首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Solubilization of the gel phase of sputum by reduction with dithiothreitol and alkylation with iodoacetamide resulted in different gel filtration patterns when sputa from different patients were examined. Two extreme types of of behavior were identified; in one the glycoproteins were completely excluded from Sepharose 4B, and in the other all the glycoproteins penetrated the gel matrix to a certain extent. Pronase digestion of the products of reduction and alkylation of the former resulted in a gel filtration pattern similar to that obtained by reduction and alkylation alone in the latter. The disulfide bonds cleaved by dithiothreitol were labeled by reaction with [1-14C]iodoacetamide and the glycoproteins isolated. Pronase digestion of the labeled glycoproteins revealed that, although most of the cysteine residues occurred in peptide regions cleaved by Pronase, some were situated in resistant peptide regions. Structures are proposed for the bronchial glycoproteins isolated from the two extreme types of sputum. These structures consist of a glycoprotein subunit, resistant to Pronase and attached by covalent bonds to a “naked” peptide region. Whereas the glycoprotein subunits are similar in both types of sputum, the “naked” peptide is a continuous peptide chain in one type but a discontinuous peptide chain in the other.  相似文献   

2.
Puried complex III ) ubiquinol-cytochrome c reductase) from beef heart mitochondria was alkylated with iodol [1-14C]acetamide. After 6-8 h of incubation with iodo[1-14C]acetamide, duroquinol and ubiquinol-2-cytochrome c reductase activites were inhibited approximately 50%. During this time 4.5 +/- 1.6 nmol of iodo[1-14C]acetamide reacted per mg of complex III protein. Experiments carried out over 24 h indicated that enzyme activity could be inhibited to 70% and the alkylation of complex III was proportional to inhibition. The rates of cytochrome b and c1 reduction by duroquinol are also decreased upon treatment of complex III with iodoacetamide. Separation of the peptides of complex III by electrophoresis in sodium dodecylsulfate shows that all of the radioactivity is located in a single peptide of 50 000 molecular weight, which has been identified as one of the two core proteins. The possible functions of core protein are discussed.  相似文献   

3.
G Harris  M Ator  J Stubbe 《Biochemistry》1984,23(22):5214-5225
Incubation of 2'-chloro-2'-deoxy[3'-3H]uridine 5'-diphosphate ([3'-3H]ClUDP) with Escherichia coli ribonucleotide reductase (RDPR) and use of thioredoxin-thioredoxin reductase as reductants result in release of 4.7 equiv of 3H2O/equiv of B1 protomer, concomitant with enzyme inactivation. Inactivation is accompanied by the production of 6 equiv of inorganic pyrophosphate [Stubbe, J. A., & Kozarich, J.W. (1980) J. Am. Chem. Soc. 102, 2505-2507] and by the release of uracil as previously shown [Thelander, L., Larsson, A., Hobbs, J., & Eckstein, F. (1976) J. Biol. Chem. 251, 1398-1405]. Reisolation of RDPR by Sephadex chromatography and analysis by scintillation counting indicate that 0.96 equiv of 3H is bound per protomer of the B1 subunit of the inactivated enzyme. Incubation of [5'-3H]ClUDP with RDPR followed by similar analysis indicates that 4.6 mol of 3H is bound per protomer of the B1 subunit of the inactivated enzyme. No 3H2O is released, and 6 equiv of inorganic pyrophosphate is produced during the inactivation. RDPR is protected against inactivation when dithiothreitol (DTT) is used as a reductant in place of thioredoxin-thioredoxin reductase. Incubation of [5'-3H]ClUDP with RDPR and DTT results in the isolation of CHCl3-extractable material that exhibits infrared absorptions at 1710 and 1762 cm-1. The infrared spectrum and the NMR spectrum of the CHCl3-extracted material are very similar to model compounds prepared by the interaction of 2-methylene-3(2H)-furanone with ethanethiol. Incubation of ribonucleoside-triphosphate reductase (RTPR) from Lactobacillus leichmannii with [3'-3H]ClUTP and 3 mM DTT also results in time-dependent 3H2O release concomitant with enzyme inactivation. Reisolation of the inactive protein by Sephadex chromatography followed by radiochemical analysis indicates that 0.4 equiv of 3H is bound covalently per mol of inactivated enzyme. Similar studies with [5'-3H]ClUTP indicate that 2.9 equiv of 3H is bound covalently per mol of inactivated enzyme. No 3H2O is released. High concentrations of DTT protect the enzyme against inactivation. Extraction of the enzymatic reaction mixture with CHCl3 and analysis of the isolated products result in an infrared spectrum and an NMR spectrum remarkably similar to those observed with the E. coli RDPR. Data presented are consistent with the proposal that both the E. coli and L. leichmannii enzymes are able to catalyze the breakdown of the appropriate 2'-chloro-2'-deoxynucleotide to a 3'-keto-2'-deoxynucleotide that can collapse to form the reactive sugar intermediate 2-methylene-3(2H)-furanone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
G W Ashley  G Harris  J Stubbe 《Biochemistry》1988,27(12):4305-4310
The ribonucleoside triphosphate reductase (RTPR) of Lactobacillus leichmannii is inactivated by the substrate analogue 2'-chloro-2'-deoxyuridine 5'-triphosphate (ClUTP). Inactivation is due to alkylation by 2-methylene-3(2H)-furanone, a decomposition product of the enzymic product 3'-keto-2'-deoxyuridine triphosphate. The former has been unambiguously identified as 2-[(ethylthio)methyl]-3(2H)-furanone, an ethanethiol trapped adduct, which is identical by 1H NMR spectroscopy with material synthesized chemically. Subsequent to rapid inactivation, a slow process occurs that results in formation of a new protein-associated chromophore absorbing maximally near 320 nm. The terminal stages of the inactivation have now been investigated in detail. The alkylation and inactivation stoichiometries were studied as a function of the ratio of ClUTP to enzyme. At high enzyme concentrations (0.1 mM), 1 equiv of [5'-3H]ClUTP resulted in 0.9 equiv of 3H bound to protein and 83% inactivation. The amount of labeling of RTPR increased with increasing ClUTP concentration up to the maximum of approximately 4 labels/RTPR, yet the degree of inactivation did not increase proportionally. This suggests that (1) RTPR may be inactivated by alkylation of a single site and (2) decomposition of 3'-keto-dUTP is not necessarily enzyme catalyzed. The formation of the new protein chromophore was also monitored during inactivation and found to reach its full extent upon the first alkylation. Thus, out of four alkylation sites, only one appears capable of undergoing the subsequent reaction to form the new chromophore. While chromophore formation was prevented by NaBH4 treatment, the chromophore itself is resistant to reduction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Trypanothione reductase from Crithidia fasciculata has been purified ca. 1400-fold to homogeneity in an overall yield of 60%. The pure enzyme showed a pH optimum of 7.5-8.0 and was highly specific for its physiological substrates NADPH and trypanothione that had Km values of 7 and 53 microM, respectively. Trypanothione reductase was found to be a dimer of identical subunits with Mr 53 800 each. The enzyme displayed a visible absorption spectrum that was indicative of a flavoprotein with a lambda max at 464 nm. The flavin was liberated by thermal denaturation of the protein and identified, both by high-performance liquid chromatography (HPLC) and by fluorescence studies, as FAD. The extinction coefficient of pure enzyme at 464 nm was determined to be 11.3 mM-1 cm-1. Upon titration with 5,5'-dithiobis(2-nitrobenzoic acid), oxidized enzyme was found to contain 2.2 (+/- 0.1) free thiols, whereas NADPH-reduced enzyme showed 3.9 (+/- 0.3). Furthermore, whereas oxidized enzyme was stable toward inactivating alkylation by 2.0 mM iodoacetamide, NADPH-reduced enzyme was inactivated with a half-life of 14 min. These data suggested that a redox-active cystine residue was present at the enzyme active site. Upon reduction of the enzyme with 2 electron equiv of dithionite, a new peak in the absorption spectrum was observed at 530 nm, thus indicating that a charge-transfer complex between one of the newly reduced thiols and the oxidized FAD had formed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Anaerobic growth of Escherichia coli induces an oxygen-sensitive ribonucleoside triphosphate reductase system, different from the aerobic ribonucleoside diphosphate reductase (EC 1.17.4.1) of aerobic E. coli and higher organisms (Fontecave, M., Eliasson, R., and Reichard, P. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 2147-2151). We have now purified and characterized two proteins from the anaerobic system, provisionally named dA1 and dA3. dA3 is the actual ribonucleoside triphosphate reductase; dA1 has an auxiliary function. From gel filtration, dA1 and dA3 have apparent molecular masses of 27 and 145 kDa, respectively. In denaturing gel electrophoresis, dA3 gives two bands of closely related polypeptides with apparent molecular masses of 77 (beta 1) and 74 (beta 2) kDa. Immunological and structural evidence suggests that beta 2 is a degradation product of beta 1 and that the active enzyme is a dimer of beta 1. dA1 activity coincides on denaturing gels with a band of 29 kDa and thus appears to be a monomer. The reaction requires, in addition, an extract from E. coli heated for 30 min at 100 degrees C. Potassium is one required component, but one or several others remain unidentified and are provisionally designated fraction RT. With dA3, dA1, RT, and potassium ions, CTP reduction shows absolute requirements for S-adenosylmethionine, NADPH (with NADH as a less active substitute), dithiothreitol, and magnesium ions, and is strongly stimulated by ATP, probably acting as an allosteric effector. Micromolar concentrations of several chelators inhibit CTP reduction completely, suggesting the involvement of (a) transition metal(s).  相似文献   

7.
A number of deoxyribonucleoside-requiring mutants (dns) of Bacillus subtilis were isolated and their growth characteristics and ribonucleotide reductase activities were compared with those of the wild type and of a dna mutant (tsA13). Both tsA13 and dns mutants required the presence of a mixture of deoxyribonucleosides for growth at 45 degrees C but not at 25 degrees C. All the mutant strains tested contained ribonucleotide reductase activity which showed heat sensitivity similar to that of the enzyme from a wild-type strain. The reductase in B. subtilis seemed to reduce ribonucleoside triphosphates in a similar manner to the enzyme in Lactobacillus leichmannii.  相似文献   

8.
The ribonucleoside triphosphate reductase (RTPR) from Lactobacillus leichmannii catalyzes the reduction of nucleoside 5'-triphosphates to 2'-deoxynucleoside 5'-triphosphates and uses coenzyme B12, adenosylcobalamin (AdoCbl), as a cofactor. Use of a mechanism-based inhibitor, 2'-deoxy-2'-methylenecytidine 5'-triphosphate, and isotopically labeled RTPR and AdoCbl in conjunction with EPR spectroscopy has allowed identification of the lower axial ligand of cob(II)alamin when bound to RTPR. In common with the AdoCbl-dependent enzymes catalyzing irreversible heteroatom migrations and in contrast to the enzymes catalyzing reversible carbon skeleton rearrangements, the dimethylbenzimidazole moiety of the cofactor is not displaced by a protein histidine upon binding to RTPR.  相似文献   

9.
We have assessed a previously proposed mechanism mediating 5'-deiodinase activation involving enzymic reduction of disulphides to thiols in non-glutathione cytosolic components of Mr approx. 13,000 (Fraction B) catalysed by NADPH in the presence of other cytosolic components of Mr greater than 60,000 (Fraction A). The extent of Fraction B reduction under various experimental conditions was monitored by determining the amount of 14C incorporated into chromatographically isolated Fractions B and A after their alkylation with iodo[14C]acetamide. Incorporation of 14C into B was found to require the simultaneous presence of NADPH and A, to be directly proportional to the concentration of NADPH added, and to be unaffected by either propylthiouracil or iopanoate. Activation of 5'-deiodinase attainable using B after its partial reduction by various concentrations of NADPH and subsequent alkylation with non-radioactive iodoacetamide was inversely proportional to the previously added concentration of NADPH. Fraction B was stable at 100 degrees C for 5 min, while similar heat treatment of Fraction A or omission of NADPH resulted in a complete loss of 14C incorporation. A greater than 90% reduction in iodo[14C]acetamide incorporation was revealed when 0.2 mM-sodium arsenite was added after enzymic reduction of B, as well as when NADPH was replaced by NADH. Fraction B could be labelled more extensively after reduction non-specifically, with dithiothreitol or NaBH4, but not by GSH. These observations provide strong evidence for the presence in vivo of a cytosolic disulphide (DFBS2) in Fraction B which can be reduced enzymically to a dithiol [DFB(SH)2] by NADPH and cytosolic components in Fraction A. The degree of activation of hepatic 5'-deiodinase correlated with the amount of available (unalkylated) Fraction B.  相似文献   

10.
The large subunit of ribonucleotide reductase from Escherichia coli contains redox-active cysteine residues. In separate experiments, five conserved and 2 nonconserved cysteine residues were substituted with alanines by oligonucleotide-directed mutagenesis. The activities of the mutant proteins were determined in the presence of three different reductants: thioredoxin, glutaredoxin, or dithiothreitol. The results indicate two different classes of redox-active cysteines in ribonucleotide reductase: 1) C-terminal Cys-754 and Cys-759 responsible for the interaction with thioredoxin and glutaredoxin; and 2) Cys-225 and Cys-439 located at the nucleotide-binding site. Our classification of redox-active cysteines differs from the location of the active site cysteines in E. coli ribonucleotide reductase suggested previously (Lin, A.-N. I., Ashley, G. W., and Stubbe, J. (1987) Biochemistry 26, 6905-6909).  相似文献   

11.
The kinase and sugar phosphate exchange reactions of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were inactivated by treatment with 5'-p-fluorosulfonylbenzoyladenosine or 8-azido-ATP, but activity could be restored by the addition of dithiothreitol. This inactivation was accompanied by incorporation of 5'-p-sulfonylbenzoyl[8-14C]adenosine into the enzyme that was not released by the addition of dithiothreitol. The lack of effect of ATP analogs on the ATP/ADP exchange or on bisphosphatase activity and reversal of their effects on the kinase and sugar phosphate reactions by dithiothreitol suggest that 1) they reacted with sulfhydryl groups important for sugar phosphate binding in the kinase reaction, and 2) the inactivation of the kinase by these analogs involves a specific reaction that is not related to their general mechanism of attacking nucleotide-binding sites. In addition, alkylation of the enzymes' sulfhydryls with iodoacetamide prevented inactivation by 5'-p-fluorosulfonylbenzoyladenosine, suggesting that the same thiols were involved. o-Iodosobenzoate inactivated the kinase and sugar phosphate exchange; the inactivation was reversed by dithiothreitol; but there was no effect on the bisphosphatase or nucleotide exchange, indicating that oxidation occurred at the same sulfhydryl that are associated with sugar phosphate binding. ATP or ADP, but not fructose 6-phosphate, protected these groups from modification by 5'-p-fluorosulfonylbenzoyladenosine, 8-azido-ATP, and o-iodosobenzoate. ATP also induced dramatic changes in the circular dichroism spectrum of the enzyme, suggesting that adenine nucleotide protection of thiol groups resulted from changes in enzyme secondary structure. Analysis of cyanogen bromide fragments of 14C-carboxamidomethylated enzyme showed that all radioactivity was associated with cysteinyl residues in a single cyanogen bromide fragment. Three of these cysteinyl residues are clustered in a 38-residue region, which probably plays a role in maintaining the conformation of the kinase sugar phosphate-binding site.  相似文献   

12.
Hydrogen peroxide reacts with two-electron reduced glutathione reductase (GR EH2 species) to give the native oxidized enzyme (E) without detectable intermediates. Prior alkylation of the EH2 interchange thiol with iodoacetamide, however, dramatically changes both the course and overall rate of the peroxide reaction. This oxidation, monitored spectrally, is characterized by an intermediate (EHRint) with enhanced long wavelength absorbance extending to 800 nm. This species decays in a second peroxide-dependent phase to an enzyme form (EHRox) easily distinguished from E. Quenching experiments with catalase allow the isolation of a stable mixture consisting of 36% monoalkylated GR (EHR), 60% EHRint, and 4% EHRox; NADPH titration and anaerobic dithiothreitol addition lead to quantitative reduction of EHRint to EHR, and there is an increase in thiol titer of 0.8-SH/FAD on NADPH reduction. Of the four titratable thiols present in EHR, 2.7 are lost on oxidation to EHRox and 0.7-0.8 mol of cysteic acid/FAD is formed. On the basis of these and other observations, we conclude that alkylation of the EH2 interchange thiol, which blocks disulfide formation, allows peroxide reaction at the remaining charge-transfer thiol to proceed via a stabilized cysteine-sulfenic acid intermediate (EHRint), which undergoes further oxidation to the corresponding cysteic acid (EHRox).  相似文献   

13.
The anaerobic ribonucleoside triphosphate reductase from Escherichia coli reduces CTP to dCTP in the presence of a second protein, named dA1, and a Chelex-treated boiled extract of the bacteria, named RT. The reaction requires S-adenosylmethionine, NADPH, dithiothreitol, ATP, and Mg2+ and K+ ions. It occurs only under anaerobic conditions. We now show that the overall reaction occurs in two steps. The first is an activation of the reductase by dA1 and RT and requires S-adenosylmethionine, NADPH, dithiothreitol, and possibly K+ ions. In the second step, the activated reductase reduces CTP to dCTP with ATP acting as an allosteric effector. During activation, S-adenosylmethionine is cleaved reductively to methionine + 5'-deoxyadenosine. This step is inhibited strongly by S-adenosylhomocysteine and various chelators. The activation of the anaerobic reductase shows a considerable similarity to that of pyruvate formate-lyase (Knappe, J., Neugebauer, F. A., Blaschkowski, H. P., and G?nzler, M. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1332-1335).  相似文献   

14.
A small redox-active protein has been purified to homogeneity from cell-free extracts of the strictly anaerobic thermophilic methanogen, Methanobacterium thermoautotrophicum (strain Marburg). The purification consisted of streptomycin sulfate and acid treatments and three chromatographic steps using Sephadex G-75, Mono Q HR 10/10, and Superose 12 HR 10/30 columns. When these procedures were carried out under strictly anaerobic conditions, approximately 3 mg of this protein could be isolated from 45 g of wet cell paste. Like the thioredoxins and glutaredoxins, it is a small acidic protein (pI = 4.2) consisting of 83 amino acids (M(r) = 9136). In the presence of dithiothreitol or dihydrolipoate, the protein serves as a hydrogen donor for the ribonucleotide reductase from Escherichia coli, and it catalyzes the reduction of insulin. However, it does not interact with the thioredoxin reductases from E. coli or Corynebacterium nephridii and does not function as a hydrogen donor for the ribonucleotide reductase of C. nephridii. The amino acid sequences determined by automated Edman degradation of the 14C-carboxymethylated protein and of peptides derived from trypsin and chymotrypsin digestions show a redox-active site -Cys-Pro-Tyr-Cys-, typical of the glutaredoxins. Its amino acid sequence shows moderate identity with the known glutaredoxins (E. coli, yeast, rabbit bone marrow, calf thymus, and pig liver) when the proteins are aligned at the active site. The secondary structure of the glutaredoxin-like protein predicted by the Chou-Fasman procedure shows that it is similar to the known glutaredoxins. However, surprisingly, the protein does not function as a glutathione-disulfide oxidoreductase in the presence of glutathione and glutathione reductase. This glutaredoxin-like protein may be a component of a ribonucleotide-reducing system distinct from the previously described systems utilizing thioredoxin or glutaredoxin.  相似文献   

15.
A second thioredoxin, distinct from the one reported by Meng and Hogenkamp in 1981 (J. Biol. Chem. 256, 9174-9182), has been purified to homogeneity from an Escherichia coli strain containing a plasmid encoding a Corynebacterium nephridii thioredoxin. Thioredoxin genes from C. nephridii were cloned into the plasmid pUC13 and transformants were identified by complementation of a thioredoxin negative (trxA-) E. coli strain. The abilities of the transformants to support the growth of several phages suggested that more than one thioredoxin had been expressed [Lim et al. (1987) J. Biol. Chem. 262, 12114-12119]. In this paper we present the purification and characterization of one of these thioredoxins. The new thioredoxin from C. nephridii, designated thioredoxin C-2, is a heat-stable protein containing three cysteine residues/molecule. It serves as a substrate for C. nephridii thioredoxin reductase and E. coli and Lactobacillus leichmannii ribonucleotide reductases. Thioredoxin C-2 catalyzes the reduction of insulin disulfides by dithiothreitol or by NADPH and thioredoxin reductase and is a hydrogen donor for the methionine sulfoxide reductase of E. coli. Spinach malate dehydrogenase (NADP+) and phosphoribulokinase are activated by this thioredoxin while glyceraldehyde-3-phosphate dehydrogenase (NADP+) is not. Like the thioredoxin first isolated from C. nephridii, this new thioredoxin is not a reducing substrate for the C. nephridii ribonucleotide reductase. The complete primary sequence of this second thioredoxin has been determined. The amino acid sequence shows a high degree of similarity with other thioredoxins. Surprisingly, in contrast to the other sequences, this new thioredoxin contains the tetrapeptide -Cys-Ala-Pro-Cys- at the active site. With the exception of the T4 thioredoxin, this is the first example of a thioredoxin that does not have the sequence -Cys-Gly-Pro-Cys-. Our results suggest that, like plant cells, bacterial cells may utilize more than one thioredoxin.  相似文献   

16.
Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides, an essential step in DNA biosynthesis and repair. Here we present the crystal structure of class II (coenzyme B12-dependent) ribonucleoside triphosphate reductase (RTPR) from Lactobacillus leichmannii in the apo enzyme form and in complex with the B12 analog adeninylpentylcobalamin at 1.75 and 2.0 A resolution, respectively. This monomeric, allosterically regulated class II RNR retains all the key structural features associated with the catalytic and regulatory machinery of oligomeric RNRs. Surprisingly, the dimer interface responsible for effector binding in class I RNR is preserved through a single 130-residue insertion in the class II structure. Thus, L. leichmannii RNR is a paradigm for the simplest structural entity capable of ribonucleotide reduction, a reaction linking the RNA and DNA worlds.  相似文献   

17.
Escherichia coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside 5'-diphosphates to deoxynucleoside 5'-diphosphates and is a 1:1 complex of two homodimeric subunits: alpha2 and beta2. As a first step towards mapping the subunit interface, beta2 (V365C) was labeled with [(14)C]-benzophenone (BP) iodoacetamide. The resulting [(14)C]-BP-beta2 (V365C) was complexed with alpha2 and irradiated at 365nm for 30min at 4 degrees C. The cross-linked mixture was purified by anion exchange chromatography and digested with trypsin. The peptides were purified by reverse phase chromatography, identified by scintillation counting and analyzed by Edman sequencing. Three [(14)C]-labeled peptides were identified: two contained a peptide in beta to which the BP was attached. The third contained the same beta peptide and a peptide in alpha found in its alphaD helix. These results provide direct support for the proposed docking model of alpha2beta2.  相似文献   

18.
Recombinant plasmids containing all or part of the genetic region of Escherichia coli coding for the two subunits of ribonucleoside diphosphate reductase (proteins B1 and B2) were constructed with the aid of the multicopy plasmid pBR322. Two of these plasmids (pPS1 and pPS2) appeared to carry both a regulator and the complete structural information for the enzyme and, after transformation of E. coli, directed a 10- to 20-fold overproduction of both proteins B1 and B2. The other plasmids (pPS101 and pPS201) carried structural information for only protein B2. Cells carrying pPS1 and pPS2 showed a 5- to 500-fold increased resistance against the drug hydroxyurea. This establishes that in E. coli the inhibition of deoxyribonucleic acid synthesis by hydroxyurea is fully explained by its action on ribonucleotide reductase.  相似文献   

19.
In yeast hexokinase B, two thiols per monomer appeared to be essential when enzymic inactivation was produced by the concurrent alkylation of both of them, by several reagents including the affinity reagent N-bromoacetyl-2-D-galactosamine. However, it is shown that only one of these thiols is actually essential. Three of the four thiols present can be blocked by alkylation in the presence of a substrate in appropriate conditions, without loss of enzymic activity. Subsequently, in the absence of substrate, the affinity reagent reacts at the one remaining thiol, with complete inactivation. The same behavior can be obtained by reaction with iodoacetamide or by the formation of the -SCN group. The affinity reagent inactivates hexokinase B faster than does the isomeric glycosidic compound (glycosides being nonsubstrates), although the latter has twice the reactivity of the former toward glutathione. The reactions with alkylating agents, with or without substrate present, are used to classify the four thiols in the monomer. The temperature dependence of the alkylation of the essential thiol provides evidence for a transition in the molecule at about 31 degrees C. The inactive monomer containing the -SCN group can regenerate, by thiolysis, active enzyme with the thiol free. It can also perform an intramolecular cleavage of the chain. The latter reaction was used to locate the essential cysteine residue in the chain, at 80% of the length from the N terminus.  相似文献   

20.
The clostridial glycine reductase complex catalyzes the reductive deamination of glycine in an energy-conserving process that results in the esterification of orthophosphate. The complex consists of three protein components: selenoprotein A; protein B, a carbonyl group protein; and protein C, a sulfhydryl protein. The protein C component also catalyzes the arsenate-dependent decomposition of acetyl phosphate. Reaction of protein C with iodoacetate inhibits its ability to decompose acetyl phosphate, but this inactivation of the enzyme by alkylation is prevented in the presence of the substrate indicating the formation of an unreactive enzyme-bound acetylthiol ester. The Se-carboxy-methylselenocysteine residue of the selenoprotein A component of glycine reductase was generated by selective alkylation of the ionized selenol group at pH 6 with [14C]bromoacetate. Using this pure alkylated selenoprotein A as substrate, it was shown that protein C catalyzes the conversion of the [14C]carboxymethyl group, in selenoether linkage to protein A, to [14C]acetate in the presence of arsenate, dithiothreitol, and Mg2+. A procedure using hydrophobic chromatographic matrices was developed for the large scale isolation of protein C, and a number of the properties of the enzyme were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号