首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frequency-dependent natural selection models are examined where the viability of an individual in the diploid population is determined by its phenotype and the frequency of other phenotypes present. The equilibria of the multi-phenotypic system are characterized through local mean fitness functions. It is shown that stability can best be analyzed by combining the principles of maximization of population mean fitness with the evolutionary stability conditions that apply when phenotypic fitnesses relative to the genetic constraints are equal.  相似文献   

2.
The joint evolution of gene frequency p, and population size N is studied. It is shown that when the genotypic fitnesses are logistic functions of the population size, sets of initial states exist which lead to bizarre behavior. Even though equilibria may be locally stable, these sets of initial conditions eventually produce negative fitnesses. Alternative models are discussed as are some general properties of the mean fitness.  相似文献   

3.
Evolutionary dynamics in frequency-dependent two-phenotype models   总被引:4,自引:1,他引:3  
General frequency-dependent selection models based on two phenotypic classes are analyzed with underlying one-locus multiallele phenotypic determination systems in diploid populations. It is proved that the mean phenotypic fitnesses tend to equality over discrete generations and genetic mutations if a phenotypic polymorphism is to be maintained. The exact conditions are examined. The present results are valid for a wide class of models whenever random groupings or assortative patterns based on phenotype and affecting fitness, linearly or not, are independent of sex, mating preferences, or kinship. They can also be applied to two-sex haploid models.  相似文献   

4.
 The paper investigates the discrete frequency dynamics of two phenotype diploid models where genotypic fitness is an exponential function of the expected payoff in the matrix game. Phenotypic and genotypic equilibria are defined and their stability compared to frequency-dependent selection models based on linear fitness when there are two possible phenotypes in the population. In particular, it is shown that stable equilibria of both types can exist in the same nonlinear model. It is also shown that period-doubling bifurcations emerge when there is sufficient selection in favor of interactions between different phenotypes. Received: 22 October 1998  相似文献   

5.
The model of viability selection based on a one-locus, two-allele diploid population is considered. Frequency dependence is introduced through the fitnesses of three phenotypes (strategies) exhibited by the population. Both discrete and continuous dynamics are analyzed and contrasted with the classical results of frequency-independent selection and with the more recent results of frequency-dependent selection based on two-phenotype multi-allele systems. Cycling and chaotic behaviour are shown to be easily obtained in the discrete model. Intuitive biological conditions for stability are shown to fail as well as at general equilibria of the continuous model.  相似文献   

6.
Trotter MV  Spencer HG 《Genetics》2008,180(3):1547-1557
Frequency-dependent selection remains the most commonly invoked heuristic explanation for the maintenance of genetic variation. For polymorphism to exist, new alleles must be both generated and maintained in the population. Here we use a construction approach to model frequency-dependent selection with mutation under the pairwise interaction model. The pairwise interaction model is a general model of frequency-dependent selection at the genotypic level. We find that frequency-dependent selection is able to generate a large number of alleles at a single locus. The construction process generates multiallelic polymorphisms with a wide range of allele-frequency distributions and genotypic fitness relationships. Levels of polymorphism and mean fitness are uncoupled, so constructed polymorphisms remain permanently invasible to new mutants; thus the model never settles down to an equilibrium state. Analysis of constructed fitness sets reveals signatures of heterozygote advantage and positive frequency dependence.  相似文献   

7.
A detailed analytic and numerical study is made of the potential for permanent genetic variation in frequency-dependent models based on pairwise interactions among genotypes at a single diallelic locus. The full equilibrium structure and qualitative gene-frequency dynamics are derived analytically for a symmetric model, in which pairwise fitnesses are chiefly determined by the genetic similarity of the individuals involved. This is supplemented by an extensive numerical investigation of the general model, the symmetric model, and nine other special cases. Together the results show that there is a high potential for permanent genetic diversity in the pairwise interaction model, and provide insight into the extent to which various forms of genotypic interactions enhance or reduce this potential. Technically, although two stable polymorphic equilibria are possible, the increased likelihood of maintaining both alleles, and the poor performance of protected polymorphism conditions as a measure of this likelihood, are primarily due to a greater variety and frequency of equilibrium patterns with one stable polymorphic equilibrium, in conjunction with a disproportionately large domain of attraction for stable internal equilibria.  相似文献   

8.
Selection in which fitnesses vary with the changing genetic composition of the population may facilitate the maintenance of genetic diversity in a wide range of organisms. Here, a detailed theoretical investigation is made of a frequency-dependent selection model, in which fitnesses are based on pairwise interactions between the two phenotypes at a diploid, diallelic, autosomal locus with complete dominance. The allele frequency dynamics are fully delimited analytically, along with all possible shapes of the mean fitness function in terms of where it increases or decreases as a function of the current allele frequency in the population. These results in turn allow possibly the first complete characterization of the dynamical behavior by the mean fitness through time under frequency-dependent selection. Here the mean fitness (i) monotonically increases, (ii) monotonically decreases, (iii) initially increases and then decreases, or (iv) initially decreases and then increases as equilibrium is approached. We analytically derive the exact initial and fitness conditions that produce each dynamic and how often each arises. Computer simulations with random initial conditions and fitnesses reveal that the potential decline in mean fitness is not negligible; on average a net decrease occurs 20% of the time and reduces the mean fitness by >17%.  相似文献   

9.
A genetic model is investigated in which two recombining loci determine the genotypic value of a quantitative trait additively. Two opposing evolutionary forces are assumed to act: stabilizing selection on the trait, which favors genotypes with an intermediate phenotype, and intraspecific competition mediated by that trait, which favors genotypes whose effect on the trait deviates most from that of the prevailing genotypes. Accordingly, fitnesses of genotypes have a frequency-independent component describing stabilizing selection and a frequency- and density-dependent component modeling competition. We study how the underlying genetics, in particular recombination rate and relative magnitude of allelic effects, interact with the conflicting selective forces and derive the resulting, surprisingly complex equilibrium patterns. We also investigate the conditions under which disruptive selection on the phenotypes can be observed and examine how much genetic variation can be maintained in such a model. We discovered a number of unexpected phenomena. For instance, we found that with little recombination the degree of stably maintained polymorphism and the equilibrium genetic variance can decrease as the strength of competition increases relative to the strength of stabilizing selection. In addition, we found that mean fitness at the stable equilibria is usually much lower than the maximum possible mean fitness and often even lower than the fitness at other, unstable equilibria. Thus, the evolutionary dynamics in this system are almost always nonadaptive.  相似文献   

10.
A diploid model is introduced and analyzed in which intraspecific competition is incorporated within the context of density-regulated selection. It is assumed that each genotype has a unique carrying capacity corresponding to the equilibrium population size when only that type is present. Each genotypic fitness at a single diallelic autosomal locus is a decreasing function of a distinctive effective population size perceived as a result of intraspecific competition. The resulting fitnesses are both density and frequency dependent with selective advantage determined by a balance between genotypic carrying capacity and sensitivity to intraspecific competition. A major finding is that intergenotypic interactions may allow genetic variation to be more easily maintained than in the corresponding model of purely density-dependent selection. In addition, numerical study confirms the possible existence of multiple interior equilibria and that neither overdominance in fitness nor carrying capacity is necessary for stability. The magnitude of the equilibrium population size and optimization principles are also discussed.  相似文献   

11.
Frequency-dependent disruptive selection is widely recognized as an important source of genetic variation. Its evolutionary consequences have been extensively studied using phenotypic evolutionary models, based on quantitative genetics, game theory, or adaptive dynamics. However, the genetic assumptions underlying these approaches are highly idealized and, even worse, predict different consequences of frequency-dependent disruptive selection. Population genetic models, by contrast, enable genotypic evolutionary models, but traditionally assume constant fitness values. Only a minority of these models thus addresses frequency-dependent selection, and only a few of these do so in a multilocus context. An inherent limitation of these remaining studies is that they only investigate the short-term maintenance of genetic variation. Consequently, the long-term evolution of multilocus characters under frequency-dependent disruptive selection remains poorly understood. We aim to bridge this gap between phenotypic and genotypic models by studying a multilocus version of Levene's soft-selection model. Individual-based simulations and deterministic approximations based on adaptive dynamics theory provide insights into the underlying evolutionary dynamics. Our analysis uncovers a general pattern of polymorphism formation and collapse, likely to apply to a wide variety of genetic systems: after convergence to a fitness minimum and the subsequent establishment of genetic polymorphism at multiple loci, genetic variation becomes increasingly concentrated on a few loci, until eventually only a single polymorphic locus remains. This evolutionary process combines features observed in quantitative genetics and adaptive dynamics models, and it can be explained as a consequence of changes in the selection regime that are inherent to frequency-dependent disruptive selection. Our findings demonstrate that the potential of frequency-dependent disruptive selection to maintain polygenic variation is considerably smaller than previously expected.  相似文献   

12.
A general model is analyzed in which arbitrarily frequency-dependent selection acts on one sex of a diploid population with several alleles at one locus, as a result of viability or mating-success differences. The existence of boundary and polymorphic equilibria is examined, and conditions for local stability, internal and external, are obtained. The status of Hardy-Weinberg approximations in studying stability and approach to equilibria is also considered. The general principles are then applied to two specific models: one where genotypes fall into two phenotypic classes; and one with a hierarchy of dominance where viability and sexual selection are opposed. In the latter case it is found that, of all the equilibria present, there is one and only one which could possibly be stable: the existence of a unique globally stable equilibrium might then be inferred.  相似文献   

13.
Many traits are phenotypically dimorphic but determined by the action of many loci, the phenotype being a result of a threshold of sensitivity. Quantitative genetic analysis has shown that generally there is considerable additive genetic variation for the trait, the average heritability being 0.52. In numerous cases threshold traits have been shown, or are assumed, to be under frequency-dependent selection; examples include satellite-territorial behaviour, sex-determination, wing dimorphism and trophic dimorphism. In this paper I investigate the potential for frequency-dependent selection to maintain both phenotypic and additive genetic variation in threshold traits. The qualitative results are robust to the particular form of the frequency-dependent selection function. The equilibrium proportion is more or less independent of population size but the heritability increases with population size, typically approaching its maximal value at a population size of 5000, when the mutation rate is 10?4. A tenfold decrease in the mutation rate requires an approximate doubling of the population size before an asymptotic value is approached. Thus frequency-dependent selection can account for both the existence of two morphs in a population and the observed levels of heritability. It is also shown, both via simulation and theory, that the quantitative genetic model and a simple phenotypic analysis predict the same equilibrium morph proportion.  相似文献   

14.
Inconsistencies exist in the standard expansions used to approximate selection coefficients for alleles at a locus underlying a quantitative character. Allelic (marginal) fitnesses obtained from expansions based on average excesses differ from allelic fitnesses obtained from expansions based on genotypic values. Similarly, the mean population fitness based on summing over either allelic or genotypic fitnesses usually differs mean population fitness obtained by averaging over the unrestricted phenotypic distribution. A consistent value of requires no variation in genotypic values. If, as suggested by Nagylaki (1984), expansions are corrected for the decrease in phenotypic variance resulting from conditioning on the presence of a particular allele or genotype, inconsistencies still exist. Unless W(z)[V z p(z) + zp(z) + p(z)] dz = 0, where p(z) is the phenotypic probability density function, V z the phenotypic variance, W( z ) the fitness of phenotypic value z, the primes denote differentiation with respect to z, allelic fitnesses based on average effects differ from allelic fitnesses based on genotypic values. This condition must also be satisfied in order for either expansion to give a consistent , as first shown by Nagylaki. For arbitrary W(z), this is satisfied if and only if phenotypes are normally distributed.  相似文献   

15.
We develop a mathematical model to explore the evolution of habitat selection and physiological adaptation in a heterogeneous environment. The model assumes the following conditions: 1) a panmictic population of infinite size; 2) prereproductive individuals mobile enough to move between patches; 3) alleles at one locus code for absence or presence of adaptation to detrimental patches; 4) alleles at a second locus code for absence or presence of behavior(s) that cause avoidance of the detrimental patches; 5) additive effects of alleles controlling physiology and behavior; 6) frequency-independent fitness. Results of the model indicate that nontrivial, polymorphic equilibria do not exist. The pattern of genotypic fitnesses and the initial allelic frequencies can influence whether the population adapts by physiological or behavioral mechanisms, or by both. Linkage between the two loci can alter the outcome of evolution, given specified genotypic fitness values and initial allelic frequencies.  相似文献   

16.
A population in which there is stabilizing selection acting on quantitative traits toward an intermediate optimum becomes monomorphic in the absence of mutation. Further, genotypes that show least environmental variation are also favored, such that selection is likely to reduce both genetic and environmental components of phenotypic variance. In contrast, intraspecific competition for resources is more severe between phenotypically similar individuals, such that those deviating from prevailing phenotypes have a selective advantage. It has been shown previously that polymorphism and phenotypic variance can be maintained if competition between individuals is "effectively" stronger than stabilizing selection. Environmental variance is generally observed in quantitative traits, so mechanisms to explain its maintenance are sought, but the impact of competition on its magnitude has not previously been studied. Here we assume that a quantitative trait is subject to selection for an optimal value and to selection due to competition. Further, we assume that both the mean and variance of the phenotypic value depend on genotype, such that both may be affected by selection. Theoretical analysis and numerical simulations reveal that environmental variance can be maintained only when the genetic variance (in mean phenotypic value) is constrained to a very low level. Environmental variance will be replaced entirely by genotypic variance if a range of genotypes that vary widely in mean phenotype are present or become so by mutation. The distribution of mean phenotypic values is discrete when competition is strong relative to stabilizing selection; but more genotypes segregate and the distribution can approach continuity as competition becomes extremely strong. If the magnitude of the environmental variance is not under genetic control, there is a complementary relationship between the levels of environmental and genetic variance such that the level of phenotypic variance is little affected.  相似文献   

17.
Conventional population genetics uses as primitive variables the frequencies and fitnesses of individual genes. This paper develops a formalism whose primitive variables are the frequencies and fitnesses of genotypes and environmental histories in a population. From the mathematical relation that describes genetic variation and selection of genotypes and environmental histories we derive a sequence of more specialized equations, including those of the conventional theory. Some familiar formulas of the conventional theory (including Fisher's fundamental theorem, the formula relating the rate of change of a metric character to selection pressure, and the definitions of broad and narrow heritability) are shown to be special cases of simpler and more general formulas. It is shown that the “genotypic value” of a trait, together with its heritability, may depend strongly on genotype-environment correlations.A generalization of Fisher's fundamental theorem shows that the rate of evolution of a trait depends on the skewness of its fitness distribution. An equation relating the second derivative of the mean fitness to the skewness is derived.Finally, the formalism is applied in a preliminary way to a recent theory of genetic variation (Layzer,1978a), according to which the genetic variability of a trait is selected along with the trait itself. It is shown that there is positive feedback between the two kinds of selection.  相似文献   

18.
Quantitative traits show abundant genetic, environmental, and phenotypic variance, yet if they are subject to stabilizing selection for an optimal phenotype, both the genetic and environmental components are expected to decline. The mechanisms that determine the level and maintenance of phenotypic variance are not yet fully understood. While there has been extensive study of mechanisms maintaining genetic variability, it has generally been assumed that environmental variance is not dependent on the genotype and therefore not subject to change. However, accumulating data suggest that the environmental variance is under some degree of genetic control. In this study, it is assumed accordingly that both the genotypic value (i.e., mean phenotypic value) and the variance of phenotypic value given genotypic value depend on the genotype. Two models are investigated as potentially able to explain the protected maintenance of environmental variance of quantitative traits under stabilizing selection. One is varying environment among generations, such that both the optimal phenotype and the strength of the stabilizing selection vary between generations. The other is the cost of homogeneity, which is based on an assumption of an engineering cost of minimizing variability in development. It is shown that a small homogeneity cost is enough to maintain the observed levels of environmental variance, whereas a large amount of temporal variation in the optimal phenotype and the strength of selection would be necessary.  相似文献   

19.
A diallelic two-locus model is investigated in which the loci determine the genotypic value of a quantitative trait additively. Fitness has two components: stabilizing selection on the trait and a frequency-dependent component, as induced, for instance, if the ability to utilize different food resources depends on this trait. Since intraspecific competition induces disruptive selection, this model leads to a conflict of selective forces. We study how the underlying genetics (recombination rate and allelic effects) interacts with the selective forces, and explore the resulting equilibrium structure. For the special case of equal effects, global stability results are proved. Unless the locus effects are sufficiently different, the genetic variance maintained at equilibrium displays a threshold-like dependence on the strength of competition. For loci with equal effects, the equilibrium fitnesses of genotypic values exhibit disruptive selection if and only if competition is strong enough to maintain a stable two-locus polymorphism. For unequal effects, disruptive selection can be observed for weaker competition and in the absence of a stable polymorphism.  相似文献   

20.
The evolution of alternative mating strategies in variable environments   总被引:6,自引:0,他引:6  
Summary We assessed the influence of phenotypic plasticity in age at maturity on the maintenance of alternative mating strategies in male Atlantic salmon,Salmo salar. We calculated the fitness,r, associated with the parr and the anadromous strategies, using age-specific survival data from the field and strategy-specific fertilization data from the laboratory. The fitness of each strategy depended largely on mate competition (numbers of parr per female, i.e. parr frequency) and on age at maturity. Fitness declined with increasing numbers of parr per female with equilibrium frequencies (at which the fitnesses of each strategy are equal) being within the range observed in the wild. Equilibrium parr frequencies declined with decreasing growth rate and increasing age at maturity. Within populations, the existence of multiple age-specific sets of fitness functions suggests that the fitnesses of alternative strategies are best represented as multidimensional surfaces. The points of intersection of these surfaces, whose boundaries encompass natural variation in age at maturity and mate competition, define an evolutionarily stable continuum (ESC) of strategy frequencies along which the fitnesses associated with each strategy are equal. We propose a simple model that incorporates polygenic thresholds of a largely environmentally-controlled trait (age at maturity) to provide a mechanism by which an ESC can be maintained within a population. An indirect test provides support for the prediction that growth-rate thresholds for parr maturation exist and are maintained by stabilizing selection. Evolutionarily stable continua, maintained by negative frequency-dependent selection on threshold traits, provide a theoretical basis for understanding how alternative life histories can evolve in variable environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号