
12.
Endothelial cells derived from fetal bovine aorta (BAECs) undergo apoptosis in three-dimensional (3-D) type I collagen lattice in the absence of specific angiogenic factor. In the presence of angiogenic factor, BAECs survive and form a capillary-like tube structure in 3-D culture. In the present study we elucidate the mechanisms of BAECs apoptosis or survival and tube formation in 3-D culture. When BAECs embedded in collagen lattice were cultured with angiogenic factor (fibroblast growth factor-2 (FGF-2) or 4beta-phorbol 12-myristate 13-acetate (PMA)) in the presence of PD98059, a specific inhibitor of mitogen-activated protein kinase kinase, BAECs did not form tube structures and underwent apoptosis in collagen lattice. Function-blocking antibody against alphavbeta3 integrin also inhibited tube formation and induced apoptosis in 3-D culture in the presence of angiogenic factors. Exposure of BAECs to FGF-2 and PMA had no effect on the alphavbeta3 integrin expression but induced the activation of alphavbeta3 integrin. PD98059 attenuated alphavbeta3 integrin activation in response to angiogenic factor. KB-R8301, a hydroxamic acid-based matrix metalloproteinase (MMP) inhibitor, prevented apoptotic cell death in the absence of angiogenic factor in 3-D culture and enhanced capillary-like tube formation in the presence of angiogenic factor, which was not inhibited by the anti-alphavbeta3 integrin antibody. The results suggest that angiogenic factor-induced alphavbeta3 integrin activation through the MEK-ERK pathway regulates the BAEC fate between apoptosis and angiogenesis in collagen lattice. MMP derived from BAECs seems to play a key role in the release of cryptic ligands for alphavbeta3 integrin from intact collagen.  相似文献   

13.
F9 embryonic stem cell-like teratocarcinoma cells are widely used to study early embryonic development and cell differentiation. The cells can be induced by retinoic acid to undergo endodermal differentiation. The retinoic acid-induced differentiation accompanies cell growth suppression, and thus, F9 cells are also often used as a model for analysis of retinoic acid biological activity. We have recently shown that MAPK activation and c-Fos expression are uncoupled in F9 cells upon retinoic acid-induced endodermal differentiation. The expression of the candidate tumor suppressor Disabled-2 is induced and correlates with cell growth suppression in F9 cells. We were not able to establish stable Disabled-2 expression by cDNA transfection in F9 cells without induction of spontaneous cell differentiation. Transient transfection of Dab2 by adenoviral vector nevertheless suppresses Elk-1 phosphorylation, c-Fos expression, and cell growth. In PA-1, another teratocarcinoma cell line of human origin that has no or very low levels of Disabled-2, retinoic acid fails to induce Disabled-2, correlating with a lack of growth suppression, although PA-1 is responsive to retinoic acid in morphological change. Transfection and expression of Disabled-2 in PA-1 cells mimic the effects of retinoic acid on growth suppression; the Disabled-2-expressing cells reach a much lower saturation density, and serum-stimulated c-Fos expression is greatly suppressed and disassociated from MAPK activation. Thus, Dab2 is one of the principal genes induced by retinoic acid involved in cell growth suppression, and expression of Dab2 alone is sufficient for uncoupling of MAPK activation and c-Fos expression. Resistance to retinoic acid regulation in PA-1 cells likely results from defects in retinoic acid up-regulation of Dab2 expression.  相似文献   

14.
15.
The current paradigm for the role of nerve growth factor (NGF) or FGF-2 in the differentiation of neuronal cells implies their binding to specific receptors and activation of kinase cascades leading to the expression of differentiation specific genes. We examined herein the hypothesis that FGF receptors (FGFRs) are involved in NGF-induced neuritogenesis of pheochromocytoma-derived PC12 cells. We demonstrate that in PC12 cells, FGFR expression and activity are modulated upon NGF treatment and that a dominant negative FGFR-2 reduces NGF-induced neuritogenesis. Moreover, FGF-2 expression is modulated by NGF, and FGF-2 is detected at the cell surface. Oligonucleotides that specifically inhibit FGF-2 binding to its receptors are able to significantly reduce NGF-induced neurite outgrowth. Finally, the duration of mitogen-activated protein kinase (MAPK) activity upon FGF or NGF stimulation is shortened in FGFR-2 dominant negative cells through inactivation of signaling from the receptor to the Ras/MAPK pathway. In conclusion, these results demonstrate that FGFR activation is involved in neuritogenesis induced by NGF where it contributes to a sustained MAPK activity in response to NGF.  相似文献   

16.
Glia-activating factor (GAF) is a novel heparin-binding growth factor purified from the culture supernatant of a human glioma cell line. It shows a spectrum of activity slightly different from those of other known growth factors. We have isolated the cDNA which encodes human GAF. A homology search revealed that GAF would be the ninth member of the FGF family, and we therefore call it FGF-9. The human FGF-9 cDNA cloned by using oligonucleotide probes encoded a polypeptide consisting of 208 amino acids. Sequence similarity to other members of the FGF family was estimated to be around 30%. Two cysteine residues and other consensus sequences in family members were also well conserved in the FGF-9 sequence. FGF-9 was found to have no typical signal sequence in its N terminus like those in acidic FGF and basic FGF. Acidic FGF and basic FGF are known not to be secreted from cells in a conventional manner. However, FGF-9 was found to be secreted from cells after synthesis despite its lack of a typical signal sequence. It could be detected exclusively in the culture medium of cDNA-transfected COS cells. The amino acid sequence of proteins purified from culture supernatant of the CHO cell line, which was cDNA transfected and selected as a high producer of FGF-9, showed that no peptides were cleaved from the N terminus except the initiation methionine. The rat FGF-9 cDNA was also cloned, and the structural analysis indicated that the PGF-9 gene is highly conserved. Expression of the FGF-9 gene could be detected in the brain and kidney of the adult rat. Restricted gene expression in organs and the unique secretion nature of the protein suggest that FGF-9 plays a physiological role which differs from those of well-characterized acidic FGF and basic FGF.  相似文献   

17.
We have used the P19 embryonal carcinoma (EC) aggregation system as a model for early mouse development to study induction and modulation of mesodermal and neuronal differentiation. By studying the expression of marker genes for differentiated cells in this model we have shown that there is a good correlation between the differentiation direction induced in P19 EC aggregates and the expression of these genes. Expression of the neuronal gene midkine is exclusively upregulated when P19 EC cells are induced to form neurons while expression of early mesodermal genes such as Brachyury T, evx-1 , goosecoid and nodal is elevated after induction to the mesodermal pathway. In the present study we have further shown that activin A blocks the different directions of differentiation of P19 EC cells induced by retinoic acid (RA) in a dose-dependent way. To understand the mechanism behind this inhibitory action of activin A the expression of several RA-responsive genes, including the three RA receptor genes (RARα, RARβ and RARγ) was determined. Since activin has no clear effect on the expression and activity of the RAR it is very likely that this factor acts downstream of these receptors. In addition to activin, fibroblast growth factors (FGF) were shown to modulate P19 EC cell differentiation. However, in contrast to activin, FGF exclusively blocks the mesodermal differentiation of P19 EC cells by either 10−9mol/L RA or a factor produced by visceral endoderm-like cells (END-2 factor). The FGF effect is dose-independent. These results suggest an important function for RA and the END-2 factor in the induction and for activin and FGF in the modulation of specific differentiation processes in murine development.  相似文献   

18.
19.
Human mesenchymal stem cells (hMSCs) are able to self-replicate and differentiate into a variety of cell types including osteoblasts, chondrocytes, adipocytes, endothelial cells, and muscle cells. It was reported that fibroblast growth factor-2 (FGF-2) increased the growth rate and multidifferentiation potentials of hMSCs. In this study, we investigated the genes involved in the promotion of osteogenic and chondrogenic differentiation potentials of hMSCs in the presence of FGF-2. hMSCs were maintained in the medium with FGF-2. hMSCs were harvested for the study of osteogenic or chondrogenic differentiation potential after 15 days’ culture. To investigate osteogenic differentiation, the protein levels of alkaline phosphatase (ALP) and the mRNA expression levels of osteocalcin were measured after the induction of osteogenic differentiation. Moreover, the investigation for chondrogenic differentiation was performed by measuring the mRNA expression levels of type II and type X collagens after the induction of chondrogenic differentiation. The expression levels of ALP, type II collagen, and type X collagen of hMSCs cultured with FGF-2 were significantly higher than control. These results suggested that FGF-2 increased osteogenic and chondrogenic differentiation potentials of hMSCs. Furthermore, microarray analysis was performed after 15 days’ culture in the medium with FGF-2. We found that the overall insulin-like growth factor-I (IGF-I) and transforming growth factor-β (TGF-β) signaling pathways were inactivated by FGF-2. These results suggested that the inactivation of IGF-I and TGF-β signaling promotes osteogenic and chondrogenic differentiation potential of hMSCs in the presence of FGF-2.  相似文献   

20.
The insulin-like growth factor (IGF) system is a key regulator of cell growth, survival and differentiation, and these functions are co-modulated by other growth factors including fibroblast growth factor-2 (FGF-2). To investigate IGF/FGF interactions in neuronal cells, we employed neuroblastoma cells (SK-N-MC). In serum free conditions proliferation of the SK-N-MC cells was promoted by IGF-I (25 ng/ml), but blunted by FGF-2 (50 ng/ml). IGF-I-induced proliferation was abolished in the presence of FGF-2 even when IGF-I was used at 100 ng/ml. In addition to our previously described FGF-2 induced proteolytic cleavage of IGFBP-2, we found that FGF-2 increased IGFBP-6 levels in conditioned medium (CM) without affecting IGFBP-6 mRNA abundance. Modulation of IGFBP-2 and -6 levels were not significant mechanisms involved in the blockade of IGF-I action since the potent IGF-I analogues [QAYL]IGF-I and des(1-3)IGF-I (minimal IGFBP affinity) were unable to overcome FGF-2 inhibition of cell proliferation. FGF-2 treated cells showed morphological differentiation expressing the TUJ1 neuronal marker while cells treated with IGF-I alone showed no morphological change. When IGF-I was combined with FGF-2, however, cell morphology was indistinguishable from that seen with FGF-2 alone. FGF-2 inhibited proliferation and enhanced differentiation was also associated with a 70% increase in cell death. Although IGF-I alone was potently anti-apoptotic (60% decreased), IGF-I was unable to prevent apoptosis when administrated in combination with FGF-2. Gene-array analysis confirmed FGF-2 activation of the intrinsic and extrinsic apoptotic pathways and blockade of IGF anti-apoptotic signaling. FGF-2, directly and indirectly, overcomes the proliferative and anti-apoptotic activity of IGF-I by complex mechanisms, including enhancement of differentiation and apoptotic pathways, and inhibition of IGF-I induced anti-apoptotic signalling. Modulation of IGF binding protein abundance by FGF-2 does not play a significant role in inhibition of IGF-I induced mitogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号