首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polygalacturonases specifically hydrolyze polygalacturonate, a major constituent of plant cell wall pectin. To understand the catalytic mechanism and substrate and product specificity of these enzymes, we have solved the x-ray structure of endopolygalacturonase II of Aspergillus niger and we have carried out site-directed mutagenesis studies. The enzyme folds into a right-handed parallel beta-helix with 10 complete turns. The beta-helix is composed of four parallel beta-sheets, and has one very small alpha-helix near the N terminus, which shields the enzyme's hydrophobic core. Loop regions form a cleft on the exterior of the beta-helix. Site-directed mutagenesis of Asp(180), Asp(201), Asp(202), His(223), Arg(256), and Lys(258), which are located in this cleft, results in a severe reduction of activity, demonstrating that these residues are important for substrate binding and/or catalysis. The juxtaposition of the catalytic residues differs from that normally encountered in inverting glycosyl hydrolases. A comparison of the endopolygalacturonase II active site with that of the P22 tailspike rhamnosidase suggests that Asp(180) and Asp(202) activate the attacking nucleophilic water molecule, while Asp(201) protonates the glycosidic oxygen of the scissile bond.  相似文献   

2.
The processive beta-strands and turns of a polypeptide parallel beta-helix represent one of the topologically simplest beta-sheet folds. The three subunits of the tailspike adhesin of phage P22 each contain 13 rungs of a parallel beta-helix followed by an interdigitated section of triple-stranded beta-helix. Long stacks of hydrophobic residues dominate the elongated buried core of these two beta-helix domains and extend into the core of the contiguous triple beta-prism domain. To test whether these side-chain stacks represent essential residues for driving the chain into the correct fold, each of three stacked phenylalanine residues within the buried core were substituted with less bulky amino acids. The mutant chains with alanine in place of phenylalanine were defective in intracellular folding. The chains accumulated exclusively in the aggregated inclusion body state regardless of temperature of folding. These severe folding defects indicate that the stacked phenylalanine residues are essential for correct parallel beta-helix folding. Replacement of the same phenylalanine residues with valine or leucine also impaired folding in vivo, but with less severity. Mutants were also constructed in a second buried stack that extends into the intertwined triple-stranded beta-helix and contiguous beta-prism regions of the protein. These mutants exhibited severe defects in later stages of chain folding or assembly, accumulating as misfolded but soluble multimeric species. The results indicate that the formation of the buried hydrophobic stacks is critical for the correct folding of the parallel beta-helix, triple-stranded beta-helix, and beta-prism domains in the tailspike protein.  相似文献   

3.
In this study, a new beta-helical model is proposed that explains the species barrier and strain variation in transmissible spongiform encephalopathies. The left-handed beta-helix serves as a structural model that can explain the seeded growth characteristics of beta-sheet structure in PrP(Sc) fibrils. Molecular dynamics simulations demonstrate that the left-handed beta-helix is structurally more stable than the right-handed beta-helix, with a higher beta-sheet content during the simulation and a better distributed network of inter-strand backbone-backbone hydrogen bonds between parallel beta-strands of different rungs. Multiple sequence alignments and homology modelling of prion sequences with different rungs of left-handed beta-helices illustrate that the PrP region with the highest beta-helical propensity (residues 105-143) can fold in just two rungs of a left-handed beta-helix. Even if no other flanking sequence participates in the beta-helix, the two rungs of a beta-helix can give the growing fibril enough elevation to accommodate the rest of the PrP protein in a tight packing at the periphery of a trimeric beta-helix. The folding of beta-helices is driven by backbone-backbone hydrogen bonding and stacking of side-chains in adjacent rungs. The sequence and structure of the last rung at the fibril end with unprotected beta-sheet edges selects the sequence of a complementary rung and dictates the folding of the new rung with optimal backbone hydrogen bonding and side-chain stacking. An important side-chain stack that facilitates the beta-helical folding is between methionine residues 109 and 129, which explains their importance in the species barrier of prions. Because the PrP sequence is not evolutionarily optimised to fold in a beta-helix, and because the beta-helical fold shows very little sequence preference, alternative alignments are possible that result in a different rung able to select for an alternative complementary rung. A different top rung results in a new strain with different growth characteristics. Hence, in the present model, sequence variation and alternative alignments clarify the basis of the species barrier and strain specificity in PrP-based diseases.  相似文献   

4.
Apgar JR  Gutwin KN  Keating AE 《Proteins》2008,72(3):1048-1065
The alpha-helical coiled coil is a structurally simple protein oligomerization or interaction motif consisting of two or more alpha helices twisted into a supercoiled bundle. Coiled coils can differ in their stoichiometry, helix orientation, and axial alignment. Because of the near degeneracy of many of these variants, coiled coils pose a challenge to fold recognition methods for structure prediction. Whereas distinctions between some protein folds can be discriminated on the basis of hydrophobic/polar patterning or secondary structure propensities, the sequence differences that encode important details of coiled-coil structure can be subtle. This is emblematic of a larger problem in the field of protein structure and interaction prediction: that of establishing specificity between closely similar structures. We tested the behavior of different computational models on the problem of recognizing the correct orientation--parallel vs. antiparallel--of pairs of alpha helices that can form a dimeric coiled coil. For each of 131 examples of known structure, we constructed a large number of both parallel and antiparallel structural models and used these to assess the ability of five energy functions to recognize the correct fold. We also developed and tested three sequence-based approaches that make use of varying degrees of implicit structural information. The best structural methods performed similarly to the best sequence methods, correctly categorizing approximately 81% of dimers. Steric compatibility with the fold was important for some coiled coils we investigated. For many examples, the correct orientation was determined by smaller energy differences between parallel and antiparallel structures distributed over many residues and energy components. Prediction methods that used structure but incorporated varying approximations and assumptions showed quite different behaviors when used to investigate energetic contributions to orientation preference. Sequence based methods were sensitive to the choice of residue-pair interactions scored.  相似文献   

5.
Li M  Huang Y  Xiao Y 《Proteins》2008,72(4):1161-1170
Proteins with symmetric structures are ideal models to investigate the sequence-structure relations. We investigate proteins with beta-trefoil fold and find they have different degrees of sequence symmetries although they show similar symmetric structures. To understand this, we calculate the strength of interactions of the beta-trefoil folds with surrounding environments and find the low degrees of sequence symmetries are often correlated with large external interactions. Our results give an additional confirmation of Anfinsen's thermodynamic hypothesis that protein structures are not only determined by their sequences but also by their surrounding environments. We suggest the external interactions should be considered additionally in protein structure prediction through ab initio folding.  相似文献   

6.
7.
Theoretical microscopic titration curves (THEMATICS) is a computational method for the identification of active sites in proteins through deviations in computed titration behavior of ionizable residues. While the sensitivity to catalytic sites is high, the previously reported sensitivity to catalytic residues was not as high, about 50%. Here THEMATICS is combined with support vector machines (SVM) to improve sensitivity for catalytic residue prediction from protein 3D structure alone. For a test set of 64 proteins taken from the Catalytic Site Atlas (CSA), the average recall rate for annotated catalytic residues is 61%; good precision is maintained selecting only 4% of all residues. The average false positive rate, using the CSA annotations is only 3.2%, far lower than other 3D-structure-based methods. THEMATICS-SVM returns higher precision, lower false positive rate, and better overall performance, compared with other 3D-structure-based methods. Comparison is also made with the latest machine learning methods that are based on both sequence alignments and 3D structures. For annotated sets of well-characterized enzymes, THEMATICS-SVM performance compares very favorably with methods that utilize sequence homology. However, since THEMATICS depends only on the 3D structure of the query protein, no decline in performance is expected when applied to novel folds, proteins with few sequence homologues, or even orphan sequences. An extension of the method to predict non-ionizable catalytic residues is also presented. THEMATICS-SVM predicts a local network of ionizable residues with strong interactions between protonation events; this appears to be a special feature of enzyme active sites.  相似文献   

8.
Choi JH  Govaerts C  May BC  Cohen FE 《Proteins》2008,73(1):150-160
The left-handed parallel beta-helix (LbetaH) is a structurally repetitive, highly regular, and symmetrical fold formed by coiling of elongated beta-sheets into helical "rungs." This canonical fold has recently received interest as a possible solution to the fibril structure of amyloid and as a building block of self-assembled nanotubular structures. In light of this interest, we aimed to understand the structural requirements of the LbetaH fold. We first sought to determine the sequence characteristics of the repeats by analyzing known structures to identify positional preferences of specific residues types. We then used molecular dynamics simulations to demonstrate the stabilizing effect of successive rungs and the hydrophobic core of the LbetaH. We show that a two-rung structure is the minimally stable LbetaH structure. In addition, we defined the structure-based sequence preference of the LbetaH and undertook a genome-wide sequence search to determine the prevalence of this unique protein fold. This profile-based LbetaH search algorithm predicted a large fraction of LbetaH proteins from microbial origins. However, the relative number of predicted LbetaH proteins per specie was approximately equal across the genomes from prokaryotes to eukaryotes.  相似文献   

9.
Fibroblast growth factors (FGFs) interact with heparan sulfate glycosaminoglycans and the extracellular domains of FGF cell surface receptors (FGFRs) to trigger receptor activation and biological responses. FGF homologous factors (FHF1-FHF4; also known as FGF11-FGF14) are related to FGFs by substantial sequence homology, yet their only documented interactions are with an intracellular kinase scaffold protein, islet brain-2 (IB2) and with voltage-gated sodium channels. In this report, we show that recombinant FHFs can bind heparin with high affinity like classical FGFs yet fail to activate any of the seven principal FGFRs. Instead, we demonstrate that FHFs bind IB2 directly, furthering the contention that FHFs and FGFs elicit their biological effects by binding to different protein partners. To understand the molecular basis for this differential target binding specificity, we elucidated the crystal structure of FHF1b to 1.7-A resolution. The FHF1b core domain assumes a beta-trefoil fold consisting of 12 antiparallel beta strands (beta 1 through beta 12). The FHF1b beta-trefoil core is remarkably similar to that of classical FGFs and exhibits an FGF-characteristic heparin-binding surface as attested to by the number of bound sulfate ions. Using molecular modeling and structure-based mutational analysis, we identified two surface residues, Arg52 in the beta 4-beta 5 loop and Val95 in the beta 9 strand of FHF1b that are required for the interaction of FHF1b with IB2. These two residues are unique to FHFs, and mutations of the corresponding residues of FGF1 to Arg and Val diminish the capacity of FGF1 to activate FGFRs, suggesting that these two FHF residues contribute to the inability of FHFs to activate FGFRs. Hence, FHFs and FGFs bear striking structural similarity but have diverged to direct related surfaces toward interaction with distinct protein targets.  相似文献   

10.
Protein fold recognition is an important step towards understanding protein three-dimensional structures and their functions. A conditional graphical model, i.e., segmentation conditional random fields (SCRFs), is proposed as an effective solution to this problem. In contrast to traditional graphical models, such as the hidden Markov model (HMM), SCRFs follow a discriminative approach. Therefore, it is flexible to include any features in the model, such as overlapping or long-range interaction features over the whole sequence. The model also employs a convex optimization function, which results in globally optimal solutions to the model parameters. On the other hand, the segmentation setting in SCRFs makes their graphical structures intuitively similar to the protein 3-D structures and more importantly provides a framework to model the long-range interactions between secondary structures directly. Our model is applied to predict the parallel beta-helix fold, an important fold in bacterial pathogenesis and carbohydrate binding/cleavage. The cross-family validation shows that SCRFs not only can score all known beta-helices higher than non-beta-helices in the Protein Data Bank (PDB), but also accurately locates rungs in known beta-helix proteins. Our method outperforms BetaWrap, a state-of-the-art algorithm for predicting beta-helix folds, and HMMER, a general motif detection algorithm based on HMM, and has the additional advantage of general application to other protein folds. Applying our prediction model to the Uniprot Database, we identify previously unknown potential beta-helices.  相似文献   

11.
Three-dimensional structures have been determined of a large number of proteins characterized by a repetitive fold where each of the repeats (coils) supplies a strand to one or more parallel beta-sheets. Some of these proteins form superfamilies of proteins, which have probably arisen by divergent evolution from a common ancestor. The classical example is the family including four families of pectinases without obviously related primary sequences, the phage P22 tailspike endorhamnosidase, chrondroitinase B and possibly pertactin from Bordetella pertusis. These show extensive stacking of similar residues to give aliphatic, aromatic and polar stacks such as the asparagine ladder. This suggests that coils can be added or removed by duplication or deletion of the DNA corresponding to one or more coils and explains how homologous proteins can have different numbers of coils.This process can also account for the evolution of other families of proteins such as the beta-rolls, the leucine-rich repeat proteins, the hexapeptide repeat family, two separate families of beta-helical antifreeze proteins and the spiral folds. These families need not be related to each other but will share features such as relative untwisted beta-sheets, stacking of similar residues and turns between beta-strands of approximately 90 degrees often stabilized by hydrogen bonding along the direction of the parallel beta-helix.Repetitive folds present special problems in the comparison of structures but offer attractive targets for structure prediction. The stacking of similar residues on a flat parallel beta-sheet may account for the formation of amyloid with beta-strands at right-angles to the fibril axis from many unrelated peptides.  相似文献   

12.
Alginate is a family of linear copolymers of (1-->4)-linked beta-d-mannuronic acid and its C-5 epimer alpha-l-guluronic acid. The polymer is first produced as polymannuronic acid and the guluronic acid residues are then introduced at the polymer level by mannuronan C-5-epimerases. The structure of the catalytic A-module of the Azotobacter vinelandii mannuronan C-5-epimerase AlgE4 has been determined by x-ray crystallography at 2.1-A resolution. AlgE4A folds into a right-handed parallel beta-helix structure originally found in pectate lyase C and subsequently in several polysaccharide lyases and hydrolases. The beta-helix is composed of four parallel beta-sheets, comprising 12 complete turns, and has an amphipathic alpha-helix near the N terminus. The catalytic site is positioned in a positively charged cleft formed by loops extending from the surface encompassing Asp(152), an amino acid previously shown to be important for the reaction. Site-directed mutagenesis further implicates Tyr(149), His(154), and Asp(178) as being essential for activity. Tyr(149) probably acts as the proton acceptor, whereas His(154) is the proton donor in the epimerization reaction.  相似文献   

13.
The PE_PGRS family of proteins unique to mycobacteria is demonstrated to contain multiple calcium-binding and glycine-rich sequence motifs GGXGXD/NXUX. This sequence repeat constitutes a calcium-binding parallel beta-roll or parallel beta-helix structure and is found in RTX toxins secreted by many Gram-negative bacteria. It is predicted that the highly homologous PE PGRS proteins containing multiple copies of the nona-peptide motif could fold into similar calcium-binding structures. The implication of the predicted calcium-binding property of PE PGRS proteins in the light of macrophage-pathogen interaction and pathogenesis is presented.  相似文献   

14.
Pectin, one of the main components of the plant cell wall, is secreted in a highly methyl-esterified form and subsequently deesterified in muro by pectin methylesterases (PMEs). In many developmental processes, PMEs are regulated by either differential expression or posttranslational control by protein inhibitors (PMEIs). PMEIs are typically active against plant PMEs and ineffective against microbial enzymes. Here, we describe the three-dimensional structure of the complex between the most abundant PME isoform from tomato fruit (Lycopersicon esculentum) and PMEI from kiwi (Actinidia deliciosa) at 1.9-A resolution. The enzyme folds into a right-handed parallel beta-helical structure typical of pectic enzymes. The inhibitor is almost all helical, with four long alpha-helices aligned in an antiparallel manner in a classical up-and-down four-helical bundle. The two proteins form a stoichiometric 1:1 complex in which the inhibitor covers the shallow cleft of the enzyme where the putative active site is located. The four-helix bundle of the inhibitor packs roughly perpendicular to the main axis of the parallel beta-helix of PME, and three helices of the bundle interact with the enzyme. The interaction interface displays a polar character, typical of nonobligate complexes formed by soluble proteins. The structure of the complex gives an insight into the specificity of the inhibitor toward plant PMEs and the mechanism of regulation of these enzymes.  相似文献   

15.
Most structures of neutral lipases and esterases have been found to adopt the common alpha/beta hydrolase fold and contain a catalytic Ser-His-Asp triad. Some variation occurs in both the overall protein fold and in the location of the catalytic triad, and in some enzymes the role of the aspartate residue is replaced by a main-chain carbonyl oxygen atom. Here, we report the crystal structure of pectin methylesterase that has neither the common alpha/beta hydrolase fold nor the common catalytic triad. The structure of the Erwinia chrysanthemi enzyme was solved by multiple isomorphous replacement and refined at 2.4 A to a conventional crystallographic R-factor of 17.9 % (R(free) 21.1 %). This is the first structure of a pectin methylesterase and reveals the enzyme to comprise a right-handed parallel beta-helix as seen in the pectinolytic enzymes pectate lyase, pectin lyase, polygalacturonase and rhamnogalacturonase, and unlike the alpha/beta hydrolase fold of rhamnogalacturonan acetylesterase with which it shares esterase activity. Pectin methylesterase has no significant sequence similarity with any protein of known structure. Sequence conservation among the pectin methylesterases has been mapped onto the structure and reveals that the active site comprises two aspartate residues and an arginine residue. These proposed catalytic residues, located on the solvent-accessible surface of the parallel beta-helix and in a cleft formed by external loops, are at a location similar to that of the active site and substrate-binding cleft of pectate lyase. The structure of pectin methylesterase is an example of a new family of esterases.  相似文献   

16.
The 70 kDa soluble lytic transglycosylase (Slt70) from Escherichia coli is an exo-muramidase, that catalyses the cleavage of the glycosidic bonds between N -acetylmuramic acid and N -acetylglucosamine residues in peptidoglycan, the main structural component of the bacterial cell wall. This cleavage is accompanied by the formation of a 1,6-anhydro bond between the C1 and O6 atoms in the N -acetylmuramic acid residue (anhMurNAc). Crystallographic studies at medium resolution revealed that Slt70 is a multi-domain protein consisting of a large ring-shaped alpha-superhelix with on top a catalytic domain, which resembles the fold of goose-type lysozyme. Here we report the crystal structures of native Slt70 and of its complex with a 1,6-anhydromuropeptide solved at nominal resolutions of 1.65 A and 1.90 A, respectively. The high resolution native structure reveals the details on the hydrogen bonds, electrostatic and hydrophobic interactions that stabilise the catalytic domain and the alpha-superhelix. The building-block of the alpha-superhelix is an "up-down-up-down" four-alpha-helix bundle involving both parallel and antiparallel helix pairs. Stabilisation of the fold is provided through an extensive packing of apolar atoms, mostly from leucine and alanine residues. It lacks, however, an internal consensus sequence that characterises other super-secondary helical folds like the beta-helix in pectate lyase or the (beta-alpha)-helix in the ribonuclease inhibitor. The 1, 6-anhydromuropeptide product binds in a shallow groove adjacent to the peptidoglycan-binding groove of the catalytic domain. The groove is formed by conserved residues at the interface of the catalytic domain and the alpha-superhelix. The structure of the Slt70-1, 6-anhydromuropeptide complex confirms the presence of a specific binding-site for the peptide moieties of the peptidoglycan and it substantiates the notion that Slt70 starts the cleavage reaction at the anhMurNAc end of the peptidoglycan.  相似文献   

17.
Several polypeptides have been found to adopt an unusual domain structure known as the parallel beta-helix. These domains are characterized by parallel beta-strands, three of which form a single parallel beta-helix coil, and lead to long, extended beta-sheets. We have used ATR-FTIR (attenuated total reflectance-fourier transform infrared spectroscopy) to analyze the secondary structure of representative examples of this class of protein. Because the three-dimensional structures of parallel beta-helix proteins are unique, we initiated this study to determine if there was a corresponding unique FTIR signal associated with the parallel beta-helix conformation. Analysis of the amide I region, emanating from the carbonyl stretch vibration, reveals a strong absorbance band at 1638 cm(-1) in each of the parallel beta-helix proteins. This band is assigned to the parallel beta-sheet structure. However, components at this frequency are also commonly observed for beta-sheets in many classes of globular proteins. Thus we conclude that there is no unique infrared signature for parallel beta-helix structure. Additional contributions in the 1638 cm(-1) region, and at lower frequencies, were ascribed to hydrogen bonding between the coils in the loop/turn regions and amide side-chain interactions, respectively. A 13-residue peptide that forms fibrils and has been proposed to form beta-helical structure was also examined, and its FTIR spectrum was compared to that of the parallel beta-helix proteins.  相似文献   

18.
Wintjens R  Gilis D  Rooman M 《Proteins》2008,70(4):1564-1577
Fe- and Mn-containing superoxide dismutase (sod) enzymes are closely related and similar in both amino acid sequence and structure, but differ in their mode of oligomerization and in their specificity for the Fe or Mn cofactor. The goal of the present work is to identify and analyze the sequence and structure characteristics that ensure the cofactor specificities and the oligomerization modes. For that purpose, 374 sod sequences and 17 sod crystal structures were collected and aligned. These alignments were searched for residues and inter-residue interactions that are conserved within the whole sod family, or alternatively, that are specific to a given sod subfamily sharing common characteristics. This led us to define key residues and inter-residue interaction fingerprints in each subfamily. The comparison of these fingerprints allows, on a rational basis, the design of mutants likely to modulate the activity and/or specificity of the target sod, in good agreement with the available experimental results on known mutants. The key residues and interaction fingerprints are furthermore used to predict if a novel sequence corresponds to a sod enzyme, and if so, what type of sod it is. The predictions of this fingerprint method reach much higher scores and present much more discriminative power than the commonly used method that uses pairwise sequence comparisons.  相似文献   

19.
For many years it has been accepted that the sequence of a protein can specify its three-dimensional structure. However, there has been limited progress in explaining how the sequence dictates its fold and no attempt to do this computationally without the use of specific structural data has ever succeeded for any protein larger than 100 residues. We describe a method that can predict complex folds up to almost 200 residues using only basic principles that do not include any elements of sequence homology. The method does not simulate the folding chain but generates many thousands of models based on an idealized representation of structure. Each rough model is scored and the best are refined. On a set of five proteins, the correct fold score well and when tested on a set of larger proteins, the correct fold was ranked highest for some proteins more than 150 residues, with others being close topological variants. All other methods that approach this level of success rely on the use of templates or fragments of known structures. Our method is unique in using a database of ideal models based on general packing rules that, in spirit, is closer to an ab initio approach.  相似文献   

20.

Background

Folding nucleus of globular proteins formation starts by the mutual interaction of a group of hydrophobic amino acids whose close contacts allow subsequent formation and stability of the 3D structure. These early steps can be predicted by simulation of the folding process through a Monte Carlo (MC) coarse grain model in a discrete space. We previously defined MIRs (Most Interacting Residues), as the set of residues presenting a large number of non-covalent neighbour interactions during such simulation. MIRs are good candidates to define the minimal number of residues giving rise to a given fold instead of another one, although their proportion is rather high, typically [15-20]% of the sequences. Having in mind experiments with two sequences of very high levels of sequence identity (up to 90%) but different folds, we combined the MIR method, which takes sequence as single input, with the “fuzzy oil drop” (FOD) model that requires a 3D structure, in order to estimate the residues coding for the fold. FOD assumes that a globular protein follows an idealised 3D Gaussian distribution of hydrophobicity density, with the maximum in the centre and minima at the surface of the “drop”. If the actual local density of hydrophobicity around a given amino acid is as high as the ideal one, then this amino acid is assigned to the core of the globular protein, and it is assumed to follow the FOD model. Therefore one obtains a distribution of the amino acids of a protein according to their agreement or rejection with the FOD model.

Results

We compared and combined MIR and FOD methods to define the minimal nucleus, or keystone, of two populated folds: immunoglobulin-like (Ig) and flavodoxins (Flav). The combination of these two approaches defines some positions both predicted as a MIR and assigned as accordant with the FOD model. It is shown here that for these two folds, the intersection of the predicted sets of residues significantly differs from random selection. It reduces the number of selected residues by each individual method and allows a reasonable agreement with experimentally determined key residues coding for the particular fold. In addition, the intersection of the two methods significantly increases the specificity of the prediction, providing a robust set of residues that constitute the folding nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号