首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many patients have sensitivities to multiple species of storage and house dust mites. It is not clear if this is because patients have multiple sensitivities to species-specific mite allergens or if these mites share many cross-reacting allergens. Our objective was to further define the cross-allergenicity between several species of storage and house dust mites using crossed-immunoelectrophoresis (CIE), crossed-radioimmunoelectrophoresis (CRIE), immunoblotting, and ELISA. CIE and CRIE reactions revealed that storage mites shared two cross-antigenic molecules and one of these bound IgE in a serum pool from mite allergic patients. Antibody in anti-sera built to each species of mite recognized many SDS–PAGE resolved proteins of other mite species and this suggested the potential for other cross-reactive allergens. Among patient sera, IgE bound to many different proteins but few had IgE that bound to a protein with common molecular weights across the mite species and this suggested mostly species-specific allergens. Antiserum built to each mite species precipitated one protein in shrimp extracts that bound anti-Der p 10 (tropomyosin) and IgE in the serum pool. Anti-Der p 10 showed strong binding to shrimp tropomyosin but very little to any of the mite proteins. ELISA showed the mite extracts contained very little tropomyosin. The storage and dust mites investigated contain mostly species-specific allergens and very small amounts of the pan-allergen tropomyosin compared to shrimp and snail.  相似文献   

2.
Parasites and pathogens that begin as symbionts, i.e., organisms living together in the same habitat, are some of the most promising drivers of species evolution. Because insects are highly diverse and important as ecosystem service agents and because mites can exert large effects on insect populations (capable of killing at least juveniles), insect–mite interactions have been analyzed from various perspectives, including evolutionary, ecological and pest‐management perspectives. Here, I review and examine insect–mite symbiotic associations to develop hypotheses concerning the factors that maintain and develop their relationships. Previous studies have hypothesized that insect sociality and mite richness and specificity affect insect–mite interactions. I found that both solitary and social insects, including parasocial and subsocial insects, harbor numbers of symbionts including species‐specific ones but few dangerous mite symbionts in their nests or habitats under natural conditions. Nest size or the amount of food resources in a nest may affect mite richness. On the basis of this review, I hypothesize that the insect characteristics relevant for mite symbiotic hosting are sharing the same habitat with mites and living in a nutrient‐rich habitat. I also suggest that many cases of species‐specific symbiosis began with phoresy. To test these hypotheses, phylogenetic information on mites living with insect groups and quantitative analysis to characterize each insect–mite relationship are necessary.  相似文献   

3.
Diseases of Mites   总被引:6,自引:0,他引:6  
An overview is given of studies on diseases of mites. Knowledge of diseases of mites is still fragmentary but in recent years more attention has been paid to acaropathogens, often because of the economic importance of many mite species. Most research on mite pathogens concerns studies on fungal pathogens of eriophyoids and spider mites especially. These fungi often play an important role in the regulation of natural mite populations and are sometimes able to decimate populations of phytophagous mites. Studies are being conducted to develop some of these fungi as commercial acaricides.Virus diseases are known in only a few mites, namely, the citrus red mite and the European red mite. In both cases, non-occluded viruses play an important role in the regulation of mite populations in citrus and peach orchards, respectively, but application of these viruses as biological control agents does not seem feasible. A putative iridovirus has been observed in association with Varroa mites in moribund honeybee colonies. The virus is probably also pathogenic for honeybees and may be transmitted to them through this parasitic mite.Few bacteria have been reported as pathogens of the Acari but in recent years research has been concentrated on intracellular organisms such as Wolbachia that may cause distorted sex ratios in offspring and incompatibility between populations. The role of these organisms in natural populations of spider mites is in particular discussed. The effect of Bacillus thuringiensis on mites is also treated in this review, although its mode of action in arthropods is mainly due to the presence of toxins and it is, therefore, not considered to be a pathogen in the true sense of the word.Microsporidia have been observed in several mite species especially in oribatid mites, although other groups of mites may also be affected. In recent years, Microsporidia infections in Phytoseiidae have received considerable attention, as they are often found in mass rearings of beneficial arthropods. They affect the efficacy of these predators as biological control agent of insect and mite pests. Microsporidia do not seem to have potential for biological control of mites.  相似文献   

4.
Feather mites are highly specialized plumage and skin ectoparasites that are variously adapted for inhabiting certain microhabitats on a bird's body. Different feather mite taxa of higher (familial) rank adapted to the same microhabitats display similar main morphological adaptations even if they are rather distantly related to one another. Hypotheses on the evolution of general adaptations in morphology of feather mites during colonization and establishment in different microhabitats are presented. According to recent data, feather mites are a paraphyletic group consisting of three superfamilies: Analgoidea, Pterolichoidea and Freyanoidea. We present our view on the general feather mite phylogeny course at the familial rank for the Analgoidea by means of cladistic analysis. Co-speciation of parasites with their hosts is postulated as a main factor driving feather mite evolution. Examples are given of non-coevolutionary events, for example recolonization from one host species onto another, extinction and multiple speciation.  相似文献   

5.
Digestive proteases of the phytophagous mite Tetranychus urticae have been characterised by comparing their activity in body and faecal extracts. Aspartyl, cathepsin B- and L-like and legumain activities were detected in both mite bodies and faeces, with a specific activity of aspartyl and cathepsin L-like proteases about 5- and 2-fold higher, respectively, in mite faeces than in bodies. In general, all these activities were maintained independently of the host plant where the mites were reared (bean, tomato or maize). Remarkably, this is the first report in a phytophagous mite of legumain-like activity, which was characterised for its ability to hydrolyse the specific substrate Z-VAN-AMC, its activation by DTT and inhibition by IAA but not by E-64. Gel free nanoLC–nanoESI-QTOF MS/MS proteomic analysis of mite faeces resulted in the identification of four cathepsins L and one aspartyl protease (from a total of the 29 cathepsins L, 27 cathepsins B, 19 legumains and two aspartyl protease genes identified the genome of this species). Gene expression analysis reveals that four cathepsins L and the aspartyl protease identified in the mite faeces, but also two cathepsins B and two legumains that were not detected in the faeces, were expressed at high levels in the spider mite feeding stages (larvae, nymphs and adults) relative to embryos. Taken together, these results indicate a digestive role for cysteine and aspartyl proteases in T. urticae. The expression of the cathepsins B and L, legumains and aspartyl protease genes analysed in our study increased in female adults after feeding on Arabidopsis plants over-expressing the HvCPI-6 cystatin, that specifically targets cathepsins B and L, or the CMe trypsin inhibitor that targets serine proteases. This unspecific response suggests that in addition to compensation for inhibitor-targeted enzymes, the increase in the expression of digestive proteases in T. urticae may act as a first barrier against ingested plant defensive proteins.  相似文献   

6.
Tomato plants have their leaves, petioles and stems covered with glandular trichomes that protect the plant against two-spotted spider mites and many other herbivorous arthropods, but also hinder searching by phytoseiid mites and other natural enemies of these herbivores. This trichome cover creates competitor-free and enemy-free space for the tomato russet mite (TRM) Aculops lycopersici (Acari: Eriophyidae), being so minute that it can seek refuge and feed inbetween the glandular trichomes on tomato cultivars currently used in practice. Indeed, several species of predatory mites tested for biological control of TRM have been reported to feed and reproduce when offered TRM as prey in laboratory experiments, yet in practice these predator species appeared to be unable to prevent TRM outbreaks. Using the phytoseiid mite, Amblydromalus limonicus, we found exactly the same, but also obtained evidence for successful establishment of a population of this predatory mite on whole plants that had been previously infested with TRM. This successful establishment may be explained by our observation that the defensive barrier of glandular plant trichomes is literally dropped some time after TRM infestation of the tomato plants: the glandular trichome heads first rapidly develop a brownish discoloration after which they dry out and fall over onto the plant surface. Wherever TRM triggered this response, predatory mites were able to successfully establish a population. Nevertheless, biological control was still unsuccessful because trichome deterioration in TRM-infested areas takes a couple of days to take effect and because it is not a systemic response in the plant, thereby enabling TRM to seek temporary refuge from predation in pest-free trichome-dense areas which continue to be formed while the plant grows. We formulate a hypothesis unifying these observations into one framework with an explicit set of assumptions and predictions to be tested in future experiments.  相似文献   

7.
1. Parasites can affect the communities of their hosts; and hosts, in turn, shape communities of parasites and other symbionts. This makes host–symbiont relationships a key but often overlooked aspect of community ecology. 2. Mites associated with bees have a range of lifestyles; however, little is known about mites associated with wild bees or about factors influencing the make‐up of bee‐associated mite communities. This study investigated how mite communities associated with bumble bees (Bombus spp.) are shaped by the Bombus community and geographic proximity. 3. Bees were collected from 15 sites in Ontario, Canada, and examined for mites. Mite abundance and species richness increased with local bee abundance. Several bee species also differed in mite abundance, species richness, prevalence, and diversity. Locally uncommon species tended to have more mites than other bees. Queen bees had the most mites, and males had more mites than workers. 4. Spatial proximity was not a predictor of mite community composition, despite a strong effect of proximity on bee community similarity. 5. On the 11 Bombus spp. examined, 33 mite species were found. Whereas nearly half of these mite species are obligate associates of bumble bees, none was restricted to particular Bombus species. 6. The best predictor of mite community composition was bee identity. Although many parasite communities show strong geographic patterns, the communities of primarily commensalistic bee‐mites in this study did not. These findings have implications for bumble bee conservation, given that pollen‐feeding commensals might become harmful at high densities or act as disease vectors.  相似文献   

8.
Eriophyoids have high potential as adventive mite species (AMS) because their small size make them difficult to detect, and can be easily distributed in world trade. Economic, social and environmental impact from adventive eriophyoid mites has been significant. Considerable attention has been given to adventive insect species while adventive mites have received little attention and little information is available for eriophyoids. This paper summarizes information on adventive eriophyoid mites, their impact, and the history of some important invasions. The status of adventive species of eriophyoids introduced as biological control agents of weeds is presented. A list of eriophyoid mites reported as invasive species worldwide is given. Pathways of concern and biosecurity actions to reduce the risk of eriophyoid mites are discussed. The need to raise public awareness of the risk and importance of these tiny organisms as AMS is emphasized. Scientific and technical challenges to deal with adventive eriophyoids are discussed.  相似文献   

9.
Recurring species interactions can cause species to adapt to each other. Specialization will increase the fitness of symbionts in the coevolved association but may reduce the flexibility of symbiont choice as it will often decrease fitness in interactions with other than the main symbiont species. We analyzed the fitness interactions between a complex of two cryptic mite species and their sympatric burying beetle hosts in a European population. Poecilochirus mites (Mesostigmata, Parasitidae) are phoretic on burying beetles and reproduce alongside beetles, while these care for their offspring at vertebrate carcasses. While Poecilochirus carabi is typically found on Nicrophorus vespilloides beetles, P. necrophori is associated with N. vespillo. It has long been known that the mites discriminate between the two beetle species, but the fitness consequences of this choice remained unknown. We experimentally associated both mite species with both beetle species and found that mite fitness suffered when mites reproduced alongside a nonpreferred host. In turn, there is evidence that one of the beetle species is better able to cope with the mite species they are typically associated with. The overall fitness effect of mites on beetles was negative in our laboratory experiments. The Poecilochirus mites studied here are thus specialized competitors or parasites of burying beetles.  相似文献   

10.
Feather mites (Arachnida: Acari: Astigmata) feed mainly on secretions of the uropygial gland of birds. Here, we use analyses corrected for phylogeny and body size to show that there is a positive correlation between the size of this gland and mite abundance in passerine birds at an interspecific level during the breeding season, suggesting that the gland mediates interactions between mites and birds. As predicted on the basis of hypothesized waterproofing and antibiotic functions of uropygial gland secretions, riparian/marsh bird species had larger glands and higher mite loads than birds living in less mesic terrestrial environments. An unexpected pattern was a steeper relationship between mite load and gland size in migratory birds than in residents. If moderate mite loads are beneficial to a host but high loads detrimental, this could create complex selection regimes in which gland size influences mite load and vice versa. Mites may exert selective pressures on gland size of their hosts that has resulted in smaller glands among migratory bird species, suggesting that smaller glands may have evolved in these birds to attenuate a possible detrimental effect of feather mites when present in large numbers.  相似文献   

11.
Bud mite, blister mite (Colomerus vitis Pagenstecher), and rust mite (Calepitrimerus vitis Nalepa) (Acari: Eriophyoidae) are recognized grapevine pests. Much of the biology and ecology of these pests is poorly understood. We used two types of molecular markers to gain further insight into the breeding biology and population structure of these mites, using individuals collected from sites around south‐eastern Australia. Patterns of genetic variation observed using PCR‐RFLP of ITS 1 (Internal Transcribed Spacer 1) confirmed the separate species status of the rust mite, and resolved the species status of bud and blister mites, revealing two closely related but distinct species. Microsatellite markers revealed extensive genetic differentiation between bud mite populations and blister mite populations even at micro‐geographical levels, suggesting low movement in these species. The findings indicate that separate control strategies are needed against bud and blister mites, and that localized control strategies are likely to be effective given their limited dispersal.  相似文献   

12.
ISMAEL GALVÁN  & JUAN J. SANZ 《Ibis》2006,148(4):687-697
Plumicolous feather mites are ectosymbiotic organisms that live on bird feathers. Despite their abundance and prevalence among birds, the ecology of the interaction between these organisms and their hosts is poorly known. As feather mites feed on oil that birds spread from their uropygial gland, it has been hypothesized, but never tested, that the number of feather mites increases with the size of the uropygial gland of their hosts. In this study the number of feather mites is considered with respect to uropygial gland size in a breeding population of Great Tits Parus major in order to test this hypothesis. As predicted, the number of feather mites correlated positively with the uropygial gland size of their hosts, showing for the first time that uropygial gland size can explain the variance in feather mite load among conspecifics. Previous studies relating feather mite load to plumage colour have suggested that feather mites may be parasitic or neutral. To confirm this, the yellowness of breast feathers was also assessed. However, the results ran in the opposite direction to that expected, showing a positive correlation between mite load and plumage yellowness, which suggests that further work is needed to give clear evidence for a specific nature of feather mites. However, Great Tits with higher mite loads had lower hatching and breeding success, which may support the idea that feather mites are parasites, although this effect must be taken with caution because it was only found in males. Age or sex effects were not found on the number of feather mites, and it is proposed that hormonal levels may not be sufficient to explain the variation in feather mite loads. Interestingly, a positive correlation was detected between uropygial gland size and plumage brightness, which could be a novel factor to take into account in studies of plumage colour.  相似文献   

13.
Phoretic mites are likely the most abundant arthropods found on carcases and corpses. They outnumber their scavenger carriers in both number and diversity. Many phoretic mites travel on scavenger insects and are highly specific; they will arrive on a particular species of host and no other. Because of this, they may be useful as trace indicators of their carriers even when their carriers are absent. Phoretic mites can be valuable markers of time. They are usually found in a specialised transitional transport or dispersal stage, often moulting and transforming to adults shortly after arrival on a carcase or corpse. Many are characterised by faster development and generation cycles than their carriers. Humans are normally unaware, but we too carry mites; they are skin mites that are present in our clothes. More than 212 phoretic mite species associated with carcases have been reported in the literature. Among these, mites belonging to the Mesostigmata form the dominant group, represented by 127 species with 25 phoretic mite species belonging to the family Parasitidae and 48 to the Macrochelidae. Most of these mesostigmatids are associated with particular species of flies or carrion beetles, though some are associated with small mammals arriving during the early stages of decomposition. During dry decay, members of the Astigmata are more frequently found; 52 species are phoretic on scavengers, and the majority of these travel on late-arriving scavengers such as hide beetles, skin beetles and moths. Several species of carrion beetles can visit a corpse simultaneously, and each may carry 1–10 species of phoretic mites. An informative diversity of phoretic mites may be found on a decaying carcass at any given time. The composition of the phoretic mite assemblage on a carcass might provide valuable information about the conditions of and time elapsed since death.  相似文献   

14.
Populations of a host species may exhibit different assemblages of parasites and other symbionts. The loss of certain species of symbionts (lineage sorting, or "missing-the-boat") is a mechanism by which geographical variation in symbiont assemblages can arise. We studied feather mites and lice from Australian brush-turkeys (Aves: Megapodiidae: Alectura lathami) and expected to observe geographical structuring in arthropod assemblages for several reasons. First, because the brush-turkey is a sedentary ground-dwelling bird, we predicted that geographically close host populations should share more similar arthropod assemblages than distant ones. Second, because brush-turkeys do not brood their young, vertical transfer of arthropods is unlikely, and brush-turkeys probably acquire their mites and lice at social maturity through contact with other birds. Young birds could disperse and found new populations without carrying complete sets of symbionts. We predicted that young birds would have fewer species of arthropods than older birds; in addition, we expected that males (which are polygynous) would have more species than females. Birds were sampled from 12 sites (=populations) along the east coast of Queensland, Australia, that were separated by a distance of 12.5-2,005 km. In total, 5 species of mites from the Pterolichidae and 1 species from the Ascouracaridae were found. Two species of lice were collected but in numbers too low to be statistically useful. Differentiation of mite assemblages was evident; in particular, Leipobius sp. showed 100% prevalence in 3 host populations and 0% in the remaining 9. A dendrogram of brush-turkey populations based on mite assemblages showed 2 geographically correlated clusters of sites, plus 1 cluster that contained 2 sites near Brisbane and 1 approximately at a distance of 1,000 km. There was no strong effect of host age or sex on number of mite species carried. Horizontal transfer of feather mites by hippoboscid flies, in addition to physical contact between hosts, may play a role in homogenizing symbiont assemblages within populations.  相似文献   

15.
A process of infecting the chaffinch nestlings Fringilla coelebs with three analgoid feather mites, Analges passerinus L., 1758, Monojoubertia microphylla (Robin, 1877), and Pteronyssoides striatus (Robin, 1977), commonly occurred on this bird species was investigated. 15 nests contained totally 65 nestlings, from 2 to 6 individuals in a brood, have been examined from the day of hatching till 11th day. Observations were held in the neighbourhood of the bird banding station "Rybachy" (Russia, Kaliningrad Province) in June of 1982. Number of mites on alive nestlings taken temporarily from their nest was counted by means of binocular lens under the magnification x12.5 and x25. The nestlings receive the mites from the chaffinch female during the night time, when the female sits together with the young birds and heats them. In the condition of this prolonged direct contact the mites migrate from the female onto the nestlings. As it was shown in our study of seasonal dynamics of mites on the chaffinch (Mironov, 2000), the chaffinch female only gives its mites to young generation and looses about three quarter of its mite micropopulation during the nesting period (June), hile in the chaffinch males the number of mites continues to increase during all summer. The infections with three feather mite species happen in the second part of the nestling's stay in the nest. The starting time of this process, its intensity, and sex and age structure of mite micropopulations on the nestlings just before their leaving the nest are different in the mite species examined. These peculiarities of feather mite species are determined by the biology of examined species, and first of all by their morphological characteristic and specialisation to different microhabitats, i.e. certain structural zones of plumage. Pteronyssoides striatus (Pteronyssidae) is rather typical mite specialised to feathers with vanes. In adult birds with completely developed plumage this species occupies the ventral surface of the big upper coverts of primary flight feathers. This species appears on the chaffinch nestlings in a significant number on 7th day. The mites occupy the basal parts of primary flight feathers represented in that moment by the rods only. They sit on practically open and smooth surface of this microhabitat, which is uncommon for them, because the vanes of the big upper coverts are not yet open and also represented by thin rods. During the period of the last 5 days (from 7 to 11th day) the mean number of mites per one nestling increases from 2.3 +/- 0.5 to 17.1 +/- 1.8 mites. Just before the day, when the nestling leave the nest, the tritonymphs absolutely predominate (82.4%) in the micropopulation of P. striatus. Analges passerinus (Analgidae) is specialised to live in the friable layer formed by numerous not-engaged thread barbles of the down feathers and basal parts of the body covert feathers. Mites have special hooks on legs used for hard attaching to the barbles and for fast moving in the friable layer of feathers. On the chaffinch nestlings, these mites appear usually on 8th day, when the rod-like body covert feathers begin to open on apices and form short brushes; however some individuals occur on the skin of nestlings even on 6th day. The mean number of mites per nestling on the 11th day reaches 16.5 +/- 1.4 individuals. The micropopulation of A. passerinus is represented on the nestlings mainly by the females (45.5%), tritonymphs (23.6%) and males (11.5%). Monojobertia microphylla (Proctophyllodidae) is a typical dweller of feathers with large vanes. Mites of this species commonly occupy the ventral surface of primary and secondary flight feathers and also respective big upper covert feathers of wings. M. microphylla appears on the nestlings in a significant number (7.1 +/- 1.2 mites) on 9th day, only when the primary flight feathers already have short vanes about 10 mm in length. In next three days the number of mites increases very fast and reaches on 11th day 60.3 +/- 5.7 mites per nestling. In the micropopulation of this species, the tritonymphs count 38.3%, and the quota of males and females is 25.3% each. The migration of this species goes most intensively, than in two other species. An analitic selection of logistic curves shows, that the increasing of mite number during the process of infection with three mite species may be most adequately described by the sigmoid curves with clearly recognizable levels of saturation, which can be theoretically reached. Indeed, the number of mite individuals being able to migrate onto the nestlings is limited by their number on a respective chaffinch female. In a contrast, the increasing of plumage indices, for instance the length of flight feathers, has almost linear character during the period of observation. The beginning of mite migration is determined by the development of respective microhabitats in the plumage of nestlings, or at least by the development of certain structure elements of plumage, where mites are able to attach for a while, before that moment, when the nestlings will develop the plumage completely and begin to fly. In three mite species examined, the process of infection was performed by older stages, namely by the imago and/or tritonymphs. This can be explained by two reasons. On the one hand, the older stages are most active in their movement, resistible and able to survive successfully on new host individuals. On the other hand, the older stage are ready for the reproduction or will be ready after one moulting. The older stages of mites can quickly create a large and self-supporting micropopulations on the birds, therefore this strategy ensures a successful subsequent existence of the parasite species. In cases, when mites (A. passerinus, M. microphylla) migrate into the respective microhabitats structurally corresponding to their normal microhabitats on adult birds, the micropopulations of these mite species include a significant or dominant quota of females and males. When the normal microhabitat is not yet formed, feather mites migrate into neighboring structure elements of plumage, where they can survive and wait for the development of normal microhabitat, to which they are well adapted. Therefore, in the case of P. striatus, its micropopulations on the chaffinch nestlings are represented mainly by the tritonymphs.  相似文献   

16.
This paper reports on ectoparasitic chigger mites found on small mammals in Yunnan Province, southwest China. Data were accumulated from 19 investigation sites (counties) between 2001 and 2009. A total of 10 222 small mammal hosts were captured and identified; these represented 62 species, 34 genera and 11 families in five orders. From the body surfaces of these 10 222 hosts, a total of 92 990 chigger mites were collected and identified microscopically. These represented 224 species, 22 genera and three subfamilies in the family Trombiculidae (Trombidiformes). Small mammals were commonly found to be infested by chigger mites and most host species harboured several species of mite. The species diversity of chigger mites in Yunnan was much higher than diversities reported previously in other provinces of China and in other countries. A single species of rodent, Eothenomys miletus (Rodentia: Cricetidae), carried 111 species of chigger mite, thus demonstrating the highest species diversity and heaviest mite infestation of all recorded hosts. This diversity is exceptional compared with that of other ectoparasites. Of the total 224 mite species, 21 species accounted for 82.2% of all mites counted. Two species acting as major vectors for scrub typhus (tsutsugamushi disease), Leptotrombidium scutellare and Leptotrombidium deliense, were identified as the dominant mite species in this sample. In addition to these two major vectors, 12 potential or suspected vector species were found. Most species of chigger mite had a wide range of hosts and low host specificity. For example, L. scutellare parasitized 30 species of host. The low host specificity of chigger mites may increase their probability of encountering humans, as well as their transmission of scrub typhus among different hosts. Hierarchical clustering analysis showed that similarities between different chigger mite communities on the 18 main species of small mammal host did not accord with the taxonomic affinity of the hosts. This suggests that the distribution of chigger mites may be strongly influenced by the environment in which hosts live.  相似文献   

17.
Most nests of brood-caring insects are colonized by a rich community of mite species. Since these nests are ephemeral and scattered in space, phoresy is the principal mode of dispersal in mites specializing on insect nests. Often the mites will arrive on the nest-founding insect, reproduce in the nest and their offspring will disperse on the insect's offspring. A literature review shows that mites reproducing in the underground brood chambers of burying beetles use alternative routes for dispersal. For example, the phoretic instars of Poecilochirus spp. (Mesostigmata: Parasitidae) disperse early by attaching to the parent beetles. Outside the brood chamber, the mites switch host at carcasses and pheromone-emitting male beetles, where juvenile and mature burying beetles of several species congregate. Because they preferably switch to beetles that are reproductively active and use all species of burying beetles within their ranges, they have a good chance of arriving in a new brood chamber. Other mite associates of burying beetles (Alliphis necrophilus and Uropodina) disperse from the brood chamber on the beetle offspring. We suggest that these mites forgo the possible time gain of dispersing early on the parent beetles because their mode of attachment precludes host switching. Their phoretic instars, once attached, have to stay on their host and so only dispersing on the beetle offspring guarantees that they are present on reproducing burying beetles of the next season. The mites associated with burying beetles providean example of multiple solutions to one life history problem – how to find a new brood chamber for reproduction. Mites that have mobile phoretic instars disperse on the parent beetles and try to arrive in the next brood chamber by host switching. They are independent of the generation cycle of a single host and several generations of mites per host generation are possible. Mites that are constrained by their mode of attachment disperse on the beetle offspring and wait until their host becomes mature and reproduces. By doing this they synchronize their generation time with the generation time of their host species. Exp Appl Acarol 22: 621–631 © 1998 Kluwer Academic Publishers  相似文献   

18.
Roses on commercial nurseries commonly suffer from attacks by the two-spotted spider mite, Tetranychus urticae, which have a negative influence on growth and quality. The aim of this project is to find natural enemies that are well adapted to roses, and may improve biological control. At different sites such as a plant collection garden, public parks and field boundaries, leaves were sampled from roses to identify the indigenous species of predatory mites. Amblyseius andersoni was amongst other species frequently found, which suggests that this species thrives well on roses. The possibility for biological control of spider mites with A. andersoni was investigated both in container roses outdoors and in glasshouses. In plots of outdoor roses artificially infested with spider mites, the following treatments were carried out: spider mites alone (untreated plot), Amblyseius andersoni Amblyseius andersoni and ice plants, Neoseiulus californicus, Neoseiulus californicus and ice plants. There were four replications of the treatments. The ice plants, Delosperma cooperi, were added to some treatments to supply pollen as extra food for the predatory mites. Natural enemies such as Chrysoperla spp., Conwentzia sp., Orius sp., Stethorus punctillum, and Feltiella acarisuga occurred naturally and contributed to the control of spider mites. After one month the spider mites were eradicated in all treatments. At the end of the trial, predatory mites were collected from all plots for identification. The ratio of Amblyseius andersoni to Neoseiulus californicus was approximately 9:1. There was no obvious effect of the ice plants on the number of predatory mites. On a nursery, where new roses are bred and selected, Amblyseius andersoni was released in three glasshouses after one early treatment with bifenazate against two-spotted spider mite Tetranychus urticae. In two of these glasshouses Neoseiulus californicus was also released. Samples, which were taken in the summer months showed that the spider mites were kept at a very low level. Amblyseius andersoni was found, even if spider mites were absent. Rose plants infested with spider mites, that were brought in to the glasshouses later developed spider mite 'hotspots'. Phytoseiulus persimilis was introduced in the hot spots and contributed to the control along with Neoseiulus californicus, Amblyseius andersoni and naturally occurring Feltiella acarisuga. These observations showed that Amblyseius andersoni is a good candidate for preventing spider mite outbreaks, as it easily survives without spider mites. This predatory mite is able to survive on other food, including thrips and fungal spores.  相似文献   

19.
Plant morphology may be shaped, in part, by the third trophic level. Leaf domatia, minute enclosures usually in vein axils on the leaf underside, may provide the basis for protective mutualism between plants and mites. Domatia are particularly frequent among species of trees, shrubs, and vines in the temperate broadleaf deciduous forests in north Asia where they may be important in determining the distribution and abundance of mites in the forest canopy. In lowland and montane broadleaf deciduous forests at Kwangn;akung and Chumbongsan in Korea, we found that approximately half of all woody species in all forest strata, including many dominant trees, have leaf domatia. Pooling across 24 plant species at the two sites, mites occupied a mode of 60% (range 20-100%) of domatia and used them for shelter, egg-laying, and development. On average, 70% of all active mites and 85% of mite eggs on leaves were found in domatia; over three-quarters of these were potentially beneficial to their hosts. Further, mite abundance and reproduction (expressed as the proportion of mites at the egg stage) were significantly greater on leaves of species with domatia than those without domatia in both forests. Effects of domatia on mite abundance were significant only for predaceous and fungivorous mite taxa; herbivore numbers did not differ significantly between leaves of species with and without domatia. Comparable patterns in broadleaf deciduous forest in North America and other biogeographic regions suggest that the effect of leaf domatia on foliar mite abundance is general. These results are consistent with several predictions of mutualism between plants and mites, and indicate that protective mutualisms may be frequent in the temperate zone.  相似文献   

20.
Differences in the feeding habits between phytophagous and predatory species can determine distinct ecological interactions between mites and their host plants. Herein, plant–mite networks were constructed using available literature on plant-dwelling mites from Brazilian natural vegetation in order to contrast phytophagous and predatory mite networks. The structural patterns of plant–mite networks were described through network specialization (connectance) and modularity. A total of 187 mite species, 65 host plant species and 646 interactions were recorded in 14 plant–mite networks. Phytophagous networks included 96 mite species, 61 host plants and 277 interactions, whereas predatory networks contained 91 mite species, 54 host plants and 369 interactions. No differences in the species richness of mites and host plants were observed between phytophagous and predatory networks. However, plant–mite networks composed of phytophagous mites showed lower connectance and higher modularity when compared to the predatory mite networks. The present results corroborate the hypothesis that trophic networks are more specialized than commensalistic networks, given that the phytophagous species must deal with plant defenses, in contrast to predatory mites which only inhabit and forage for resources on plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号