首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification and quantification of multiple proteins from complex mixtures is a central theme in post-genomic biology. Despite recent progress in high-throughput proteomics, proteomic analysis of post-translationally modified (PTM) proteins remains particularly challenging. This mini-review introduces the emerging field of chemical proteomics and reviews recent advances in chemical proteomic technology that are offering striking new insights into the functional biology of post-translational modification.  相似文献   

2.
Mass spectrometry offers a high-throughput approach to quantifying the proteome associated with a biological sample and hence has become the primary approach of proteomic analyses. Computation is tightly coupled to this advanced technological platform as a required component of not only peptide and protein identification, but quantification and functional inference, such as protein modifications and interactions. Proteomics faces several key computational challenges such as identification of proteins and peptides from tandem mass spectra as well as their quantitation. In addition, the application of proteomics to systems biology requires understanding the functional proteome, including how the dynamics of the cell change in response to protein modifications and complex interactions between biomolecules. This review presents an overview of recently developed methods and their impact on these core computational challenges currently facing proteomics.  相似文献   

3.
4.
Electron capture dissociation (ECD) offers many benefits for the analysis of peptides and proteins, and consequently shows great potential for the field of proteomics. Recent developments have reduced the time scale required for ECD to milliseconds resulting in the technique's compatibility with on-line separation techniques, e.g., HPLC. Here, we demonstrate incorporation of ECD into a high-throughput data-dependent LC-MS/MS approach for the analysis of proteomic samples. The approach is applied to analysis of the protein Fc-ROR2 isolated from chondrocytes and is the first example of LC-ECD-MS/MS of such a sample. Protein sequence coverage was 29%. Within that coverage, fifteen peptides were isolated and subjected to ECD. In most cases, the sequence tag generated by ECD was over 70% (in terms of the number of peptide backbone cleavages). The ECD data were searched against the nonredundant human NCBI database using the SEQUEST algorithm. Protein ROR2 was assigned, as was IgG (Fc domain). The results demonstrate the suitability of ECD as an integral technique in high-throughput proteomic strategies.  相似文献   

5.
The human intestinal tract is colonized by microbial communities that show a subject-specific composition and a high-level temporal stability in healthy adults. To determine whether this is reflected at the functional level, we compared the faecal metaproteomes of healthy subjects over time using a novel high-throughput approach based on denaturing polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectrometry. The developed robust metaproteomics workflow and identification pipeline was used to study the composition and temporal stability of the intestinal metaproteome using faecal samples collected from 3 healthy subjects over a period of six to twelve months. The same samples were also subjected to DNA extraction and analysed for their microbial composition and diversity using the Human Intestinal Tract Chip, a validated phylogenetic microarray. Using metagenome and single genome sequence data out of the thousands of mass spectra generated per sample, approximately 1,000 peptides per sample were identified. Our results indicate that the faecal metaproteome is subject-specific and stable during a one-year period. A stable common core of approximately 1,000 proteins could be recognized in each of the subjects, indicating a common functional core that is mainly involved in carbohydrate transport and degradation. Additionally, a variety of surface proteins could be identified, including potential microbes-host interacting components such as flagellins and pili. Altogether, we observed a highly comparable subject-specific clustering of the metaproteomic and phylogenetic profiles, indicating that the distinct microbial activity is reflected by the individual composition.  相似文献   

6.
7.
The equine genome sequence enables the use of high-throughput genomic technologies in equine research, but accurate identification of expressed gene products and interpreting their biological relevance require additional structural and functional genome annotation. Here, we employ the equine genome sequence to identify predicted and known proteins using proteomics and model these proteins into biological pathways, identifying 582 proteins in normal cell-free equine bronchoalveolar lavage fluid (BALF). We improved structural and functional annotation by directly confirming the in vivo expression of 558 (96%) proteins, which were computationally predicted previously, and adding Gene Ontology (GO) annotations for 174 proteins, 108 of which lacked functional annotation. Bronchoalveolar lavage is commonly used to investigate equine respiratory disease, leading us to model the associated proteome and its biological functions. Modelling of protein functions using Ingenuity Pathway Analysis identified carbohydrate metabolism, cell-to-cell signalling, cellular function, inflammatory response, organ morphology, lipid metabolism and cellular movement as key biological processes in normal equine BALF. Comparative modelling of protein functions in normal cell-free bronchoalveolar lavage proteomes from horse, human, and mouse, performed by grouping GO terms sharing common ancestor terms, confirms conservation of functions across species. Ninety-one of 92 human GO categories and 105 of 109 mouse GO categories were conserved in the horse. Our approach confirms the utility of the equine genome sequence to characterize protein networks without antibodies or mRNA quantification, highlights the need for continued structural and functional annotation of the equine genome and provides a framework for equine researchers to aid in the annotation effort.  相似文献   

8.
Proteomics is now entering into the field of biomedicine with declared hopes for the identification of new pathological markers and therapeutic targets. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of low-abundant proteins. However, the major limitation of proteomic investigations remains the complexity of biological structures and physiological processes, rendering the path of exploration of related pathologies paved with various difficulties and pitfalls. The case of breast cancer illustrates the major challenge facing modern proteomics and more generally post-genomics: to tackle the complexity of life.  相似文献   

9.
Karr TL 《Heredity》2008,100(2):200-206
Proteomics is a relatively new scientific discipline that merges protein biochemistry, genome biology and bioinformatics to determine the spatial and temporal expression of proteins in cells, tissues and whole organisms. There has been very little application of proteomics to the fields of behavioral genetics, evolution, ecology and population dynamics, and has only recently been effectively applied to the closely allied fields of molecular evolution and genetics. However, there exists considerable potential for proteomics to impact in areas related to functional ecology; this review will introduce the general concepts and methodologies that define the field of proteomics and compare and contrast the advantages and disadvantages with other methods. Examples of how proteomics can aid, complement and indeed extend the study of functional ecology will be discussed including the main tool of ecological studies, population genetics with an emphasis on metapopulation structure analysis. Because proteomic analyses provide a direct measure of gene expression, it obviates some of the limitations associated with other genomic approaches, such as microarray and EST analyses. Likewise, in conjunction with associated bioinformatics and molecular evolutionary tools, proteomics can provide the foundation of a systems-level integration approach that can enhance ecological studies. It can be envisioned that proteomics will provide important new information on issues specific to metapopulation biology and adaptive processes in nature. A specific example of the application of proteomics to sperm ageing is provided to illustrate the potential utility of the approach.  相似文献   

10.
Recent proteomic efforts have created an extensive inventory of the human nucleolar proteome. However, approximately 30% of the identified proteins lack functional annotation. We present an approach of assigning function to uncharacterized nucleolar proteins by data integration coupled to a machine-learning method. By assembling protein complexes, we present a first draft of the human ribosome biogenesis pathway encompassing 74 proteins and hereby assign function to 49 previously uncharacterized proteins. Moreover, the functional diversity of the nucleolus is underlined by the identification of a number of protein complexes with functions beyond ribosome biogenesis. Finally, we were able to obtain experimental evidence of nucleolar localization of 11 proteins, which were predicted by our platform to be associates of nucleolar complexes. We believe other biological organelles or systems could be "wired" in a similar fashion, integrating different types of data with high-throughput proteomics, followed by a detailed biological analysis and experimental validation.  相似文献   

11.
Proteomics based on tandem mass spectrometry is a powerful tool for identifying novel biomarkers and drug targets. Previously, a major bottleneck in high-throughput proteomics has been that the computational techniques needed to reliably identify proteins from proteomic data lagged behind the ability to collect the immense quantity of data generated. This is no longer the case, as fully automated pipelines for peptide and protein identification exist, and these are publicly and privately accessible. Such pipelines can automatically and rapidly generate high-confidence protein identifications from large datasets in a searchable format covering multiple experimental runs. However, the main challenge for the community now is to use these resources as they are, by taking full advantage of the pooling of information, so that the next barrier in our understanding of biology may be broken. There are currently two pipelines in the public domain that provide such potential: PeptideAtlas and the Genome Annotating Proteomic Pipeline. This review will introduce their features in the context of high-throughput proteomics, and provide indicative results as to their usefulness and usability through a side-by-side comparison of results obtained when processing a set of human plasma samples.  相似文献   

12.
Proteomics based on tandem mass spectrometry is a powerful tool for identifying novel biomarkers and drug targets. Previously, a major bottleneck in high-throughput proteomics has been that the computational techniques needed to reliably identify proteins from proteomic data lagged behind the ability to collect the immense quantity of data generated. This is no longer the case, as fully automated pipelines for peptide and protein identification exist, and these are publicly and privately accessible. Such pipelines can automatically and rapidly generate high-confidence protein identifications from large datasets in a searchable format covering multiple experimental runs. However, the main challenge for the community now is to use these resources as they are, by taking full advantage of the pooling of information, so that the next barrier in our understanding of biology may be broken. There are currently two pipelines in the public domain that provide such potential: PeptideAtlas and the Genome Annotating Proteomic Pipeline. This review will introduce their features in the context of high-throughput proteomics, and provide indicative results as to their usefulness and usability through a side-by-side comparison of results obtained when processing a set of human plasma samples.  相似文献   

13.
The advent of high-throughput proteomic technologies for global detection and quantitation of proteins creates new opportunities and challenges for those seeking to gain greater understanding of the cellular machinery. Here, recent advances in high-resolution capillary liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry are reviewed along with its potential application to high-throughput proteomics. These technological advances combined with quantitative stable isotope labeling methodologies provide powerful tools for expanding our understanding of biology at the system level.  相似文献   

14.
The advent of high-throughput proteomic technologies for global detection and quantitation of proteins creates new opportunities and challenges for those seeking to gain greater understanding of the cellular machinery. Here, recent advances in high-resolution capillary liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry are reviewed along with its potential application to high-throughput proteomics. These technological advances combined with quantitative stable isotope labeling methodologies provide powerful tools for expanding our understanding of biology at the system level.  相似文献   

15.
Functional proteomics; current achievements   总被引:13,自引:0,他引:13  
This review presents the current improvements in functional proteomic strategies and their research applications. Proteomics has emerged as an indispensable methodology for large-scale and high-throughput protein analyses in the post-genome era. Functional proteomics, the comprehensive analysis of proteins with special attention to their functions, is a powerful and useful approach for investigations in the life and medical sciences. Various methods have been developed for this purpose, expanding the field further. This important technology will not only provide a wealth of information on proteins, but also contribute synergistically to the understanding of life with other systematic technologies such as gene chips.  相似文献   

16.
17.
Network Genomics studies genomics and proteomics foundations of cellular networks in biological systems. It complements systems biology in providing information on elements, their interaction and their functional interplay in cellular networks. The relationship between genomic and proteomic high-throughput technologies and computational methods are described, as well as several examples of specific network genomic application are presented.  相似文献   

18.
Astragaloside IV (AGS-IV) is a main active ingredient of Astragalus membranaceus Bunge, a medicinal herb prescribed as an immunostimulant, hepatoprotective, antiperspirant, a diuretic or a tonic as documented in Chinese Materia Medica. In the present study, we employed a high-throughput comparative proteomic approach based on 2D-nano-LC-MS/MS to investigate the possible mechanism of action involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. Differential proteins were identified, among which 13 proteins survived the stringent filter criteria and were further included for functional discussion. Two proteins (vimentin and Gap43) were randomly selected, and their expression levels were further confirmed by western blots analysis. The results matched well with those of proteomics. Furthermore, network analysis of protein-protein interactions (PPI) and pathways enrichment with AGS-IV associated proteins were carried out to illustrate its underlying molecular mechanism. Proteins associated with signal transduction, immune system, signaling molecules and interaction, and energy metabolism play important roles in neuroprotective effect of AGS-IV and Raf-MEK-ERK pathway was involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. This study demonstrates that comparative proteomics based on shotgun approach is a valuable tool for molecular mechanism studies, since it allows the simultaneously evaluate the global proteins alterations.  相似文献   

19.
Advances in plant proteomics   总被引:1,自引:0,他引:1  
Chen S  Harmon AC 《Proteomics》2006,6(20):5504-5516
  相似文献   

20.
The application of proteomic techniques to neuroscientific research provides an opportunity for a greater understanding of nervous system structure and function. As increasing amounts of neuroproteomic data become available, it is necessary to formulate methods to integrate these data in a meaningful way to obtain a more comprehensive picture of neuronal subcompartments. Furthermore, computational methods can be used to make biologically relevant predictions from large proteomic data sets. Here, we applied an integrated proteomics and systems biology approach to characterize the presynaptic (PRE) nerve terminal. For this, we carried out proteomic analyses of presynaptically enriched fractions, and generated a PRE literature‐based protein–protein interaction network. We combined these with other proteomic analyses to generate a core list of 117 PRE proteins, and used graph theory‐inspired algorithms to predict 92 additional components and a PRE complex containing 17 proteins. Some of these predictions were validated experimentally, indicating that the computational analyses can identify novel proteins and complexes in a subcellular compartment. We conclude that the combination of techniques (proteomics, data integration, and computational analyses) used in this study are useful in obtaining a comprehensive understanding of functional components, especially low‐abundance entities and/or interactions in the PRE nerve terminal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号