首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 216 毫秒
1.
The Arabidopsis thaliana late embryogenesis abundant gene AtEm6 is required for normal seed development and for buffering the rate of dehydration during the latter stages of seed maturation. However, its function in salt stress tolerance is not fully understood. In this investigation, cell suspension cultures of three plant species rice (Oryza sativa L.), cotton (Gossypium hirsutum L.), and white pine (Pinus strobes L.) were transformed using Agrobacterium tumefaciens strain LBA4404 harboring pBI-AtEm6. Integration of the AtEm6 gene into the genome of rice, cotton, and white pine has been confirmed by polymerase chain reaction, Southern blotting, and northern blotting analyses. Three transgenic cell lines from each of O. sativa, G. hirsutum, and P. strobus were used to analyze salt stress tolerance conferred by the overexpression of the AtEm6 gene. Our results demonstrated that expression of the AtEm6 gene enhanced salt tolerance in transgenic cell lines. A decrease in lipid peroxidation and an increment in antioxidant enzymes ascorbate peroxidase, glutathione reductase and superoxide dismutase activities were observed in the transgenic cell lines, compared to the non- transgenic control. In rice, AtEM6 increased expression of Ca2+-dependent protein kinase genes OsCPK6, OsCPK9, OsCPK10, OsCPK19, OsCPK25, and OsCPK26 under treatment of salt. These results suggested that overexpression of the AtEM6 gene in transgenic cell lines improved salt stress tolerance by regulating expression of Ca2+-dependent protein kinase genes. Overexpression of the AtEM6 gene could be an alternative choice for engineering plant abiotic stress tolerance.  相似文献   

2.
3.
4.

The rice (Oryza sativa L.) BAHD acyltransferase gene OsAt10 affects growth and metabolism of cells and regulates cell response to environmental stress. However, influence of the OsAt10 gene on low-temperature stress tolerance has not been evaluated in plant cells. Here, cell suspension cultures of plant species Arabidopsis (Arabidopsis thaliana L.), cotton (Gossypium hirsutum L.), white pine (Pinus strobus L.), and rice (Oryza sativa L.) were used to generate transgenic cell lines via Agrobacterium tumefaciens-mediated genetic transformation to examine the effects of OsAt10 on cold stress tolerance. OsAt10 transgenic cell lines of A. thaliana, G. hirsutum, P. strobus, and O. sativa were confirmed by molecular analyses including Southern blotting ND northern blotting, following by physiological and biochemical analyses under cold stress. The experimental results demonstrated that growth rate, cell viability, lipid peroxidation, ion leakage, antioxidative enzyme activity, polyamines level, and cell morphology were changed in transgenic cells under cold stress, compared to the controls. In transgenic A. thaliana cells, overexpression of the OsAt10 gene increases expression of polyamines biosynthesis genes under cold stress. In transgenic A. thaliana plants, overexpression of the OsAt10 gene increased cold stress tolerance by regulating expression of stress marker genes, TBARS content, ion leakage level, antioxidant enzymes activity, and polyamines content, indicating that the OsAt10 gene could be economically important for improving low-temperature stress tolerance in plants.

  相似文献   

5.
In this report, we present data on OsSDS1 (Oryza sativa L. salt and drought sensitive gene 1)—an uncharacterized gene isolated from rice Pei’ai 64S (O. sativa L.). Expression of OsSDS1 was strongly up-regulated by a wide spectrum of stresses, including cold, drought, and heat, in different tissues at different developmental stages of rice, as revealed by both microarray and quantitative RT-PCR analyses. Subcellular localization revealed that an OsSDS1: GFP fusion protein was distributed to the nucleus. Expression of OsSDS1 conferred decreased tolerance to salt and drought in Arabidopsis thaliana, accompanied by altered expression of stress-responsive genes and altered K+/Na+ ratio. The results suggest that OsSDS1 may act as a negative regulator of salt and drought tolerance in plants.  相似文献   

6.
7.
Calcium-dependent protein kinases are important decoders of calcium signals in plants, which are involved in plant immunity. We report isolation and functional characterization of a pathogen-responsive OsCPK20 gene in rice. The expression of OsCPK20 in rice was significantly induced following treatment with a Magnaporthe grisea elicitor. Overexpression of constitutively active OsCPK20 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK20 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic Arabidopsis and rice was associated with activated expression of both SA- and JA-related defense genes. We also found that OsCPK20 was significantly induced by drought stress, indicating that OsCPK20 might be involved in plant response to drought stress. Taken together, our results indicate that rice OsCPK20 positively regulates Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against M. grisea, and that it may enhance disease resistance by activating both SA- and JA-dependent defense responses.  相似文献   

8.
ItICE1, a ICE1-like gene, was isolated from a cDNA library from cold-treated woad (Isatis tinctoria L.) tissues. Expression analysis revealed that the ItICE1 gene was expressed constitutively and was predominant in the leaves of woad seedlings and that its mRNA accumulation was altered by salt stress and abscisic acid application, but not by dehydration and cold stresses. The transgenic rice lines overexpressing ItICE1 showed no growth retardation under normal growth conditions as well as enhanced tolerance to cold stress. Physiological assays showed that ItICE1 not only increased the accumulation of free proline and chlorophyll in transgenic rice lines under cold stress, but also reduced malondialdehyde content and electrolyte leakage. The analysis of gene expression in transgenic rice lines indicated that the maize ubiquitin promoter could respond to cold stress and upregulate ItICE1 gene expression level under its control. Under cold stress conditions, transgenic lines had a remarkably increased expression of OsDREB1A, J013078A14, 001-125-G03, 001-023-B08 and J023042N13 compared to wild-type plants (P < 0.05), implying that ItICE1 functions in the CBF/DREB1 cold-response pathway. These results demonstrate that ItICE1 plays an important regulatory role in the improvement of tolerance to cold stress in rice and is potentially useful for improving the cold tolerance of other plants.  相似文献   

9.
Rice is the most important staple food for more than half of the human population, and blast disease is the most serious disease affecting global rice production. In this work, the isoform OsCPK4 of the rice calcium‐dependent protein kinase family is reported as a regulator of rice immunity to blast fungal infection. It shows that overexpression of OsCPK4 gene in rice plants enhances resistance to blast disease by preventing fungal penetration. The constitutive accumulation of OsCPK4 protein prepares rice plants for a rapid and potentiated defence response, including the production of reactive oxygen species, callose deposition and defence gene expression. OsCPK4 overexpression leads also to constitutive increased content of the glycosylated salicylic acid hormone in leaves without compromising rice yield. Given that OsCPK4 overexpression was known to confer also salt and drought tolerance in rice, the results reported in this article demonstrate that OsCPK4 acts as a convergence component that positively modulates both biotic and abiotic signalling pathways. Altogether, our findings indicate that OsCPK4 is a potential molecular target to improve not only abiotic stress tolerance, but also blast disease resistance of rice crops.  相似文献   

10.
Main conclusion

Transgenic rice expressing pigeonpea Cc CDR conferred high-level tolerance to different abiotic stresses. The multiple stress tolerance observed in CcCDR -transgenic lines is attributed to the modulation of ABA-dependent and-independent signalling-pathway genes.

Stable transgenic plants expressing Cajanus cajan cold and drought regulatory protein encoding gene (CcCDR), under the control of CaMV35S and rd29A promoters, have been generated in indica rice. Different transgenic lines of CcCDR, when subjected to drought, salt, and cold stresses, exhibited higher seed germination, seedling survival rates, shoot length, root length, and enhanced plant biomass when compared with the untransformed control plants. Furthermore, transgenic plants disclosed higher leaf chlorophyll content, proline, reducing sugars, SOD, and catalase activities, besides lower levels of MDA. Localization studies revealed that the CcCDR-GFP fusion protein was mainly present in the nucleus of transformed cells of rice. The CcCDR transgenics were found hypersensitive to abscisic acid (ABA) and showed reduced seed germination rates as compared to that of control plants. When the transgenic plants were exposed to drought and salt stresses at vegetative and reproductive stages, they revealed larger panicles and higher number of filled grains compared to the untransformed control plants. Under similar stress conditions, the expression levels of P5CS, bZIP, DREB, OsLEA3, and CIPK genes, involved in ABA-dependent and-independent signal transduction pathways, were found higher in the transgenic plants than the control plants. The overall results amply demonstrate that the transgenic rice expressing CcCDR bestows high-level tolerance to drought, salt, and cold stress conditions. Accordingly, the CcCDR might be deployed as a promising candidate gene for improving the multiple stress tolerance of diverse crop plants.

  相似文献   

11.
12.
Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these genes may be involved in the enhanced drought and salt tolerance of transgenic rice. Thus, this work paves the way for improvement in tolerance of crops by genetic engineering breeding.  相似文献   

13.
Exposure of rice (Oryza sativa L.) seedlings to a high temperature (42°C) for 24 h resulted in a significant increase in tolerance to drought stress. To try to determine the mechanisms of acquisition of tolerance to drought stress by heat shock, the rice small heat-shock protein gene, sHSP17.7, the product of which was shown to act as molecular chaperones in vitro and in vivo in our previous study, was overexpressed in the rice cultivar “Hoshinoyume”. Western and Northern blot analyses showed higher expression levels of sHSP17.7 protein in three transgenic lines than in one transgenic line. Drought tolerance was assessed in these transgenic lines and wild-type plants by withholding water for 6 days for evaluation of the ability of plants to continue growth after water-stress treatments. Although no significant difference was found in water potential of seedlings between transgenic lines and wild-type plants at the end of drought treatments, only transgenic seedlings with higher expression levels of sHSP17.7 protein could regrow after rewatering. Similar results were observed in survival rates after treatments with 30% polyethylene glycol (PEG) 3640 for 3 days. These results suggest that overproduction of sHSP17.7 could increase drought tolerance in transgenic rice seedlings.  相似文献   

14.
Late embryogenesis abundant (LEA) genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarix androssowii (named TaLEA) was transformed into Xiaohei poplar ( Populus simonii × P. nigra) via Agrobacterium . Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR) and ribonucleic acid (RNA) gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA) content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11) showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.  相似文献   

15.
Calcium‐dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here, we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analysing OsCPK17 knockout, silencing and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress‐inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose‐phosphate synthase OsSPS4 and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium‐dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism.  相似文献   

16.
Jerusalem artichokes (Helianthus tuberosus L.) can tolerate relatively higher salinity, drought and heat stress. In this paper, we report the cloning of a Salt Overly Sensitive 1 (SOS1) gene encoding a plasma membrane Na+/H+ antiporter from a highly salt-tolerant genotype of H. tuberosus, NY1, named HtSOS1 and characterization of its function in yeast and rice. The amino acid sequence of HtSOS1 showed 83.4 % identity with the previously isolated SOS1 gene from the Chrysanthemum crassum. The mRNA level in the leaves of H. tuberosus was significantly up-regulated by presence of high concentrations of NaCl. Localization analysis using rice protoplast expression showed that the protein encoded by HtSOS1 was located in the plasma membrane. HtSOS1 partially suppressed the salt sensitive phenotypes of a salt sensitive yeast strain. In comparison with wild type (Oryza sativa L., ssp. Japonica. cv. Nipponbare), the transgenic rice expressed with HtSOS1 could exclude more Na+ and accumulate more K+. Expression of HtSOS1 decreased Na+ content much larger in the shoot than in the roots, resulting in more water content in the transgenic rice than WT. These data suggested that HtSOS1 may be useful in transgenic approaches to improving the salinity tolerance of glycophyte.  相似文献   

17.
Liu K  Wang L  Xu Y  Chen N  Ma Q  Li F  Chong K 《Planta》2007,226(4):1007-1016
Rice (Oryza sativa L.) plant is sensitive to chilling, particularly at early stages of seedling development. Here a novel cold-inducible gene, designated OsCOIN (O ryza s ativa cold-inducible), was isolated and characterized. Results showed that OsCOIN protein, a RING finger protein, was localized in both nuclear and cytoplasm membrane. OsCOIN is expressed in all rice organs and strongly induced by low temperature, ABA, salt and drought. Over-expression of OsCOIN in transgenic rice lines significantly enhanced their tolerance to cold, salt and drought, accompanied by an up-regulation of OsP5CS expression and an increase of cellular proline level.  相似文献   

18.
19.
20.
Microarray analysis of a salt-tolerant wheat mutant identified a gene of unknown function that was induced by exposure to high levels of salt and subsequently denoted TaSIP (Triticum aestivum salt-induced protein). Quantitative PCR analysis revealed that TaSIP expression was induced not only by salt, but also by drought, abscisic acid (ABA), and other environmental stress factors. Transgenic rice plants that expressed an RNA interference construct specific for a rice gene homologous to TaSIP was more susceptible to salt stress than wild-type rice plants. Subcellular localization studies showed that the TaSIP localized to the cell membrane. Under conditions of salt and drought stress, transgenic Arabidopsis plants that overexpressed TaSIP showed superior physiological properties compared with control plants, including lower Na+ content and upregulation of several stress resistance genes. Staining of transgenic tissues with β-glucuronidase (GUS) failed to indicate tissue-specific activity of the full-length TaSIP promoter. Quantitative analysis of GUS fluorescence in transgenic plants treated with ABA or salt stress revealed that the region 1,176–1,410 bp from the start codon contained an ABA-responsive element and that the region 579–1,176 bp from the start codon upstream of the exon contained a salt-stress-responsive element. Based on these results, we conclude that the key part of the TaSIP gene is the region of its promoter involved in salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号