首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Phthiocerol dimycocerosates and related compounds are important molecules in the biology of Mycobacterium tuberculosis, playing a key role in the permeability barrier and in pathogenicity. Both phthiocerol dimycocerosates, the major compounds, and phthiodiolone dimycocerosates, the minor constituents, are found in the cell envelope of M. tuberculosis, but their specific roles in the biology of the tubercle bacillus have not been established yet. According to the current model of their biosynthesis, phthiocerol is produced from phthiodiolone through a two-step process in which the keto group is first reduced and then methylated. We have previously identified the methyltransferase enzyme that is involved in this process, encoded by the gene Rv2952 in M. tuberculosis. In this study, we report the construction and biochemical analyses of an M. tuberculosis strain mutated in gene Rv2951c. This mutation prevents the formation of phthiocerol and phenolphthiocerol derivatives, but leads to the accumulation of phthiodiolone dimycocerosates and glycosylated phenolphthiodiolone dimycocerosates. These results provide the formal evidence that Rv2951c encodes the ketoreductase catalyzing the reduction of phthiodiolone and phenolphthiodiolone to yield phthiotriol and phenolphthiotriol, which are the substrates of the methyltransferase encoded by gene Rv2952. We also compared the resistance to SDS and replication in mice of the Rv2951c mutant, deficient in synthesis of phthiocerol dimycocerosates but producing phthiodiolone dimycocerosates, with those of a wild-type strain and a mutant without phthiocerol and phthiodiolone dimycocerosates. The results established the functional redundancy between phthiocerol and phthiodiolone dimycocerosates in both the protection of the mycobacterial cell and the pathogenicity of M. tuberculosis in mice.  相似文献   

2.
Phthiocerol dimycocerosates (DIM) and phenolglycolipids (PGL) are functionally important surface-exposed lipids of Mycobacterium tuberculosis. Their biosynthesis involves the products of several genes clustered in a 70-kb region of the M. tuberculosis chromosome. Among these products is PpsD, one of the modular type I polyketide synthases responsible for the synthesis of the lipid core common to DIM and PGL. Bioinformatic analyses have suggested that this protein lacks a functional enoyl reductase activity domain required for the synthesis of these lipids. We have identified a gene, Rv2953, that putatively encodes an enoyl reductase. Mutation in Rv2953 prevents conventional DIM formation and leads to the accumulation of a novel DIM-like product. This product is unsaturated between C-4 and C-5 of phthiocerol. Consistently, complementation of the mutant with a functional pks15/1 gene from Mycobacterium bovis BCG resulted in the accumulation of an unsaturated PGL-like substance. When an intact Rv2953 gene was reintroduced into the mutant strain, the phenotype reverted to the wild type. These findings indicate that Rv2953 encodes a trans-acting enoyl reductase that acts with PpsD in phthiocerol and phenolphthiocerol biosynthesis.  相似文献   

3.
Mycobacteria synthesize a variety of unusual long-chain fatty acid esters and the systematic analysis of these is of great potential in the classification and identification of these bacteria. This paper describes the extraction, reductive fission and derivatization to tert-butyldimethylsilyl ethers of beta-diesters, the phthiocerol dimycocerosates. The mass spectra of these ethers are characteristic of the parent alcohols and selected ion monitoring techniques have been applied to mixtures extracted from strains of Mycobacterium tuberculosis.  相似文献   

4.
Cell envelope lipids play an important role in the pathogenicity of mycobacteria, but the mechanisms by which they are transported to the outer membrane of these prokaryotes are largely unknown. Here, we provide evidence that LppX is a lipoprotein required for the translocation of complex lipids, the phthiocerol dimycocerosates (DIM), to the outer membrane of Mycobacterium tuberculosis. Abolition of DIM transport following disruption of the lppX gene is accompanied by an important attenuation of the virulence of the tubercle bacillus. The crystal structure of LppX unveils an U-shaped beta-half-barrel dominated by a large hydrophobic cavity suitable to accommodate a single DIM molecule. LppX shares a similar fold with the periplasmic molecular chaperone LolA and the outer membrane lipoprotein LolB, which are involved in the localization of lipoproteins to the outer membrane of Gram-negative bacteria. Based on the structure and although an indirect participation of LppX in DIM transport cannot yet be ruled out, we propose LppX to be the first characterized member of a family of structurally related lipoproteins that carry lipophilic molecules across the mycobacterial cell envelope.  相似文献   

5.
Mycobacteria, which cause tuberculosis and related diseases, possess a diverse set of complex envelope lipids that provide remarkable tolerance to antibiotics and are major virulence factors that drive pathogenesis. Recently, metabolic labeling and bio-orthogonal chemistry have been harnessed to develop chemical probes for tagging specific lipids in live mycobacteria, enabling a range of new basic and translational research avenues. A toolbox of probes has been developed for labeling mycolic acids and their derivatives, including trehalose-, arabinogalactan-, and protein-linked mycolates, as well as newer probes for labeling phthiocerol dimycocerosates (PDIMs) and potentially other envelope lipids. These lipid-centric tools have yielded fresh insights into mycobacterial growth and host interactions, provided new avenues for drug target discovery and characterization, and inspired innovative diagnostic and therapeutic strategies.  相似文献   

6.
Diacyl phthiocerol esters and their congeners are mycobacterial virulence factors. The biosynthesis of these complex lipids remains poorly understood. Insight into their biosynthesis will aid the development of rationally designed drugs that inhibit their production. In this study, we investigate a biosynthetic step required for diacyl (phenol)phthiocerol ester production, i.e., the reduction of the keto group of (phenol)phthiodiolones. We utilized comparative genomics to identify phthiodiolone ketoreductase gene candidates and provide a genetic analysis demonstrating gene function for two of these candidates. Moreover, we present data confirming the existence of a diacyl phthiotriol intermediate in diacyl phthiocerol biosynthesis. We also elucidate the mechanism underlying diacyl phthiocerol deficiency in some mycobacteria, such as Mycobacterium ulcerans and Mycobacterium kansasii. Overall, our findings shed additional light on the biosynthesis of an important group of mycobacterial lipids involved in virulence.  相似文献   

7.
Mycobacterium tuberculosis and Mycobacterium leprae, the two main mycobacterial pathogens in humans, produce highly specific long chain beta-diols, the dimycocerosates of phthiocerol, and structurally related phenolic glycolipid (PGL) antigens, which are important virulence factors. In addition, M. tuberculosis also secretes glycosylated p-hydroxybenzoic acid methyl esters (p-HBAD) that contain the same carbohydrate moiety as the species-specific PGL of M. tuberculosis (PGL-tb). The genes involved in the biosynthesis of these compounds in M. tuberculosis are grouped on a 70-kilobase chromosomal fragment containing three genes encoding putative glycosyltransferases: Rv2957, Rv2958c, and Rv2962c. To determine the functions of these genes, three recombinant M. tuberculosis strains, in which these genes were individually inactivated, were constructed and biochemically characterized. Our results demonstrated that (i) the biosynthesis of PGL-tb and p-HBAD involves common enzymatic steps, (ii) the Rv2957, Rv2958c, and Rv2962c genes are involved in the formation of the glycosyl moiety of the two classes of molecules, and (iii) the product of Rv2962c catalyzes the transfer of a rhamnosyl residue onto p-hydroxybenzoic acid ethyl ester or phenolphthiocerol dimycocerosates, whereas the products of Rv2958c and Rv2957 add a second rhamnosyl unit and a fucosyl residue to form the species-specific triglycosyl appendage of PGL-tb and p-HBAD. The recombinant strains produced provide the tools to study the role of the carbohydrate domain of PGL-tb and p-HBAD in M. tuberculosis pathogenesis.  相似文献   

8.
A diglycosyl phenol phthiocerol diester that had not been previously detected was isolated from M. leprae-infected armadillo tissues. Spectroscopy methods allowed the elucidation of its structure. The diglycoside was a 2,3-di-O-methylrhamnopyranosyl (alpha 1----2)3-O-methylrhamnopyranosyl (alpha 1-linked to the phenolic hydroxyl of phthiocerol dimycocerosates). It differs from the major phenolic glycolipid (PGL I) only by the absence of the terminal 3,6-di-O-methylglucopyranosyl unit. The diglycoside could be an intermediate in the synthesis of the latter antigen or a degradative product in the host detoxification process.  相似文献   

9.
Treatment of tuberculosis still represent a major public health issue. The emergence of multi-and extensively-drug resistant (MDR and XDR) Mycobacterium tuberculosis clinical strains further pinpoint the urgent need for new anti-tuberculous drugs. We previously showed that vancomycin can target mycobacteria lacking cell wall integrity, especially those lacking related phthiocerol and phthiodolone dimycocerosates, PDIM A and PDIM B, respectively. As aloe emodin was previously hypothesized to be able to target the synthesis of mycobacterial cell wall lipids, we tested its ability to potentiate glycopeptides antimycobacterial activity. The aloe emodin with the vancomycin induced a combination effect beyond simple addition, close to synergism, at a concentration lower to reported IC50 cytotoxic value, on M. bovis BCG and on H37Rv M. tuberculosis. Interestingly, out of six MDR and pre-XDR clinical strains, one showed a strong synergic susceptibility to the drug combination. Mycobacterial cell wall lipid analyses highlighted a selective reduction of PDIM B by aloe emodin.  相似文献   

10.
Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), encodes for an astonishing 34 fatty acid adenylating enzymes (FadDs), which play key roles in lipid metabolism. FadDs involved in lipid biosynthesis are functionally nonredundant and serve to link fatty acid and polyketide synthesis to produce some of the most architecturally complex natural lipids including the essential mycolic acids as well as the virulence-conferring phthiocerol dimycocerosates, phenolic glycolipids, and mycobactins. Here we describe the systematic development and optimization of a fluorescence polarization assay to identify small molecule inhibitors as potential antitubercular agents. We fluorescently labeled a bisubstrate inhibitor to generate a fluorescent probe/tracer, which bound with a KD of 245 nM to FadD28. Next, we evaluated assay performance by competitive binding experiments with a series of known ligands and assessed the impact of control parameters including incubation time, stability of the signal, temperature, and DMSO concentration. As a final level of validation the LOPAC1280 library was screened in a 384-well plate format and the assay performed with a Z-factor of 0.75, demonstrating its readiness for high-throughput screening.  相似文献   

11.
A few mycobacterial species, most of which are pathogenic for humans, produce dimycocerosates of phthiocerol (DIM) and of glycosylated phenolphthiocerol, also called phenolglycolipid (PGL), two groups of molecules shown to be important virulence factors. The biosynthesis of these molecules is a very complex pathway that involves more than 15 enzymatic steps and has just begun to be elucidated. Most of the genes known to be involved in these pathways are clustered on the chromosome of M. tuberculosis. Based on their amino acid sequences, we hypothesized that the proteins encoded by Rv2952 and Rv2959c, two open reading frames of this locus, are involved in the transfer of methyl groups onto various hydroxyl functions during the biosynthesis of DIM, PGL, and related p-hydroxybenzoic acid derivatives (p-HBAD). Using allelic exchange and site-specific recombination, we produced three recombinant strains of Mycobacterium tuberculosis carrying insertions in Rv2952 or Rv2959c. Analysis of these mutants revealed that (i) the protein encoded by Rv2952 is a methyltransferase catalyzing the transfer of a methyl group onto the lipid moiety of phthiotriol and glycosylated phenolphthiotriol dimycocerosates to form DIM and PGL, respectively, (ii) Rv2959c is part of an operon including the newly characterized Rv2958c gene that encodes a glycosyltransferase also involved in PGL and p-HBAD biosynthesis, and (iii) the enzyme encoded by Rv2959c catalyzes the O-methylation of the hydroxyl group located on carbon 2 of the rhamnosyl residue linked to the phenolic group of PGL and p-HBAD produced by M. tuberculosis. These data further extend our understanding of the biosynthesis of important mycobacterial virulence factors and provide additional tools to decipher the molecular mechanisms of action of these molecules during the pathogenesis of tuberculosis.  相似文献   

12.
The growth of Mycobacterium tuberculosis mutants unable to synthesize phthiocerol dimycocerosates (DIMs) was recently shown to be impaired in mouse lungs. However, the precise role of these molecules in the course of infection remained to be determined. Here, we provide evidence that the attenuation of a DIM-deficient strain takes place during the acute phase of infection in both lungs and spleen of mice, and that this attenuation results in part from the increased sensitivity of the mutant to the cidal activity of reactive nitrogen intermediates released by activated macrophages. We also show that the DIM-deficient mutant, the growth and survival of which were not impaired within resting macrophages and dendritic cells, induced these cells to secrete more tumour necrosis factor (TNF)-alpha and interleukin (IL)-6 than the wild-type strain. Although purified DIM molecules by themselves had no effect on the activation of macrophages and dendritic cells in vitro, we found that the proper localization of DIMs in the cell envelope of M. tuberculosis is critical to their biological effects. Thus, our findings suggest that DIM production contributes to the initial growth of M. tuberculosis by protecting it from the nitric oxide-dependent killing of macrophages and modulating the early immune response to infection.  相似文献   

13.
Phenolic glycolipids (PGLs) are polyketide synthase-derived glycolipids unique to pathogenic mycobacteria. PGLs are found in several clinically relevant species, including various Mycobacterium tuberculosis strains, Mycobacterium leprae, and several nontuberculous mycobacterial pathogens, such as M. marinum. Multiple lines of investigation implicate PGLs in virulence, thus underscoring the relevance of a deep understanding of PGL biosynthesis. We report mutational and biochemical studies that interrogate the mechanism by which PGL biosynthetic intermediates (p-hydroxyphenylalkanoates) synthesized by the iterative polyketide synthase Pks15/1 are transferred to the noniterative polyketide synthase PpsA for acyl chain extension in M. marinum. Our findings support a model in which the transfer of the intermediates is dependent on a p-hydroxyphenylalkanoyl-AMP ligase (FadD29) acting as an intermediary between the iterative and the noniterative synthase systems. Our results also establish the p-hydroxyphenylalkanoate extension ability of PpsA, the first-acting enzyme of a multisubunit noniterative polyketide synthase system. Notably, this noniterative system is also loaded with fatty acids by a specific fatty acyl-AMP ligase (FadD26) for biosynthesis of phthiocerol dimycocerosates (PDIMs), which are nonglycosylated lipids structurally related to PGLs. To our knowledge, the partially overlapping PGL and PDIM biosynthetic pathways provide the first example of two distinct, pathway-dedicated acyl-AMP ligases loading the same type I polyketide synthase system with two alternate starter units to produce two structurally different families of metabolites. The studies reported here advance our understanding of the biosynthesis of an important group of mycobacterial glycolipids.  相似文献   

14.
Several specific lipids of the cell envelope are implicated in the pathogenesis of M. tuberculosis (Mtb), including phthiocerol dimycocerosates (DIM) that have clearly been identified as virulence factors. Others, such as trehalose‐derived lipids, sulfolipids (SL), diacyltrehaloses (DAT) and polyacyltrehaloses (PAT), are believed to be essential for Mtb virulence, but the details of their role remain unclear. We therefore investigated the respective contribution of DIM, DAT/PAT and SL to tuberculosis by studying a collection of mutants, each with impaired production of one or several lipids. We confirmed that among those with a single lipid deficiency, only strains lacking DIM were affected in their replication in lungs and spleen of mice in comparison to the WT Mtb strain. We found also that the additional loss of DAT/PAT, and to a lesser extent of SL, increased the attenuated phenotype of the DIM‐less mutant. Importantly, the loss of DAT/PAT and SL in a DIM‐less background also affected Mtb growth in human monocyte‐derived macrophages (hMDMs). Fluorescence microscopy revealed that mutants lacking DIM or DAT/PAT were localized in an acid compartment and that bafilomycin A1, an inhibitor of phagosome acidification, rescued the growth defect of these mutants. These findings provide evidence for DIM being dominant virulence factors that mask the functions of lipids of other families, notably DAT/PAT and to a lesser extent of SL, which we showed for the first time to contribute to Mtb virulence.  相似文献   

15.
Mycobacterium tuberculosis cell envelope is a treasure house of biologically active lipids of fascinating molecular architecture. Although genetic studies have alluded to an array of genes in biosynthesis of complex lipids, their mechanistic, structural, and biochemical principles have not been investigated. Here, we have dissected the molecular logic underlying the biosynthesis of a virulence lipid phthiocerol dimycocerosate (PDIM). Cell-free reconstitution studies demonstrate that polyketide synthases, which are usually involved in the biosynthesis of secondary metabolites, are responsible for generating complex lipids in mycobacteria. We show that PapA5 protein directly transfers the protein bound mycocerosic acid analogs on phthiocerol to catalyze the final esterification step. Based on precise identification of biological functions of proteins from Pps cluster, we have rationally produced a nonmethylated variant of mycocerosate esters. Apart from elucidating mechanisms that generate chemical heterogeneity with PDIMs, this study also presents an attractive approach to explore host-pathogen interactions by altering mycobacterial surface coat.  相似文献   

16.
The infectivity and persistence of Mycobacterium tuberculosis requires the utilization of host cell cholesterol. We have examined the specific role of cytochrome P450 CYP125A1 in the cholesterol degradation pathway using genetic, biochemical and high‐resolution mass spectrometric approaches. The analysis of lipid profiles from cells grown on cholesterol revealed that CYP125A1 is required to incorporate the cholesterol side‐chain carbon atoms into cellular lipids, as evidenced by an increase in the mass of the methyl‐branched phthiocerol dimycocerosates. We observed that cholesterol‐exposed cells lacking CYP125A1 accumulate cholest‐4‐en‐3‐one, suggesting that this is a physiological substrate for this enzyme. Reconstitution of enzymatic activity with spinach ferredoxin and ferredoxin reductase revealed that recombinant CYP125A1 indeed binds both cholest‐4‐en‐3‐one and cholesterol, efficiently hydroxylates both of them at C‐27, and then further oxidizes 27‐hydroxycholest‐4‐en‐3‐one to cholest‐4‐en‐3‐one‐27‐oic acid. We determined the X‐ray structure of cholest‐4‐en‐3‐one‐bound CYP125A1 at a resolution of 1.58 Å. CYP125A1 is essential for growth of CDC1551 in media containing cholesterol or cholest‐4‐en‐3‐one. In its absence, the latter compound is toxic for both CDC1551 and H37Rv when added with glycerol as a second carbon source. CYP125A1 is a key enzyme in cholesterol metabolism and plays a crucial role in circumventing the deleterious effect of cholest‐4‐en‐3‐one.  相似文献   

17.
The fatty acid biosynthesis (FAS-II) pathway in Mycobacterium tuberculosis generates long chain fatty acids that serve as the precursors to mycolic acids, essential components of the mycobacterial cell wall. Enzymes in the FAS-II pathway are thought to form one or more noncovalent multi-enzyme complexes within the cell, and a bacterial two-hybrid screen was used to search for missing components of the pathway and to furnish additional data on interactions involving these enzymes in vivo. Using the FAS-II beta-ketoacyl synthase, KasA, as bait, an extensive bacterial two-hybrid screen of a M. tuberculosis genome fragment library unexpectedly revealed a novel interaction between KasA and PpsB as well as PpsD, two polyketide modules involved in the biosynthesis of the virulence lipid phthiocerol dimycocerosate (PDIM). Sequence analysis revealed that KasA interacts with PpsB and PpsD in the region of the acyl carrier domain of each protein, raising the possibility that lipids could be transferred between the FAS-II and PDIM biosynthetic pathways. Subsequent studies utilizing purified proteins and radiolabeled lipids revealed that fatty acids loaded onto PpsB were transferred to KasA and also incorporated into long chain fatty acids synthesized using a Mycobacterium smegmatis lysate. These data suggest that in addition to producing PDIMs, the growing phthiocerol product can also be shuttled into the FAS-II pathway via KasA as an entry point for further elongation. Interactions between these biosynthetic pathways may exist as a simple means to increase mycobacterial lipid diversity, enhancing functionality and the overall complexity of the cell wall.  相似文献   

18.
With the high number of patients infected by tuberculosis and the sharp increase of drug-resistant tuberculosis cases, developing new drugs to fight this disease has become increasingly urgent. In this context, analogs of the naturally occurring enolphosphates Cyclipostins and Cyclophostin (CyC analogs) offer new therapeutic opportunities. The CyC analogs display potent activity both in vitro and in infected macrophages against several pathogenic mycobacteria including Mycobacterium tuberculosis and Mycobacterium abscessus. Interestingly, these CyC inhibitors target several enzymes with active-site serine or cysteine residues that play key roles in mycobacterial lipid and cell wall metabolism. Among them, TesA, a putative thioesterase involved in the synthesis of phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs), has been identified. These two lipids (PDIM and PGL) are non-covalently bound to the outer cell wall in several human pathogenic mycobacteria and are important virulence factors. Herein, we used biochemical and structural approaches to validate TesA as an effective pharmacological target of the CyC analogs. We confirmed both thioesterase and esterase activities of TesA, and showed that the most active inhibitor CyC17 binds covalently to the catalytic Ser104 residue leading to a total loss of enzyme activity. These data were supported by the X-ray structure, obtained at a 2.6-Å resolution, of a complex in which CyC17 is bound to TesA. Our study provides evidence that CyC17 inhibits the activity of TesA, thus paving the way to a new strategy for impairing the PDIM and PGL biosynthesis, potentially decreasing the virulence of associated mycobacterial species.  相似文献   

19.
Although phthiocerol dimycocerosates (DIM) are major virulence factors of Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, little is known about their mechanism of action. Localized in the outer membrane of mycobacterial pathogens, DIM are predicted to interact with host cell membranes. Interaction with eukaryotic membranes is a property shared with another virulence factor of Mtb, the early secretory antigenic target EsxA (also known as ESAT‐6). This small protein, which is secreted by the type VII secretion system ESX‐1 (T7SS/ESX‐1), is involved in phagosomal rupture and cell death induced by virulent mycobacteria inside host phagocytes. In this work, by the use of several knock‐out or knock‐in mutants of Mtb or Mycobacterium bovis BCG strains and different cell biological assays, we present conclusive evidence that ESX‐1 and DIM act in concert to induce phagosomal membrane damage and rupture in infected macrophages, ultimately leading to host cell apoptosis. These results identify an as yet unknown function for DIM in the infection process and open up a new research field for the study of the interaction of lipid and protein virulence factors of Mtb.  相似文献   

20.
Phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs) are structurally related lipids noncovalently bound to the outer cell wall layer of Mycobacterium tuberculosis, Mycobacterium leprae, and several opportunistic mycobacterial human pathogens. PDIMs and PGLs are important effectors of virulence. Elucidation of the biosynthesis of these complex lipids will not only expand our understanding of mycobacterial cell wall biosynthesis, but it may also illuminate potential routes to novel therapeutics against mycobacterial infections. We report the construction of an in-frame deletion mutant of tesA (encoding a type II thioesterase) in the opportunistic human pathogen Mycobacterium marinum and the characterization of this mutant and its corresponding complemented strain control in terms of PDIM and PGL production. The growth and antibiotic susceptibility of these strains were also probed and compared with the parental wild-type strain. We show that deletion of tesA leads to a mutant that produces only traces of PDIMs and PGLs, has a slight growth yield increase and displays a substantial hypersusceptibility to several antibiotics. We also provide a robust model for the three-dimensional structure of M. marinum TesA (TesAmm) and demonstrate that a Ser-to-Ala substitution in the predicted catalytic Ser of TesAmm renders a mutant that recapitulates the phenotype of the tesA deletion mutant. Overall, our studies demonstrate a critical role for tesA in mycobacterial biology, advance our understanding of the biosynthesis of an important group of polyketide synthase-derived mycobacterial lipids, and suggest that drugs aimed at blocking PDIM and/or PGL production might synergize with antibiotic therapy in the control of mycobacterial infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号